留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响

章磊 徐祎萌 白美霞 周燕 秦华 徐秋芳 陈俊辉

章磊, 徐祎萌, 白美霞, 等. 生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响[J]. 浙江农林大学学报, 2024, 41(3): 506-516. DOI: 10.11833/j.issn.2095-0756.20230468
引用本文: 章磊, 徐祎萌, 白美霞, 等. 生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响[J]. 浙江农林大学学报, 2024, 41(3): 506-516. DOI: 10.11833/j.issn.2095-0756.20230468
XU Huihui, LIU Xiaojuan, WANG Mengke, et al. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium[J]. Journal of Zhejiang A&F University, 2023, 40(2): 348-355. DOI: 10.11833/j.issn.2095-0756.20220202
Citation: ZHANG Lei, XU Yimeng, BAI Meixia, et al. Effects of biochar combined with organic amendments on carbon composition and eco-enzymatic stoichiometry of red soil[J]. Journal of Zhejiang A&F University, 2024, 41(3): 506-516. DOI: 10.11833/j.issn.2095-0756.20230468

生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响

DOI: 10.11833/j.issn.2095-0756.20230468
基金项目: 浙江省‘尖兵’‘领雁’研发攻关计划项目(2023C02005)
详细信息
    作者简介: 章磊(ORCID: 0009-0002-4805-5695),从事土壤微生物与碳循环研究。E-mail: 2021103011030@stu.zafu.edu.cn
    通信作者: 陈俊辉(ORCID: 0000-0003-2070-805X),教授,博士,博士生导师,从事土壤微生物与碳氮循环研究。E-mail: junhui@zafu.edu.cn
  • 中图分类号: S156

Effects of biochar combined with organic amendments on carbon composition and eco-enzymatic stoichiometry of red soil

  • 摘要:   目的  分析生物质炭和有机物料施用对旱地红壤有机碳组分和酶活性的影响,探明微生物的碳氮磷元素限制特征,为提升红壤有机碳稳定性提供理论依据。  方法  采用田间试验,设置不施有机物料对照(ck)、玉米Zea mays秸秆单施、羊粪单施及其分别与生物质炭(玉米秸秆炭)配施等6个处理。试验开始2 a后测定土壤有机碳组分、土壤养分质量分数、碳氮磷循环相关碱解酶活性和氧化酶活性。  结果  与单施秸秆和羊粪相比,生物质炭与有机物料配施显著增加了土壤有机碳和碱解氮质量分数(P<0.05),提高了土壤碳氮比和碳磷比及惰性碳组分质量分数,降低了有机碳活性指数。有机物料施用显著提高了纤维二糖水解酶(CB)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)和过氧化物酶(PERO)活性(P<0.05);与单施羊粪相比,生物质炭与羊粪配施处理显著降低β-葡萄糖苷酶(BG)活性50.9%、亮氨酸氨基肽酶(LAP)活性32.1%、NAG活性45.3%、酸性磷酸酶(PHOS)活性40.0% (P<0.05)。与单施秸秆相比,生物质炭与秸秆配施降低了多酚氧化酶(PHOX)活性28.6%和PERO活性22.2%,但对其他酶的活性无影响。与单施秸秆相比,生物质炭配施秸秆降低了向量长度;与单施羊粪相比,生物质炭配施羊粪对酶化学计量比、向量长度及向量角度均无显著影响。PERO和PHOX与土壤惰性碳质量分数、碳氮比、碳磷比呈显著负相关(P<0.05)。冗余分析表明:土壤惰性碳质量分数、碳氮比和碳磷比是影响土壤酶活性及其化学计量特征的主要因子。  结论  与有机物料单施相比,生物质炭与有机物料配施可以更好地提高旱地红壤养分和惰性碳组分质量分数,降低有机碳分解酶活性,缓解碳磷限制,可作为改善红壤微生物养分限制和提高碳汇能力的有效措施。图2表3参 44
  • 生物入侵是指在特定的生态系统下,非本地生物的引入产生或可能产生的经济和环境损失或对人类、动物及植物健康危害的情况[1]。在全球化进程中,生物入侵每年造成的损失已超过1×1013美元,中国每年农林生态系统损失约4×1010 元,其中绝大部分是由外来植物入侵造成的植被危害所导致[2]。引入园林植物外来种原是为解决城市化进程中公共环境建设面临的资源短缺问题,但因时滞效应产生的负面影响具有潜伏性,若园林植物外来种归化后克服了传播障碍,就会在远离引种地建立具有入侵性的新种群,从而破坏生态平衡,降低生物多样性[3]。因此,评估园林植物外来种入侵生态风险对后续园林植物的引种应用具有指导意义。

    滇池是云南省面积最大的高原淡水湖泊,也是国家环境重点治理的“三湖三河”(淮河、海河、辽河和太湖、巢湖、滇池)之一[4]。早些年在滇池外围建立了防浪堤,但这一举措使滇池原有的浅滩湿地面积锐减。自20世纪80年代以来,国家及地方政府不断加大对滇池保护和污染治理的力度,同时出于维护湿地生态平衡,提供人湖互动空间等目的,对滇池区域的湿地进行了恢复,建成大量湿地公园[5]。与紧邻城区的滇池北岸、东岸及南岸湿地公园不同的是,远郊西岸的湿地公园近年来因缺乏管理日渐荒芜,在湖泊治理、湖岸美化建设过程中引入的园林植物外来种已成为威胁滇池生态安全的隐患。对滇池西岸的园林植物外来种进行生态风险评价能有效支持区域生态建设、系统管理和环境修复等诸多工作[6],可为后续的规划及管理提供重要的参考价值,为滇池和高原区域生态安全及高原湿地植物入侵等相关研究提供资料。

    滇池西岸的湿地公园位于云南省昆明市滇池湖滨湿地区(20°30′49″~25°13′14″N,102°32′58″~102°58′28″E)的环湖西路段及环湖南路古城段,西靠西山、观音山和豹子山,森林植被资源丰富;东接多个鸟类保育区及土著、稀有水生植物保护区。在2015年滇池管理局颁布的《滇池分级保护范围划定方案》中,滇池西岸区域被划分为多个生态价值较高的一、二级保护区,以及几个零星分布可用于建设的三级保护区,相较于滇池东岸、北岸和南岸具有更高的生态保护需求。

    本研究选取滇池西岸具有代表性的3个湿地公园:西华湿地公园、晖湾湿地公园和古城河河口湿地公园作为调查对象(表1),对公园内分布的园林植物外来种进行调查评价。

    表 1  滇池西岸3个湿地公园情况
    Table 1  Status statistics of three wetland parks on the west bank of Dianchi Lake
    公园名称纬度(N)经度(E)行政管辖区面积/hm2规划方向
    西华湿地公园   24°52′39.5″102°39′44.1″西山区52.080城市湿地公园     
    晖湾湿地公园   24°55′06.4″102°38′35.7″西山区132.000湿地自然保护区    
    古城河河口湿地公园24°42′12.6″102°36′03.2″晋宁县85.148并入环滇池生态廊道建设
    下载: 导出CSV 
    | 显示表格
    1.2.1   外业调研

    2019年3—7月及2021年9月,对滇池西岸3个湿地公园的场地现状及植物种类进行了一、二轮调查和补充调查。调查采用线路踏查法和重点区域普查法,草本植物采用1 m×1 m的样方,灌木及藤本植物采用5 m×5 m的样方,乔木采用10 m×10 m的样方。植物调查内容包括植物的生长状况及扩散逸生情况。

    1.2.2   种类鉴定及区系成分统计

    参考中国植物志官网(http://www.iplant.cn/)、Flora of China及《云南植物志》等相关资料进行种类鉴定及原产地和应用类型的统计;按照吴征镒等[7]对世界种子植物科、属分布区类型的划分,对园林植物外来种进行区系成分统计。

    1.2.3   生态风险评价体系构建

    参考王焱等[8]的研究,对滇池西岸园林植物外来种进行生态风险预评价,即依据所调查的植物原产地是否为云南省,将其划分为乡土植物和外来植物;再依据外来植物是否能应用于园林观赏,将其划分为园林植物外来种和非园林植物外来种;最后将这些植物种分成“已存在和未引入”2种不同状态,并依据实际情况(如引种生长状况等)归入2种不同评价体系。在排除不具有入侵记录、生长适应差、分布面积小且未逸生的园林植物外来种后,最终从“已存在”的93种园林植物外来种中筛选出58种待评价的园林植物外来种。

    参考潘曲波等[9]研究,构建多指标综合评价体系框架,即将体系框架划分为3个指标层:1级指标层(总目标层)3个,分别为园林植物自身特性、引种地自然环境、引种地人为影响情况;2级指标层(分目标层)11个,是对一级指标扩展与延伸;3级指标层39个,是具体的操作性指标。同时,评价体系的赋值由专家咨询法和层次分析法共同完成,其计算结果得到的一致性比率(CR)<0.1,即其权重值均通过一致性检验。参考马金双等[10]的研究,挑选30种该书中记载的园林植物入侵种作为检验植物,利用SPSS的K-Means聚类算法将其聚为3类;在排除异常点后,以每类最低分作为划分标准,得到3个风险等级,用P表示得分值,即P≥68.0时为高风险,63.5≤P<68.0时为中风险,18.5≤P<63.5时为低风险。

    根据层次分析法的计算结果,参照划分标准评价58种园林植物外来种的生态风险,并提出防控建议。

    3个湿地公园共有93种园林植物外来种(含种下等级),隶属48科77属;西华湿地公园内园林植物外来种应用总数最多,晖湾湿地公园应用总数最少(表2)。由表3可见:3个湿地公园园林植物外来种中应用种类最多的科为豆科Fabaceae,约占总数的9.68%,其中5种在《中国外来入侵植物名录》中有记载,即白车轴草Trifolium repens为二级入侵植物,黑荆Acacia mearnsii为三级入侵植物,红车轴草Trifolium pratense为四级入侵植物,银荆Acacia dealbata和双荚决明Senna bicapsularis为有待考察植物;排第2位的禾本科Gramineae约占总数的7.53%;排第3位的蔷薇科Rosaceae约占总数的5.38%,两者所拥有的园林植物外来种在《中国外来入侵植物名录》内均未记载;排第4位的菊科Asteraceae约占总数的4.30%,其中3种有入侵记录,分别为一级入侵植物加拿大一枝黄花Solidago canadensis、四级入侵植物秋英Cosmos bipinnatus和万寿菊Tagetes erecta

    表 2  3个湿地公园园林植物外来种科、属、种组成
    Table 2  Floristic composition of alien landscaping plant species in three wetland parks
    公园名称
    西华湿地公园   354852
    晖湾湿地公园   233034
    古城河河口湿地公园304146
    合计       487793
    下载: 导出CSV 
    | 显示表格
    表 3  3个湿地公园园林植物外来种所属科的比例
    Table 3  Proportion of alien landscaping plant species to families in three wetland parks
    科名种数占比/%科名种数占比/%科名种数占比/%
    豆科 9 9.68 桃金娘科 Myrtaceae 2 2.15 石蒜科 Amaryllidaceae 1 1.08
    禾本科 7 7.53 茄科 Solanaceae 2 2.15 石榴科 Punicaceae 1 1.08
    蔷薇科 5 5.38 千屈菜科 Lythraceae 2 2.15 山茶科 Theaceae 1 1.08
    杉科 Taxodiaceae 4 4.30 木兰科 Magnoliaceae 2 2.15 莎草科 Cyperaceae 1 1.08
    菊科 Asteraceae 4 4.30 马鞭草科 Verbenaceae 2 2.15 南洋杉科 Araucariaceae 1 1.08
    紫茉莉科 Nyctaginaceae 3 3.23 锦葵科 Malvaceae 2 2.15 木犀科 Oleaceae 1 1.08
    桑科 Moraceae 3 3.23 银杏科 Ginkgoaceae 1 1.08 美人蕉科 Cannaceae 1 1.08
    槭树科 Aceraceae 3 3.23 竹芋科 Marantaceae 1 1.08 满江红科 Azollaceae 1 1.08
    唇形科 Lamiaceae 3 3.23 芭蕉科 Musaceae 1 1.08 金缕梅科 Hamamelidaceae 1 1.08
    棕榈科 Arecaceae 2 2.15 杨柳科 Salicaceae 1 1.08 夹竹桃科 Apocynaceae 1 1.08
    紫葳科 Bignoniaceae 2 2.15 旋花科 Convolvulaceae 1 1.08 黄杨科 Buxaceae 1 1.08
    樟科 Lauraceae 2 2.15 天南星科 Araceae 1 1.08 海桐花科 Pittosporaceae 1 1.08
    雨久花科 Pontederiaceae 2 2.15 天门冬科 Asparagaceae 1 1.08 凤仙花科 Balsaminaceae 1 1.08
    小二仙草科 Haloragaceae 2 2.15 苏铁科 Cycadaceae 1 1.08 大戟科 Euphorbiaceae 1 1.08
    五加科 Araliaceae 2 2.15 松科 Pinaceae 1 1.08 柏科 Cupressaceae 1 1.08
    卫矛科 Celastraceae 2 2.15 柿科 Ebenaceae 1 1.08 百合科 Liliaceae 1 1.08
    下载: 导出CSV 
    | 显示表格

    园林植物外来种的科、属地理区系最多的为世界广布型(表4),其次为较适应生长于昆明亚热带高原季风气候的泛热带区类型(即热带广布型和以南半球为主的泛热带区)。所有源于热带区的植物共计22科29属,约占总数的45.83%和37.67%,其中以热带广布型最多,共有13科16属,分别占总数的27.08%和20.78%;热带亚洲至热带大洋洲类型最少,仅有1科1属,即苏铁科苏铁属Cycas,分别占总数的2.08%和1.30%。

    表 4  3个湿地公园园林植物外来种科、属的地理分布
    Table 4  Geographical distribution of species and genera of alien landscaping plant species in three wetland parks
    分布区类型
    数量占比/%数量占比/%
    1 广布 (世界广布) 14 29.17 34 44.16
    2 泛热带(热带广布) 13 27.08 16 20.78
     2S 以南半球为主的泛热带 2 4.17 3 3.90
    3 东亚(热带、亚热带)及热带南美间断 3 6.25 6 7.79
    4 旧世界热带 3 6.25 3 3.90
    5 热带亚洲至热带大洋洲 1 2.08 1 1.30
    8 北温带 2 4.17 2 2.60
     8-4 北温带和南温带间断分布 5 10.42 5 6.49
    9 东亚及北美间断 2 4.17 4 5.19
    12 地中海区、西亚至中亚
     (12-4) 巴尔干半岛至西喜马拉雅间断于索科特群岛 1 2.08 1 1.30
    15 中国特有 1 2.08 1 1.30
    (16) 南半球热带以外间断或星散分布 1 2.08 1 1.30
    总计 48 100 77 100
    下载: 导出CSV 
    | 显示表格

    3个湿地公园园林植物外来种中,乔木及竹类共有37种,约占总种数的39.78%;灌木28种,约占总种数的30.11%;草本28种,约占总种数的30.11%。古城河河口湿地公园园林植物外来种中草本应用最多,约占总种数的50%;西华湿地公园和晖湾湿地公园均是乔木及竹类应用较多,均占各自总种数的40%以上(表5)。

    表 5  3个湿地公园园林植物外来种生活型构成
    Table 5  Life forms of alien species in three wetland parks
    生活型古城河河口湿地公园西华湿地公园晖湾湿地公园总计
    种数占比/%种数占比/%种数占比/%种数占比/%
    乔木 13 28.26 19 36.54 13 38.24 33 35.48
    竹类 1 2.17 2 3.85 2 5.88 4 4.30
    灌木 非藤本 8 17.39 12 23.08 8 23.53 24 25.81
    藤本 1 2.17 3 5.77 4 11.76 4 4.30
    小计 9 19.57 15 28.85 12 35.29 28 30.11
    草本 1年生草本 5 10.87 3 5.77 1 2.94 6 6.45
    多年生草本 15 32.61 12 23.08 6 17.65 19 20.43
    1年生或多年生草本 3 6.52 1 1.92 3 3.23
    小计 23 50.00 16 30.77 7 20.59 28 30.11
    总计 46 100 52 100 34 100 93 100
    下载: 导出CSV 
    | 显示表格

    评价体系检验的30种园林植物外来种的K-Means聚类结果等级划分散点分布显示,低风险聚类中存在64.5分的1个异常点(图1)。由评价体系检验结果统计可知,该点为第17个样本为凤仙花Impatiens balsamina,在《中国外来入侵植物名录》中被列为“有待观察”(表6)。凤仙花起源于印度与缅甸,在中国云南省内分布较广,原产地与云南接近,虽评分偏高,但不具有普遍性,列为特殊值,不作为等级划分的参照标准。

    图 1  K-Means聚类等级划分示意图
    Figure 1  Schematic diagram of K-means clustering classification
    表 6  30种园林植物外来种生态评价体系检验结果
    Table 6  Ecological evaluation system for 30 alien landscaping plant species
    样本编号植物名称入侵植物
    名录等级
    评价总得分风险聚
    类划分
    样本编号植物名称入侵植物
    名录等级
    评价总得分风险聚
    类划分
    1圆叶牵牛一级78.516秋英四级65.0
    2马缨丹一级78.017凤仙花有待观察64.5
    3凤眼蓝一级76.018紫茉莉四级64.0
    4加拿大一枝黄花一级73.519茑萝松三级63.5
    5大薸一级73.020粉绿狐尾藻三级63.5
    6细叶满江红三级72.021万寿菊四级63.5
    7白车轴草二级71.022叶子花建议排除和国产63.0
    8仙人掌二级71.023光叶子花建议排除和国产62.5
    9南美蟛蜞菊二级69.024蓝桉有待观察60.0
    10巴西含羞草二级68.025美人蕉建议排除和国产60.0
    11黑荆三级67.026珊瑚豆有待观察59.0
    12曼陀罗二级66.527再力花建议排除和国产59.0
    13珊瑚藤三级65.028银荆有待观察58.5
    14刺槐四级65.029双荚决明有待观察58.5
    15红车轴草四级65.030假连翘建议排除和国产57.5
      说明:细叶满江红Azolla filiculoides;仙人掌Opuntia dillenii;南美蟛蜞菊Sphagneticola trilobata;巴西含羞草Mimosa diplotricha;珊瑚藤Antigonon leptopus;刺槐Robinia pseudoacacia;茑萝松Quamoclit pennata;珊瑚豆Solanum pseudocapsicum var. diflorum;再力花Thalia dealbata;假连翘Duranta erecta;蓝桉 Eucalyptus globulus;美人蕉 Canna indica
    下载: 导出CSV 
    | 显示表格

    滇池西岸湿地公园58种园林植物外来种(含种下等级)中高风险植物共计6种,分别为圆叶牵牛Pharbitis purpurea、马缨丹Lantana camara、凤眼蓝Eichhornia crassipes、加拿大一枝黄花、大薸Pistia straiotes和白车轴草(表7),其中3个湿地公园共有植物为圆叶牵牛、凤眼蓝和白车轴草。中风险植物共计11种,列入入侵物种名录的中风险植物有黑荆、曼陀罗Datura stramonium、秋英、红车轴草、凤仙花、紫茉莉Mirabilis jalapa、万寿菊、粉绿狐尾藻Myriophyllum aquaticum,其中3个湿地公园共有植物为秋英和蒲苇Cortaderia selloana;低风险植物共计41种,评分较高、接近中风险分值的有叶子花Bougainvillea spectabilis、光叶子花B. glabra、花叶芦竹Arundo donax var. versicolor、蓝桉和美人蕉,其中花叶芦竹只分布在古城河河口湿地公园(表6)。据调查统计,古城河河口湿地公园和西华湿地公园内高、中风险园林外来植物种较多,晖湾湿地公园较少;圆叶牵牛和白车轴草在3个湿地公园广泛分布;加拿大一枝黄花仅在西华湿地公园大面积分布。

    表 7  滇池西岸湿地公园58种园林植物外来种生态风险评价结果
    Table 7  Ecological evaluation of 58 alien landscaping plant species in west bank of Dianchi wetland park
    生长型评估得分风险等级
    旋花科 圆叶牵牛 1、2年生草本 78.5
    马鞭草科 马缨丹 灌木 78.0
    雨久花科 凤眼蓝 1、2年生草本 76.0
    菊科 加拿大一枝黄花 多年生草本 73.5
    天南星科 大薸 多年生草本 73.0
    豆科 白车轴草 多年生草本 71.0
    豆科 黑荆 乔木 67.0
    茄科 曼陀罗 1、2年生草本 66.5
    禾本科 蒲苇 多年生草本 66.0
    菊科 秋英 1、2年生/多年生草本 65.0
    豆科 红车轴草 多年生草本 65.0
    雨久花科 梭鱼草 Pontederia cordata 多年生草本 65.0
    凤仙花科 凤仙花 1、2年生草本 64.5
    紫茉莉科 紫茉莉 1、2年生草本 64.0
    小二仙草科 粉绿狐尾藻 多年生草本 63.5
    菊科 万寿菊 1、2年生草本 63.5
    莎草科 风车草 Cyperus involucratus 多年生草本 63.5
    紫茉莉科 叶子花 藤本 63.0
    紫茉莉科 光叶子花 藤本 62.5
    禾本科 花叶芦竹 多年生草本 62.0
    桃金娘科 蓝桉 乔木 60.0
    美人蕉科 美人蕉 多年生草本 60.0
    茄科 珊瑚豆 灌木 59.0
    竹芋科 再力花 多年生草本 59.0
    豆科 银荆 乔木 58.5
    豆科 双荚决明 灌木 58.5
    马鞭草科 假连翘 灌木 57.5
    禾本科 紫叶象草 Pennisetum purpureum‘Red’ 多年生草本 57.0
    唇形科 墨西哥鼠尾草 Salvia leucantha 1、2年生/多年生草本 56.0
    天门冬科 金边吊兰 Chlorophytum comosum‘Variegatum’ 多年生草本 55.0
    棕榈科 加拿利海枣 Phoenix canariensis 乔木 54.5
    百合科 萱草 Hemerocallis fulva 多年生草本 54.0
    石蒜科 紫娇花 Tulbaghia violacea 多年生草本 54.0
    菊科 黄金菊 Euryops pectinatus 1、2年生/多年生草本 53.5
    紫葳科 蓝花楹 Jacaranda mimosifolia 乔木 51.5
    紫葳科 非洲凌霄 Podranea ricasoliana 灌木 51.5
    千屈菜科 细叶萼距花 Cuphea hyssopifolia 灌木 51.5
    五加科 尼泊尔常春藤 Hedera nepalensis 藤本 51.0
    禾本科 紫竹 Phyllostachys nigra 乔木 50.0
    禾本科 金竹 Phyllostachys sulphurea 乔木 49.5
    豆科 朱缨花 Calliandra haematocephala 灌木 49.0
    卫矛科 冬青卫矛 Euonymus japonicus 灌木 49.0
    锦葵科 木槿 Hibiscus syriacus 灌木 47.5
    唇形科 蓝花鼠尾草 Salvia farinacea 多年生草本 47.5
    芭蕉科 芭蕉 Musa basjoo 多年生草本 46.5
    松科 雪松 Cedrus deodara 乔木 46.5
    夹竹桃科 蔓长春花 Vinca major 藤本 45.5
    杉科 落羽杉 Taxodium distichum 乔木 45.5
    金缕梅科 红花檵木 Loropetalum chinense var. rubrum 灌木 45.0
    棕榈科 丝葵 Washingtonia filifera 乔木 44.5
    木兰科 荷花玉兰 Magnolia grandiflora 乔木 43.5
    锦葵科 朱槿 Hibiscus rosa-sinensis 灌木 43.5
    银杏科 银杏 Ginkgo biloba 乔木 42.5
    杉科 中山杉 Taxodium hybrid ‘Zhongshanshan’ 乔木 42.5
    豆科 刺桐 Erythrina variegata 乔木 41.5
    蔷薇科 月季花 Rosa chinensis 灌木 41.5
    蔷薇科 紫叶李 Prunus cerasifera‘Atropurpurea’ 乔木 40.0
    杉科 水杉 Metasequoia glyptostroboides 乔木 39.5
    下载: 导出CSV 
    | 显示表格

    基于Word算法对58种园林植物外来种(含种下等级)生态风险评价结果进行层次聚类分析(图2)。由图2可知:样本主要被分为5类(已用颜色进行区分),坐标轴表示任意2种园林植物外来种间的距离平方和。当距离平方和<206.69984时,样本被分为2类,即中、高风险植物与低风险植物,草本植物在高、中风险植物分类中占比较大,在低风险植物分类中占比较小;当距离平方和<53.499 08时,样本被分为3类,即除中、高风险植物外,低风险植物中的草本植物和乔灌藤植物被分开;当距离平方和<23.92592时,样本被分为4类,此时中、高风险植物按评价等级又被分为了2类,其中,高风险植物和中风险植物评估得分大多较接近,分差较小,低风险植物中草本评估得分偏高且较为集中,低风险乔灌藤植物评估得分则普遍偏低。由此可知:高、中风险植物间差异小于低风险植物中草本和乔灌藤等的差异。当样本被分为5类时,由得分值的高低将低风险植物乔灌藤等大致分为2类,得分偏高的占比较小,得分偏低的占比较大。上述结果表明:中风险与高风险植物的界定更多取决于植物本身在引种地的适应情况,而草本植物引种往往会带来更高的生态风险。

    图 2  58种园林植物外来种生态评价结果聚类分析        
    Figure 2  Cluster analysis of ecological evaluation results of 58 alien landscaping plant species

    经调查,滇池西岸3个湿地公园共有园林植物外来种93种,隶属于48科77属,以豆科植物最多。在选取评价的58种园林植物外来种(含种下等级)中,高、中风险植物共有17种,豆科和菊科植物数量最多,各有3种;低风险植物共有41种,叶子花、光叶子花、花叶芦竹、蓝桉和美人蕉得分偏高。在园林植物外来种中,高、中风险植物绝大部分为草本植物,且低风险草本植物得分普遍高于低风险乔灌藤植物。因此,引种外来园林草本植物会带来更高的生态风险。

    豆科植物地理分布广泛,在种子植物科中所含种数排第3位,且在生产、生活中应用较多,致使其种数占比高;除此之外,豆科植物具有优良的固氮能力,这会导致土壤氮、磷失衡,形成氮多磷少的土壤环境,有利于部分外来杂草的生长,抑制部分本土植物的生长,因而豆科植物的风险等级普遍较高[11-12]。菊科植物为云南入侵植物最多的1个科,风险较高与其生长特性有关[13]。其中高风险植物加拿大一枝黄花是《中国外来入侵植物名录(2018版)》记载的恶性入侵种,近年来已经严重危害中国中、东部的农业生产和生态安全。2014年对滇池地区的加拿大一枝黄花进行调查时,还未见形成大面积危害[14],但在2021年实地调查中发现西华湿地公园内加拿大一枝黄花长势繁盛,形成以加拿大一枝黄花为主,掺杂圆叶牵牛、鬼针草Bidens pilosa、双穗雀稗Paspalum distichum等入侵植物的大型植物群落,对西华湿地公园的生态安全构成严重威胁。

    黑荆与曼陀罗分别是《中国外来入侵植物名录(2018版)》记载的局部入侵种和恶性入侵种,但在本次研究中被评估为中风险,可能与滇池西岸引种地生长情况有关。黑荆是提炼栲胶的优良树种,在20世纪60年代末由于建设经济林、保持水土和改良土壤的需要而被引种应用[15],滇池也曾为治理水体污染引种应用,后因其长势过快,以及不得引入入侵物种的规定而被清除,调查区域仅剩的几株应是多次清除后的残留植株。曼陀罗在调查区域仅见1株,且长势不良,可能同为清除后的残留植株。此外,粉绿狐尾藻也是《中国外来入侵植物名录(2018版)》中记载的局部入侵种,本研究中被评估为中风险。粉绿狐尾藻与狐尾藻M. verticillatum特性相似,当其与本土种穗花狐尾藻M. spicatum混生时易被误认,从而忽略其入侵性。

    蒲苇、梭鱼草、风车草虽未列入《中国外来入侵植物名录(2018版)》,但也在本研究中被评估为中风险,这可能与其生长特性有关。国内已有对蒲苇和梭鱼草入侵风险的研究,发现它们的耐受能力强,可形成单优群落,具有一定风险性[16]。有研究发现:蒲苇在国外有入侵记录,梭鱼草因具观赏性或水体净化能力[17-18],在滇池流域引种并广泛应用[19],致使其风险增加。风车草为人工湿地常见植物,多用于滇池污染治理[20-21],在刘蕴哲[22]的研究中将其确定为高风险,与评价结果差异较大,这可能与其生长特性、生长环境和后期养护均有关,因风车草在污染区生长快,应加强管控避免形成单优群落。

    在近代,昆明市植物区系组成呈现出热带成分与温带成分相结合的高原山地亚热带气候特征[23],而滇池西岸3个湿地公园引种的近半数园林植物外来种来源地具有热带、亚热带气候特征,可见公园在引种时偏重选择原产地气候与昆明接近的园林植物外来种。同时,中、高风险植物所属科多为广布科和热带科,相似的气候环境使适应快、入侵潜力高的物种更容易被引入。在选取评价的58种园林植物外来种的高、中风险物种中草本植物占大多数,但从引入的园林植物外来种总数来看,草本植物却不是主要生活型,3个湿地公园中也仅有西华湿地公园的草本植物种数在生活型中占比为50%。这可能与管理部门为治理滇池水体,保护生物多样性,从而引入大片以中山杉为主的针叶林来改变单一草本植物为主的分布格局等防控措施有关[24]

    层次分析法在近年关于入侵植物风险的研究上应用较多,如魏子璐等[25]采用该方法对宁波市外来入侵植物进行风险评估。但由于外来植物风险评估的评价方法有很多,评价标准及植物生长环境等又存在差异,这使评价结果不完全一致。如刘蕴哲[22]采取层次分析法对长沙市三大城市湿地公园117种外来植物进行风险评估,并按照评估结果将外来入侵植物划分成3种不同风险等级,其中紫茉莉被列为一类高风险植物。吴磊[26]采取系统分析法对黄山风景区的外来入侵植物进行风险评估,将其划分为4种不同风险等级,其中紫茉莉被列为“分布不广,偶见”。本研究评价紫茉莉风险等级为中风险,即危害性不够明显或造成区域局部危害。评价结果出现差异的原因是紫茉莉的生长及分布情况各不相同所致。

    滇池西岸园林植物外来种的引种工作应因地适宜、方便管理及保护生态。对于兼顾游憩科普和人为干扰较多的西华湿地公园,以及并入生态环道建设、统一岸线景观的古城河河口湿地公园,都应禁止引种高风险植物,实时监控中风险植物,优先引种乡土植物和低风险植物。对于已经变更为保护区的晖湾湿地公园应不再引种园林植物外来种。在引种园林植物外来种时,应提前对其进行生态风险评估,并充分考虑引种地实际情况。对于已引种应用的园林植物外来种,则应根据其风险评价等级,制定相应的动态监测与防控措施,如对加拿大一枝黄花等高风险园林植物外来种采取全面清除措施,并做好定时监测检查等管控工作。

  • 图  1  生物质炭配施有机物料对土壤酶化学计量比及向量长度和向量角度的影响

    Figure  1  Effects of biochar combined with organic amendments on ecoenzymatic stoichiometric ratio and vector length and angle

    图  2  土壤化学性质与酶活性及其计量比特征的冗余分析

    Figure  2  RDA analysis of soil chemical properties and enzyme activity and ecoenzymatic stoichiometric ratio

    表  1  生物质炭配施有机物料对土壤化学性质的影响

    Table  1.   Effects of biochar combined with organic materials on soil chemical properties

    处理pH有机碳/(g·kg−1)全氮/(g·kg−1)全磷/(g·kg−1)速效氮/(mg·kg−1)
    ck 4.94±0.22 c 4.54±0.17 d 0.62±0.06 c 0.21±0.05 b 45.35±3.61 d
    S 5.16±0.27 bc 5.15±0.84 d 0.73±0.07 bc 0.18±0.01 b 48.76±3.48 d
    M 5.54±0.08 ab 7.23± 0.84 c 0.99±0.23 a 0.31±0.07 a 58.88±6.64 bc
    ck +B 5.26±0.27 bc 11.02±0.85 b 0.72±0.04 bc 0.20±0.01 b 50.50±5.23 cd
    S+B 5.29±0.20 bc 12.02±1.27 ab 0.87±0.11 ab 0.21±0.02 b 60.77±8.53 b
    M+B 5.80±0.14 a 13.13±0.77 a 0.92±0.07 ab 0.29±0.01 a 71.57±1.57 a
    OF 12.56** 12.28** 9.20** 15.08** 15.90**
    BF 5.79* 254.42*** 1.12 0.15 15.55**
    OF×BF 0.28 0.50 1.30 0.78 0.91
    处理 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) 碳氮比 碳磷比 氮磷比
    ck 2.95±0.79 c 100.44±32.71 c 7.39±0.72 b 22.84±3.94 c 3.17±0.80 c
    S 4.08±1.11 bc 108.42±33.18 c 6.98±0.40 b 28.65±2.33c 4.10±0.10 a
    M 8.89±1.61 a 219.70±40.56 ab 7.55±1.40 b 24.27±4.00 c 3.23±0.11 bc
    ck+B 4.30±0.76 bc 166.69±27.42 b 15.27±1.09 a 55.59±5.31 a 3.64±0.22 abc
    S+B 5.69±1.95 b 193.56±13.86 b 13.90±0.92 a 55.93±3.30 a 4.03±0.17 ab
    M+B 10.10±0.21 a 251.18±13.40 a 14.33±1.65 a 44.64±3.28 b 3.13±0.12 c
    OF 38.76*** 21.64*** 0.65 4.30 6.78*
    BF 5.93* 20.31** 126.25** 148.75** 0.23
    OF×BF 0.04 1.35 0.29 2.66 0.81
      说明:ck. 对照;S. 秸秆处理;M. 羊粪处理; B. 添加生物质炭处理。OF. 有机物料因子;BF. 生物质炭因子;OF×BF. 有机物料与生物质炭的交互效应。表中数值为平均值±标准差。同列不同字母表示不同处理间差异显著(P<0.05)。双因素方差分析*. P<0.050;**. P<0.010;***. P<0.001。
    下载: 导出CSV

    表  2  生物质炭配施有机物料对土壤碳组分的影响

    Table  2.   Effects of biochar combined with organic materials on soil carbon fractions

    处理易矿化碳组分Ⅰ/(g·kg−1)易矿化碳组分Ⅱ/(g·kg−1)惰性有机碳/(g·kg−1)难降解指数/%有机碳活性指数/%
    ck1.16±0.08 b1.45±0.08 ab1.92±0.13 d42.28±1.37 c58.72±1.37 a
    S1.47±0.18 ab1.91±0.29 a1.77±0.69 d33.45±7.78 c66.55±7.78 a
    M1.68±0.24 a1.70±0.41 ab3.85±0.49 c53.31±4.54 b46.69±4.54 b
    ck+B1.56±0.34 a1.27±0.23 b8.19±1.26 b74.03±6.61 a25.97±6.61 c
    S+B1.58±0.06 a1.74±0.25 ab8.70±1.17 ab72.26±2.89 a27.74±2.89 c
    M+B1.55±0.08 a1.60±0.46 ab9.98±1.28 a75.85±5.21 a24.15±5.21 c
    OF2.763.32 7.14**7.657.65
    BF1.811.03210.61**160.25**160.25**
    OF×BF2.830.020.313.693.69
      说明:ck. 对照;S. 秸秆处理;M. 羊粪处理; B. 添加生物质炭处理。OF. 有机物料因子;BF. 生物质炭因子;OF×BF. 有机物料与生物质炭的交互效应。表中数值为平均值±标准差。同列不同字母表示不同处理间差异显著(P<0.05)。双因素方差分析*. P<0.050;**. P<0.010。
    下载: 导出CSV

    表  3  生物质炭配施有机物料对土壤水解酶和氧化酶活性的影响

    Table  3.   Effects of biochar combined with organic amendments on soil hydrolase and oxidase activities

    处理BGCBLAPNAGPHOSPHOXPERO
    ck9.13±3.91 c1.64±0.27 bc3.11±0.62 ab3.63±1.12 b55.27±13.41 ab709.47±61.41 ab1 741.86±341.52 cd
    S16.41±2.00 ab2.64±0.61 ab3.42±0.69 ab4.29±1.75 b49.90±10.89 ab875.67±97.78 a2 588.16±279.97 a
    M17.76±3.42 a2.16±0.68 abc4.03±0.49 a10.15±4.31 a73.04±17.17 a699.29±202.40 ab2 435.79±129.12 ab
    ck+B10.56±2.70 c1.16±0.75 c3.36±0.90 ab4.88±2.88 b70.88±7.07 a489.06±79.10 b1 433.27±258.45 d
    S+B11.47±1.39 bc3.06±0.85 a3.26±0.36 ab4.45±0.83 b58.40±2.66 ab625.15±172.36 b2 014.58±133.39 bc
    M+B8.73±3.67 c1.22±0.47 c2.73±0.53 a5.55±2.62 b43.85±15.84 b598.55±67.76 b1 672.53±371.10 cd
    OF3.22 8.72**0.093.88*0.80 2.25 10.90**
    BF8.82*1.24 1.880.79 0.09 10.37**18.72**
    OF×BF4.67*1.78 2.482.24 5.79*0.60 1.08
      说明:酶活性单位. nmol·g−1·h−1BG. β-葡萄糖苷酶;CB. 纤维素二塘水解酶;LAP. 亮氨酸氨基肽酶;NAG. β-N-乙酰基氨基葡萄糖苷酶;PHOS. 酸性磷酸酶;PHOX.多酚氧化酶;PERO. 过氧化物酶。ck. 对照;S. 秸秆处理;M. 羊粪处理; B. 添加生物质炭处理。OF. 有机物料因子;BF. 生物质炭因子;OF×BF. 有机物料与生物质炭的交互效应。表中数值为平均值±标准差。同列不同字母表示不同处理间差异显著(P<0.05)。双因素方差分析*. P<0.050;**. P<0.010。
    下载: 导出CSV
  • [1] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615 − 7622.

    ZHAO Qiguo, HUANG Guoqin, MA Yanqin. The problems in red soil ecosystem in southern of China and its countermeasures [J]. Acta Ecologica Sinica, 2013, 33(24): 7615 − 7622.
    [2] WU Qifeng, LIAN Ruiyuan, BAI Meixia, et al. Biochar co-application mitigated the stimulation of organic amendments on soil respiration by decreasing microbial activities in an infertile soil [J]. Biology and Fertility of Soils, 2021, 57(6): 793 − 807.
    [3] 赵惠丽, 董金琎, 师江澜, 等. 秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J]. 土壤学报, 2021, 58(1): 213 − 224.

    ZHAO Huili, DONG Jinjin, SHI Jianglan, et al. Effect of straw returning mode on soil organic carbon sequestration [J]. Acta Pedologica Sinica, 2021, 58(1): 213 − 224.
    [4] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729.

    BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil [J]. Acta Pedologica Sinica, 2020, 57(3): 721 − 729.
    [5] 吴传敬, 郭剑芬, 许恩兰, 等. 采伐残余物不同处理方式对杉木幼林土壤有机碳组分和相关酶活性的影响[J]. 土壤学报, 2019, 56(6): 1504 − 1513.

    WU Chuanjing, GUO Jianfen, XU Enlan, et al. Effects of logging residue on composition of soil carbon and activity of related enzymes in soil of a young Chinese fir plantation as affected by residue handling mode [J]. Acta Pedologica Sinica, 2019, 56(6): 1504 − 1513.
    [6] 魏夏新, 熊俊芬, 李涛, 等. 有机物料还田对双季稻田土壤有机碳及其活性组分的影响[J]. 应用生态学报, 2020, 31(7): 2373 − 2380.

    WEI Xiaxin, XIONG Junfen, LI Tao, et al. Effects of different organic amendments on soil organic carbon and its labile fractions in the paddy soil of a double rice cropping system [J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2373 − 2380.
    [7] 张聪, 慕平, 尚建明. 长期持续秸秆还田对土壤理化特性、酶活性和产量性状的影响[J]. 水土保持研究, 2018, 25(1): 92 − 98.

    ZHANG Cong, MU Ping, SHANG Jianming. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait [J]. Research of Soil and Water Conservation, 2018, 25(1): 92 − 98.
    [8] 梅楠, 刘琳, 隋鹏祥, 等. 秸秆还田方式对土壤理化性质及玉米产量的影响[J]. 玉米科学, 2017, 25(6): 87 − 94.

    MEI Nan, LIU Lin, SUI Pengxiang, et al. Effects of tillage and straw management on brown soil physical and chemical properties and maize yield [J]. Journal of Maize Sciences, 2017, 25(6): 87 − 94.
    [9] 张英, 武淑霞, 雷秋良, 等. 不同类型粪肥还田对土壤酶活性及微生物群落的影响[J]. 土壤, 2022, 54(6): 1175 − 1184.

    ZHANG Ying, WU Shuxia, LEI Qiuliang, et al. Effects of different manures on soil enzyme activity and microbial community [J]. Soils, 2022, 54(6): 1175 − 1184.
    [10] 吴红, 刘海霞, 周明夏, 等. 羊粪还田对巨峰葡萄园土壤理化性质的影响[J]. 广东农业科学, 2018, 45(12): 32 − 37.

    WU Hong, LIU Haixia, ZHOU Mingxia, et al. Effects of applying sheep manure on soil properties of kyoho vineyard [J]. Guangdong Agricultural Sciences, 2018, 45(12): 32 − 37.
    [11] 韩召强, 陈效民, 曲成闯, 等. 生物质炭施用对潮土理化性状、酶活性及黄瓜产量的影响[J]. 水土保持学报, 2017, 31(6): 272 − 278.

    HAN Zhaoqiang, CHEN Xiaomin, QU Chengchuang, et al. Effects of biochar application on soil physicochemical properties, enzyme activities and cucumber yield [J]. Journal of Soil and Water Conservation, 2017, 31(6): 272 − 278.
    [12] 吴涛, 冯歌林, 曾珍, 等. 生物质炭对盆栽黑麦草生长的影响及机理[J]. 土壤学报, 2017, 54(2): 525 − 534.

    WU Tao, FENG Gelin, ZENG Zhen, et al. Effect of biochar addition on ryegrass growth in a pot experiment and its mechanism [J]. Acta Pedologica Sinica, 2017, 54(2): 525 − 534.
    [13] LU Weiwei, DING Weixin, ZHANG Junhua, et al. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect [J]. Soil Biology and Biochemistry, 2014, 76: 12 − 21.
    [14] FANG Yunying, SINGH B P, SINGH B. Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils [J]. Agriculture,Ecosystems &Environment, 2014, 191: 158 − 167.
    [15] LI Guanlin, KIM S J, HAN S H, et al. Precipitation affects soil microbial and extracellular enzymatic responses to warming [J]. Soil Biology and Biochemistry, 2018, 120: 212 − 221.
    [16] SINSABAUGH R L, HILL B H, SHAH J J F, et al. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462: 795 − 798.
    [17] ZHENG Mianhai, CHEN Hao, LI Dejun, et al. Substrate stoichiometry determines nitrogen fixation throughout succession in southern Chinese forests [J]. Ecology Letters, 2020, 23(2): 336 − 347.
    [18] 左宜平, 张馨月, 曾辉, 等. 大兴安岭森林土壤胞外酶活力的时空动态及其对潜在碳矿化的影响[J]. 北京大学学报(自然科学版), 2018, 54(6): 1311 − 1324.

    ZUO Yiping, ZHANG Xinyue, ZENG Hui, et al. Spatiotemporal dynamics of soil extracellular enzyme activity and its influence on potential mineralization rate of soil organic carbon in forests of Daxing’ an Mountain range [J]. Acta Scientiarum Naturalium Universitatis, 2018, 54(6): 1311 − 1324.
    [19] MOORHEAD D L, SINSABAUGH R L, HILL B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics [J]. Soil Biology &Biochemistry, 2016, 93: 1 − 7.
    [20] CUI Yongxing, FANG Linchuan, DENG Lei, et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region [J]. Science of The Total Environment, 2019, 658: 1440 − 1451.
    [21] 陈浩宁, 周怀平, 文永莉, 等. 长期不同施肥下褐土养分及酶活性的生态化学计量特征[J]. 植物营养与肥料学报, 2022, 28(6): 972 − 983.

    CHEN Haoning, ZHOU Huaiping, WEN Yongli, et al. Ecological stoichiometric characteristics of soil nutrients and eco-enzymatic activities under different long-term fertilizations in a cinnamon soil [J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 972 − 983.
    [22] CHEN Zhe, JIN Penghui, WANG Hui, et al. Ecoenzymatic stoichiometry reveals stronger microbial carbon and nitrogen limitation in biochar amendment soils: a meta-analysis [J/OL]. The Science of the total environment, 2022, 838(3): 156532[2023-08-13]. doi: 10.1016/j.scitotenv.2022.156532.
    [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    LU Rukun. The Analysis Method of Soil Agricultural Chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [24] ROVIRA P, VALLEJO V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach [J]. Geoderma, 2002, 107(1/2): 109 − 141.
    [25] 陈小云, 郭菊花, 刘满强, 等. 施肥对红壤性水稻土有机碳活性和难降解性组分的影响[J]. 土壤学报, 2011, 48(1): 125 − 131.

    CHEN Xiaoyun, GUO Juhua, LIU Manqiang, et al. Effects of fertilization on lability and recalcitrancy of organic carbon of red soil paddy soils [J]. Acta Pedologica Sinica, 2011, 48(1): 125 − 131.
    [26] SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biology & Biochemistry, 2002, 34(9): 1309 − 1315.
    [27] DEFOREST J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA [J]. Soil Biology &Biochemistry, 2009, 41(6): 1180 − 1186.
    [28] DENG Lei, PENG Changhui, HUANG Chunbo, et al. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China [J]. Geoderma, 2019, 353: 188 − 200.
    [29] 王改兰, 段建南, 贾宁凤, 等. 长期施肥对黄土丘陵区土壤理化性质的影响[J]. 水土保持学报, 2006, 20(4): 82 − 85, 89.

    WANG Gailan, DUAN Jiannan, JIA Ningfeng, et al. Effects of long-term fertilizatton on soil physical and chemical property in Loess Hilly Area [J]. Journal of Soil and Water Conservation, 2006, 20(4): 82 − 85, 89.
    [30] 徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报, 2002, 39(1): 83 − 90.

    XU Yangchun, SHEN Qirong, RAN Wei. Effects of zero-tillage and application of manure on soil microbial biomass C, N and P after sixteen years of cropping [J]. Acta Pedologica Sinica, 2002, 39(1): 83 − 90.
    [31] WEI Zibiao, YING Hao, GUO Xiaowei, et al. Substitution of mineral fertilizer with organic fertilizer in maize systems: a meta-analysis of reduced nitrogen and carbon emissions [J/OL]. Agronomy, 2020, 10(8): 1149[2023-08-13]. doi: 10.3390/agronomy10081149.
    [32] BLAGODATSKAYA E, BLAGODATSKY S, ANDERSON T H, et al. Microbial growth and carbon use efficiency in the rhizosphere and root-rree soil [J/OL]. PLoS One, 2014, 9(4): e93282[2023-08-13]. doi: 10.1371/journal.pone.0093282.
    [33] LIU Yurong, DELGADO-BAQUERIZO M, WANG Juntao, et al. New insights into the role of microbial community composition in driving soil respiration rates [J]. Soil Biology &Biochemistry, 2018, 118: 35 − 41.
    [34] 熊佰炼, 谭必勇. 生物质炭还田利用对土壤酶活性影响研究现状[J]. 遵义师范学院学报, 2017, 19(3): 106 − 110.

    XIONG Bailian, TAN Biyong. On advances in biochar effects on soil enzyme activities [J]. Journal of Zunyi Normal College, 2017, 19(3): 106 − 110.
    [35] 姚兰, 张焕朝, 胡立煌, 等. 黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系[J]. 浙江农林大学学报, 2019, 36(6): 1069 − 1076.

    YAO Lan, ZHANG Huanchao, HU Lihuang, et al. Soil labile organic carbon and nitrogen and their relationship with enzyme activities in different vegetation zones along an altitudinal gradient on Mount Huangshan [J]. Journal of Zhejiang A&F University, 2019, 36(6): 1069 − 1076.
    [36] GUO Kangying, ZHAO Yingzhi, LIU Yang, et al. Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil [J/OL]. Geoderma, 2020, 363: 114162[2023-08-13]. doi: 10.1016/j.geoderma.2019.114162.
    [37] BAILEY V L, FANSLER S J, SMITH J L, et al. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J]. Soil Biology &Biochemistry, 2011, 43(2): 296 − 301.
    [38] 田静, 盛茂银, 汪攀, 等. 西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响[J]. 环境科学, 2019, 40(9): 4278 − 4286.

    TIAN Jing, SHENG Maoyin, WANG Pan, et al. Influence of land use change on litter and soil C, N, P stoichiometric characteristics and soil enzyme activity in karst ecosystem, southwest China [J]. Environmental Science, 2019, 40(9): 4278 − 4286.
    [39] 王博, 周志勇, 张欢, 等. 针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响[J]. 浙江农林大学学报, 2020, 37(4): 611 − 622.

    WANG Bo, ZHOU Zhiyong, ZHANG Huan, et al. Effect of Larix gmelinii proportion on soil chemical properties and enzymatic stoichiometry in mixed coniferous and broad-leaved forest [J]. Journal of Zhejiang A&F University, 2020, 37(4): 611 − 622.
    [40] 喻岚晖, 王杰, 廖李容, 等. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素[J]. 草地学报, 2020, 28(6): 1702 − 1710.

    YU Lanhui, WANG Jie, LIAO Lirong, et al. Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2020, 28(6): 1702 − 1710.
    [41] XU Zhiwei, YU Guirui, ZHANG Xinyu, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biology and Biochemistry, 2017, 104: 152 − 163.
    [42] 赵娜, 王小利, 何进, 等. 有机肥替代化学氮肥对黄壤活性有机碳组分、酶活性及作物产量的影响[J/OL]. 环境科学. 2023-11-01[2023-12-01]. https://doi.org/10.13227/j.hjkx.202307222.

    ZHAO Na, WANG Xiaoli, HE Jin, et al. Effects of replacing chemical nitrogen fertilizer with organic fertilizer on active organic carbon fractions, enzyme activities, and crop yield in yellow soil [J/OL]. Environmental Science, 2023-11-01 [2023-12-01]. https://doi.org/10.13227/j.hjkx.202307222.
    [43] SINSABAUGH R L. Phenol oxidase, peroxidase and organic matter dynamics of soil [J]. Soil Biology and Biochemistry, 2010, 42(3): 391 − 404.
    [44] CUI Yongxing, WANG Xia, ZHANG Xingchang, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region [J/OL]. Soil Biology and Biochemistry, 2020, 147: 107814[2023-07-13]. doi: 10.1016/j.soilbio.2020.107814.
  • [1] 范清华, 刘晓君, 李鹏, 张祎, 任正龑, 张虎威, 陶清瑞, 胥世斌.  植被恢复条件下红壤水-土-养分淋溶特征及归因分析 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240473
    [2] 陈梦婕, 李小英, 苏小娟, 王毅雯, 武泽婷.  元宝枫幼苗生长对不同生物质炭基质的响应 . 浙江农林大学学报, 2024, 41(5): 1066-1074. doi: 10.11833/j.issn.2095-0756.20240109
    [3] 杨毅琦, 王海洋, 梁煌, 吴胜春, 梁鹏, 张婵.  不同粒径生物质炭对水稻甲基汞富集的影响 . 浙江农林大学学报, 2024, 41(4): 744-751. doi: 10.11833/j.issn.2095-0756.20230588
    [4] 毛浩楠, 杨兴, 陆扣萍, 吴家森, 王海龙.  铁改性生物质炭对农田土壤养分及砷、铅有效性的影响 . 浙江农林大学学报, 2024, 41(6): 1222-1232. doi: 10.11833/j.issn.2095-0756.20240171
    [5] 潘丽霞, 姜振辉, 张雯怡, 周家树, 刘娟, 蔡延江, 李永夫.  秸秆及其生物质炭输入对毛竹林土壤氨氧化微生物与氮循环相关酶活性的影响 . 浙江农林大学学报, 2024, 41(1): 1-11. doi: 10.11833/j.issn.2095-0756.20230388
    [6] 王佳雨, 朱玲姣, 黄程鹏, 姜培坤, 查强威, 陈林海.  硅肥和生物质炭添加对毛竹林土壤活性硅组分的影响 . 浙江农林大学学报, 2024, 41(3): 496-505. doi: 10.11833/j.issn.2095-0756.20230366
    [7] 王瑞萍, 杨兴, 高玉蓉, 陆扣萍, 何丽芝, 吴家森, 王海龙.  锰改性生物质炭对砷铅在大蒜中积累及土壤酶活性的影响 . 浙江农林大学学报, 2024, 41(5): 1024-1036. doi: 10.11833/j.issn.2095-0756.20230584
    [8] 苏锶如, 薛俊杰, 马中青, 蔡博, 张文标, 袁世震, 卢如飞.  气化温度对生物质气化的可燃气、炭和焦油特性的影响 . 浙江农林大学学报, 2023, 40(5): 1130-1138. doi: 10.11833/j.issn.2095-0756.20220693
    [9] 顾绍茹, 杨兴, 陈翰博, 杨冰霜, 戴志楠, 陈俊辉, 方铮, 王海龙.  小龙虾壳炭和细叶榕枝条炭对土壤养分及镉和铅生物有效性的影响 . 浙江农林大学学报, 2023, 40(1): 176-187. doi: 10.11833/j.issn.2095-0756.20220182
    [10] 于金珠, 吴辰晨, 姬浩楠, 李松昊, 邬奇峰, 秦华, 陈俊辉.  矿物调理剂对丘陵红壤天目小香薯产量和酶生态化学计量特征的影响 . 浙江农林大学学报, 2023, 40(3): 531-539. doi: 10.11833/j.issn.2095-0756.20220487
    [11] 陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋.  长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应 . 浙江农林大学学报, 2021, 38(1): 21-30. doi: 10.11833/j.issn.2095-0756.20200139
    [12] 但小倩, 陈招兄, 程谊, 蔡祖聪, 张金波.  红壤氮转化对土壤水分变化的响应 . 浙江农林大学学报, 2021, 38(5): 896-905. doi: 10.11833/j.issn.2095-0756.20200624
    [13] 韩晓亮, 王秀茹, 侯琨, 贾芳芳, 孙妍, 赵森, 王铭浩, 阎世煜, 马景行.  黑土夏玉米施用生物质炭最佳施用时期和最佳用量 . 浙江农林大学学报, 2019, 36(1): 96-106. doi: 10.11833/j.issn.2095-0756.2019.01.013
    [14] 包骏瑶, 赵颖志, 严淑娴, 白珊, 李松昊, 徐秋芳, 叶正钱, 沈颖, 陈俊辉.  不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果 . 浙江农林大学学报, 2018, 35(1): 43-50. doi: 10.11833/j.issn.2095-0756.2018.01.006
    [15] 石红静, 马闪闪, 赵科理, 叶立前, 李皓, 沈颖, 赵伟明, 叶正钱.  有机物料对酸化山核桃林地土壤的改良作用 . 浙江农林大学学报, 2017, 34(4): 670-678. doi: 10.11833/j.issn.2095-0756.2017.04.013
    [16] 马嘉伟, 胡杨勇, 叶正钱, 王旭东, 吴东涛, 单胜道, 王海龙.  竹炭对红壤改良及青菜养分吸收、产量和品质的影响 . 浙江农林大学学报, 2013, 30(5): 655-661. doi: 10.11833/j.issn.2095-0756.2013.05.004
    [17] 张履勤, 章明奎.  林地与农地转换过程中红壤有机碳、氮和磷库的演变 . 浙江农林大学学报, 2006, 23(1): 75-79.
    [18] 陈双林, 洪游游, 张德明, 吴柏林.  退化红壤区笋用小径竹幼林结构的变化规律 . 浙江农林大学学报, 2005, 22(3): 296-299.
    [19] 姜培坤, 徐秋芳, 杨芳.  雷竹土壤水溶性有机碳及其与重金属的关系 . 浙江农林大学学报, 2003, 20(1): 8-11.
    [20] 王白坡, 戴文圣, 程晓建, 喻卫武, 王利忠, 鲍李洪, 鄢荣保.  8 种经济树种在低丘红壤上的表现及对土壤养分变化的影响 . 浙江农林大学学报, 1999, 16(4): 358-364.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230468

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/3/506

图(2) / 表(3)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  72
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2024-01-09
  • 录用日期:  2024-01-23
  • 网络出版日期:  2024-05-22
  • 刊出日期:  2024-05-22

生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响

doi: 10.11833/j.issn.2095-0756.20230468
    基金项目:  浙江省‘尖兵’‘领雁’研发攻关计划项目(2023C02005)
    作者简介:

    章磊(ORCID: 0009-0002-4805-5695),从事土壤微生物与碳循环研究。E-mail: 2021103011030@stu.zafu.edu.cn

    通信作者: 陈俊辉(ORCID: 0000-0003-2070-805X),教授,博士,博士生导师,从事土壤微生物与碳氮循环研究。E-mail: junhui@zafu.edu.cn
  • 中图分类号: S156

摘要:   目的  分析生物质炭和有机物料施用对旱地红壤有机碳组分和酶活性的影响,探明微生物的碳氮磷元素限制特征,为提升红壤有机碳稳定性提供理论依据。  方法  采用田间试验,设置不施有机物料对照(ck)、玉米Zea mays秸秆单施、羊粪单施及其分别与生物质炭(玉米秸秆炭)配施等6个处理。试验开始2 a后测定土壤有机碳组分、土壤养分质量分数、碳氮磷循环相关碱解酶活性和氧化酶活性。  结果  与单施秸秆和羊粪相比,生物质炭与有机物料配施显著增加了土壤有机碳和碱解氮质量分数(P<0.05),提高了土壤碳氮比和碳磷比及惰性碳组分质量分数,降低了有机碳活性指数。有机物料施用显著提高了纤维二糖水解酶(CB)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)和过氧化物酶(PERO)活性(P<0.05);与单施羊粪相比,生物质炭与羊粪配施处理显著降低β-葡萄糖苷酶(BG)活性50.9%、亮氨酸氨基肽酶(LAP)活性32.1%、NAG活性45.3%、酸性磷酸酶(PHOS)活性40.0% (P<0.05)。与单施秸秆相比,生物质炭与秸秆配施降低了多酚氧化酶(PHOX)活性28.6%和PERO活性22.2%,但对其他酶的活性无影响。与单施秸秆相比,生物质炭配施秸秆降低了向量长度;与单施羊粪相比,生物质炭配施羊粪对酶化学计量比、向量长度及向量角度均无显著影响。PERO和PHOX与土壤惰性碳质量分数、碳氮比、碳磷比呈显著负相关(P<0.05)。冗余分析表明:土壤惰性碳质量分数、碳氮比和碳磷比是影响土壤酶活性及其化学计量特征的主要因子。  结论  与有机物料单施相比,生物质炭与有机物料配施可以更好地提高旱地红壤养分和惰性碳组分质量分数,降低有机碳分解酶活性,缓解碳磷限制,可作为改善红壤微生物养分限制和提高碳汇能力的有效措施。图2表3参 44

English Abstract

章磊, 徐祎萌, 白美霞, 等. 生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响[J]. 浙江农林大学学报, 2024, 41(3): 506-516. DOI: 10.11833/j.issn.2095-0756.20230468
引用本文: 章磊, 徐祎萌, 白美霞, 等. 生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响[J]. 浙江农林大学学报, 2024, 41(3): 506-516. DOI: 10.11833/j.issn.2095-0756.20230468
XU Huihui, LIU Xiaojuan, WANG Mengke, et al. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium[J]. Journal of Zhejiang A&F University, 2023, 40(2): 348-355. DOI: 10.11833/j.issn.2095-0756.20220202
Citation: ZHANG Lei, XU Yimeng, BAI Meixia, et al. Effects of biochar combined with organic amendments on carbon composition and eco-enzymatic stoichiometry of red soil[J]. Journal of Zhejiang A&F University, 2024, 41(3): 506-516. DOI: 10.11833/j.issn.2095-0756.20230468
  • 红壤是中国南方地区重要的耕地资源,但红壤酸性程度高,养分较为匮乏,有机碳库存能力弱[1]。提高红壤有机碳稳定性和碳库储量对保障粮食安全、维护农业可持续发展以及减缓温室气体排放至关重要[23]。土壤有机碳库由不同化学结构与稳定性的有机碳组分构成,依据有机碳抗分解性及其对外界环境的敏感程度等特征,可将土壤有机碳组分划分为活性碳和惰性碳等碳组分[4]。例如,通过硫酸水解法可获得由微生物和植物来源的多糖及纤维素组成的活性碳组分,可较好地指示土壤有机碳的活跃性和生物可降解性[5]。因此,定量区分土壤碳组分质量分数变化对预测土壤碳库稳定性具有重要意义。有机物料还田是提升土壤有机质和作物产量的重要措施[6]。有研究表明:短期内秸秆和粪肥还田可以增加土壤活性有机碳质量分数,但也会导致土壤矿化作用增强,引起激发效应[710]。将有机物料热解成生物质炭并施加于土壤可显著增强土壤养分固持能力[11],提高土壤碳稳定性[2, 12],并降低土壤酸度[4, 1314]。尽管已有较多关于有机物料与生物质炭单施对土壤养分和结构改良的研究,但两者配施对土壤碳组分与酶活性及其生态化学计量特征的影响还鲜见报道。

    土壤酶是土壤有机质分解和养分循环的重要驱动力,在土壤碳(C)、氮(N)、磷(P)生物地球化学循环过程中发挥着关键作用[15]。近年来,随着生态化学计量学研究的深入,土壤酶的生态化学计量特征日益受到重视[16]。这是因为相比土壤酶活性,酶的生态化学计量特征可以更好地反映微生物的代谢需求及其与环境中养分有效性之间的生物化学平衡关系,是衡量土壤微生物能量和养分资源限制状况的重要指标[17]。常见的土壤酶包括与碳转化相关的β-葡萄糖苷酶(BG)和纤维二糖水解酶(CB);与氮转化相关N-乙酰-氨基葡萄糖苷酶(NAG)和亮氨酸氨基肽酶(LAP);与磷转化相关的酸性或碱性磷酸酶(PHOS)。目前,土壤酶生态化学计量特征研究多用(BG+CB)∶(NAG+LAP)∶PHOS比值来表征微生物对碳、氮、磷的需求状况[16]。研究表明:土壤酶C∶N∶P在全球尺度上相对稳定,约为1∶1∶1,当比值偏离时表明微生物受到碳、氮或磷的限制[18]。MOORHEAD等[19]和CUI等[20]发现:将这些酶活性比值转化为向量长度和向量角度,可以较好地表征土壤的碳、氮、磷限制状况。已有研究表明:土壤微生物养分限制状况与土壤有机质稳定性密切相关,当土壤微生物处于能量或养分限制时,可能促进或抑制有机质的分解,从而影响土壤碳排放[16]。陈浩宁等[21]研究表明:有机物料会促进土壤有机质分解来满足微生物生长需求,从而缓解微生物的能量和养分限制。与此相反,生物质炭施用提高了土壤惰性碳质量分数和氮固定能力,可能会增加微生物氮限制[22]。然而,由于有机物料和生物质炭类型、施用时间和土壤质地状况的差异,不同有机物料配施下微生物养分限制状况及其与土壤有机碳组分之间的关系还存在较大的不确定性,因此,研究不同有机物料施用后,土壤碳组分和酶生态化学计量特征的变化,对于促进旱地红壤微生物驱动的有机碳稳定性研究至关重要。

    本研究以玉米Zea mays秸秆、羊粪单施及其与生物质炭配施2 a后的旱地红壤为田间试验对象,分析土壤有机碳组分以及碳、氮和磷获取相关酶活性变化,明确不同改良措施对旱地红壤微生物养分限制状况的影响及其主要驱动因子,以期为增加旱地红壤有机碳稳定性提供科学依据。

    • 研究区位于浙江省杭州市临安区锦北街道(30°15′N, 119°43′E)。该区属亚热带季风气候,全年降水量为1 420.0 mm,年平均气温为15.9 ℃,年总日照时数为1 774.0 h,无霜期为236.0 d。样地土壤为粉砂岩母质上发育的红壤。试验地土壤基本理化性质:pH为 4.74,有机碳为4.55 g·kg−1,全氮为0.45 g·kg−1,有效磷为1.58 mg·kg−1,速效钾为89.00 mg·kg−1,碱解氮为63.10 mg·kg−1。砂粒、粉粒和黏粒分别为10.4%、43.5%和46.1%。

    • 田间试验始于2017年4月,有机物料选取玉米秸秆和羊粪,共设置6个处理,包括:对照(ck,不施有机物料)、玉米秸秆单施(S)、羊粪单施(M)以及上述3种处理分别与生物质炭(B)配施(记为ck+B、S+B、M+B)。每处理设置3个重复,随机区组设计。小区面积为6.6 m2,小区间间距为0.5 m。本研究玉米秸秆采用全量还田,施用量为10.2 t·hm−2,其中含碳量为3.6 t·hm−2。羊粪和生物质炭的用量与玉米秸秆处理保持等碳量输入,施用量分别为33.5 t·hm−2和8.5 t·hm−2。为防止各小区土壤性质相互影响,每个小区都用60 cm宽的聚氯乙烯板包围并插入土壤40 cm。

      所用生物质炭为玉米秸秆炭,由玉米秸秆在炭化炉450~500 ℃厌氧环境下热解2 h制备而成,并过2 mm筛,备用。生物质炭基本理化性质:pH 9.3,总碳为424.2 g·kg−1,全氮为10.2 g·kg−1,总磷为1.6 g·kg−1,总钾为2.6 g·kg−1,碳氮比为41.74。玉米秸秆于当地收集,自然风干后切碎至1 cm备用。玉米秸秆含全碳352.6 g·kg−1,全氮9.2 g·kg−1,碳氮比为38.32。试验所用羊粪购自当地饲养场,含水量为0.63 g·kg−1,pH 8.2,总碳为294.3 g·kg−1,全氮为21.7 g·kg−1,总磷为10.6 g·kg−1,总钾为11.2 g·kg−1。将生物质炭、玉米秸秆和羊粪按试验设计分别均匀撒在土壤表面,用锄头将物料与0~15 cm土壤均匀混合,试验期间每年种植玉米,未额外施用其他肥料。

    • 2018年12月,在各小区内按照五点法采集0~15 cm土壤,挑去石粒、根系以及植物残体等杂物,充分混匀后置于无菌塑封袋。每份混合样品过2 mm筛,并分成3份:1份保存于4 ℃冰箱,并在14 d内测定土壤微生物生物量和酶活性;1份经室温自然风干后,测定土壤化学性质;剩余部分冷冻干燥后,保存于−70 ℃冰箱。

    • 参考鲁如坤[23]的方法。土壤pH按土水比1.0∶2.5(质量比)用pH计(Mettler Toledo Seveneasy)测定;土壤有机碳(SOC)采用重铬酸钾外加热法测定;全氮(TN)用凯氏定氮法测定;土壤全磷(TP)用高氯酸-硫酸法测定;土壤有效磷(AP)采用碳酸氢钠浸提,分光光度法测定;土壤速效钾(AK)用火焰光度法测定;碱解氮(AN)用碱解扩散法测定。采用2步硫酸水解法测定易矿化碳组分和惰性碳组分[24]:称取过0.25 mm筛风干土壤样品0.5 g,用20 mL的2.5 mol·L−1硫酸在105 ℃下水解30 min,后用20 mL去离子水冲洗残留物,此时水解产物中的碳被定义为易矿化碳组分Ⅰ(LPⅠ-C);剩余残渣在室温下用13.0 mol·L−1 硫酸连续震荡水解12 h,并在105 ℃下保持3 h,定期摇匀,样品经5 000 r·min−1离心回收水解所得到的上清液,即得到易矿化碳组分Ⅱ(LPⅡ-C);惰性有机碳(RP-C)是土壤有机碳与易矿化碳组分的差值。其中,难降解组分占土壤总有机碳的比例即为难降解指数。土壤有机碳活性组分(LPC)占土壤总有机碳的比例即为有机碳活性指数[25]

    • 本研究测定5种土壤水解酶活性,包括β-葡萄糖苷酶(BG)、纤维二糖水解酶(CB)、β-N-乙酰基氨基葡萄糖苷酶(NAG)、亮氨酸氨基酞酶(LAP)、酸性磷酸酶(PHOS)。土壤水解酶活性测定参照SAIYA-CORK等[26]方法。将混有酶和底物混合物的微孔板放入25 ℃培养箱中黑暗培养3 h,并用微板荧光计测定荧光裂解产物4-甲基伞形花基(MUB)或4-甲基香豆素(MUC)的产量,测定时激发波长为365 nm,发射波长为450 nm。所有酶活性均以nmol·g−1·h−1表示。根据DEFOREST[27]的方法,以L-3,4-二羟基苯丙氨酸(L-DOPA)为底物,微孔板分光光度法分析多酚氧化酶(PHOX)和过氧化物酶(PERO)活性。根据酶活性比例计算向量长度(vector length,Lv)和向量角度(vector angle,Av),分别用以表征微生物的碳限制和养分限制状况[28]

      $$ {L}_{{\rm{V}}}=\sqrt{{X}^{2}+{Y}^{2}} ;$$
      $$ \quad\;\;\; {A}_{{\rm{V}}}=\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{an}(X/Y) 。$$

      其中:X表示碳、磷获取酶的相对活性,即(EBG+ECB)/(EBG+ECB+EPHOS);Y表示碳、氮获取酶的相对活性,即(EBG+ECB)/(EBG+ECB+ENAG+ELAP)。较长的向量长度表示较大的碳限制,向量角度<45°和>45°分别表示氮和磷限制;微生物碳限制随向量长度的增加而增加,微生物磷限制随向量角度的增大而增大,微生物氮限制随向量角度的增大而减小[28]

    • 采用SPSS 26.0以有机物料(OF)、生物质炭(BF)作为因子,进行双因素方差分析(two-way ANOVA),检验有机物料和生物质炭施用间的土壤性质差异及互作效应;单因素方差分析(one-way ANOVA)和Duncan法多重比较检验不同处理间差异显著性,显著性水平设为P<0.05;土壤酶活性及化学计量比与土壤化学性质的冗余分析(RDA)采用Canoco 4.5软件;采用皮尔逊(Pearson)相关分析法分析相关性,进行双尾检验确定显著性。

    • 与ck相比,单施羊粪显著提高土壤pH和养分质量分数,单施秸秆显著增加了土壤氮磷比,单施生物质炭显著增加了土壤有机碳和速效钾质量分数,并提高了土壤碳氮比和碳磷比(表1)。与单施有机物料相比,有机物料与生物质炭配施显著增加了土壤有机碳和速效氮质量分数,提高了土壤碳氮比和碳磷比。与单施秸秆相比,秸秆与生物质炭配施显著增加了土壤全氮和速效钾质量分数(P<0.05)。双因素方差分析表明:有机物料施用对土壤化学性质有显著影响,生物质炭对土壤化学性质(除全氮和全磷外)、碳氮比和碳磷比有显著影响,但两者无显著交互作用。

      表 1  生物质炭配施有机物料对土壤化学性质的影响

      Table 1.  Effects of biochar combined with organic materials on soil chemical properties

      处理pH有机碳/(g·kg−1)全氮/(g·kg−1)全磷/(g·kg−1)速效氮/(mg·kg−1)
      ck 4.94±0.22 c 4.54±0.17 d 0.62±0.06 c 0.21±0.05 b 45.35±3.61 d
      S 5.16±0.27 bc 5.15±0.84 d 0.73±0.07 bc 0.18±0.01 b 48.76±3.48 d
      M 5.54±0.08 ab 7.23± 0.84 c 0.99±0.23 a 0.31±0.07 a 58.88±6.64 bc
      ck +B 5.26±0.27 bc 11.02±0.85 b 0.72±0.04 bc 0.20±0.01 b 50.50±5.23 cd
      S+B 5.29±0.20 bc 12.02±1.27 ab 0.87±0.11 ab 0.21±0.02 b 60.77±8.53 b
      M+B 5.80±0.14 a 13.13±0.77 a 0.92±0.07 ab 0.29±0.01 a 71.57±1.57 a
      OF 12.56** 12.28** 9.20** 15.08** 15.90**
      BF 5.79* 254.42*** 1.12 0.15 15.55**
      OF×BF 0.28 0.50 1.30 0.78 0.91
      处理 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) 碳氮比 碳磷比 氮磷比
      ck 2.95±0.79 c 100.44±32.71 c 7.39±0.72 b 22.84±3.94 c 3.17±0.80 c
      S 4.08±1.11 bc 108.42±33.18 c 6.98±0.40 b 28.65±2.33c 4.10±0.10 a
      M 8.89±1.61 a 219.70±40.56 ab 7.55±1.40 b 24.27±4.00 c 3.23±0.11 bc
      ck+B 4.30±0.76 bc 166.69±27.42 b 15.27±1.09 a 55.59±5.31 a 3.64±0.22 abc
      S+B 5.69±1.95 b 193.56±13.86 b 13.90±0.92 a 55.93±3.30 a 4.03±0.17 ab
      M+B 10.10±0.21 a 251.18±13.40 a 14.33±1.65 a 44.64±3.28 b 3.13±0.12 c
      OF 38.76*** 21.64*** 0.65 4.30 6.78*
      BF 5.93* 20.31** 126.25** 148.75** 0.23
      OF×BF 0.04 1.35 0.29 2.66 0.81
        说明:ck. 对照;S. 秸秆处理;M. 羊粪处理; B. 添加生物质炭处理。OF. 有机物料因子;BF. 生物质炭因子;OF×BF. 有机物料与生物质炭的交互效应。表中数值为平均值±标准差。同列不同字母表示不同处理间差异显著(P<0.05)。双因素方差分析*. P<0.050;**. P<0.010;***. P<0.001。
    • 与ck相比,单施羊粪和生物质炭显著增加了易矿化组分Ⅰ、惰性有机碳质量分数;相比单施有机物料,生物质炭与有机物料配施显著增加了土壤惰性有机碳质量分数,降低有机碳活性指数,提高了有机碳难降解指数(表2)。双因素方差分析表明:有机物料或生物质炭施用对土壤惰性有机碳质量分数有极显著影响(P<0.01),而生物质炭对难降解指数和有机碳活性指数有极显著影响(P<0.01)。

      表 2  生物质炭配施有机物料对土壤碳组分的影响

      Table 2.  Effects of biochar combined with organic materials on soil carbon fractions

      处理易矿化碳组分Ⅰ/(g·kg−1)易矿化碳组分Ⅱ/(g·kg−1)惰性有机碳/(g·kg−1)难降解指数/%有机碳活性指数/%
      ck1.16±0.08 b1.45±0.08 ab1.92±0.13 d42.28±1.37 c58.72±1.37 a
      S1.47±0.18 ab1.91±0.29 a1.77±0.69 d33.45±7.78 c66.55±7.78 a
      M1.68±0.24 a1.70±0.41 ab3.85±0.49 c53.31±4.54 b46.69±4.54 b
      ck+B1.56±0.34 a1.27±0.23 b8.19±1.26 b74.03±6.61 a25.97±6.61 c
      S+B1.58±0.06 a1.74±0.25 ab8.70±1.17 ab72.26±2.89 a27.74±2.89 c
      M+B1.55±0.08 a1.60±0.46 ab9.98±1.28 a75.85±5.21 a24.15±5.21 c
      OF2.763.32 7.14**7.657.65
      BF1.811.03210.61**160.25**160.25**
      OF×BF2.830.020.313.693.69
        说明:ck. 对照;S. 秸秆处理;M. 羊粪处理; B. 添加生物质炭处理。OF. 有机物料因子;BF. 生物质炭因子;OF×BF. 有机物料与生物质炭的交互效应。表中数值为平均值±标准差。同列不同字母表示不同处理间差异显著(P<0.05)。双因素方差分析*. P<0.050;**. P<0.010。
    • 与ck相比,单施羊粪显著提高β-葡萄糖苷酶活性94.5%、β-N-乙酰基氨基葡萄糖苷酶活性179.2%、过氧化物酶活性39.8%;单施秸秆显著提高β-葡萄糖苷酶活性79.6%和过氧化物酶活性48.6% (表3)。与单施秸秆相比,生物质炭配施羊粪显著降低多酚氧化酶活性28.6%、过氧化物酶活性22.2%;与单施羊粪相比,生物质炭配施羊粪降低β-葡萄糖苷酶活性50.9%、亮氨酸氨基肽酶活性32.1%、β-N-乙酰基氨基葡萄糖苷酶活性45.3%、酸性磷酸酶活性40.0%、过氧化物酶活性31.3%。双因素方差分析表明:生物质炭施用对β-葡萄糖苷酶、多酚氧化酶和过氧化物酶活性有显著影响;有机物料施用对纤维素二塘水解酶、β-N-乙酰基氨基葡萄糖苷酶和过氧化物酶活性有显著影响;生物质炭配施有机物料对β-葡萄糖苷酶和酸性磷酸酶活性有显著的交互作用。

      表 3  生物质炭配施有机物料对土壤水解酶和氧化酶活性的影响

      Table 3.  Effects of biochar combined with organic amendments on soil hydrolase and oxidase activities

      处理BGCBLAPNAGPHOSPHOXPERO
      ck9.13±3.91 c1.64±0.27 bc3.11±0.62 ab3.63±1.12 b55.27±13.41 ab709.47±61.41 ab1 741.86±341.52 cd
      S16.41±2.00 ab2.64±0.61 ab3.42±0.69 ab4.29±1.75 b49.90±10.89 ab875.67±97.78 a2 588.16±279.97 a
      M17.76±3.42 a2.16±0.68 abc4.03±0.49 a10.15±4.31 a73.04±17.17 a699.29±202.40 ab2 435.79±129.12 ab
      ck+B10.56±2.70 c1.16±0.75 c3.36±0.90 ab4.88±2.88 b70.88±7.07 a489.06±79.10 b1 433.27±258.45 d
      S+B11.47±1.39 bc3.06±0.85 a3.26±0.36 ab4.45±0.83 b58.40±2.66 ab625.15±172.36 b2 014.58±133.39 bc
      M+B8.73±3.67 c1.22±0.47 c2.73±0.53 a5.55±2.62 b43.85±15.84 b598.55±67.76 b1 672.53±371.10 cd
      OF3.22 8.72**0.093.88*0.80 2.25 10.90**
      BF8.82*1.24 1.880.79 0.09 10.37**18.72**
      OF×BF4.67*1.78 2.482.24 5.79*0.60 1.08
        说明:酶活性单位. nmol·g−1·h−1BG. β-葡萄糖苷酶;CB. 纤维素二塘水解酶;LAP. 亮氨酸氨基肽酶;NAG. β-N-乙酰基氨基葡萄糖苷酶;PHOS. 酸性磷酸酶;PHOX.多酚氧化酶;PERO. 过氧化物酶。ck. 对照;S. 秸秆处理;M. 羊粪处理; B. 添加生物质炭处理。OF. 有机物料因子;BF. 生物质炭因子;OF×BF. 有机物料与生物质炭的交互效应。表中数值为平均值±标准差。同列不同字母表示不同处理间差异显著(P<0.05)。双因素方差分析*. P<0.050;**. P<0.010。

      与ck相比,单施秸秆显著提高了酶碳氮比、酶碳磷比和向量长度,而单施羊粪对酶碳氮比、酶碳磷比和向量长度无显著影响(图1)。与单施秸秆相比,生物质炭配施秸秆显著降低了酶碳磷比;与单施羊粪相比,生物质炭配施对酶化学计量比、向量长度及向量角度均无显著影响。双因素方差分析表明:生物质炭施用对酶碳磷比有显著影响,有机物料施用对酶碳氮比、酶碳磷比、向量长度和角度有显著影响,但两者无显著的交互作用。

      图  1  生物质炭配施有机物料对土壤酶化学计量比及向量长度和向量角度的影响

      Figure 1.  Effects of biochar combined with organic amendments on ecoenzymatic stoichiometric ratio and vector length and angle

    • 冗余分析结果显示:土壤化学性质对土壤酶活性及其化学计量比的解释度为79.1%,第1轴解释了变量的74.3%,第2轴解释了变量的4.7% (图2)。土壤易矿化碳组分Ⅱ(F=8.69, P=0.012)、土壤碳氮比(F=7.47, P=0.022)、土壤碳磷比(F=6.64, P=0.012)和土壤惰性有机碳 (F=6.15, P=0.018)是显著影响土壤酶活性及化学计量比的环境因子,其解释率分别为35.0%、32.0%、29.0%、28.0%。土壤多酚氧化酶和过氧化物酶与土壤碳氮比、土壤碳磷比、土壤有机质、土壤惰性有机碳呈负相关,但与土壤易矿化碳组分Ⅱ呈显著正相关。向量长度与土壤碳氮比、土壤碳磷比、土壤有机质、土壤惰性有机碳呈显著负相关。

      图  2  土壤化学性质与酶活性及其计量比特征的冗余分析

      Figure 2.  RDA analysis of soil chemical properties and enzyme activity and ecoenzymatic stoichiometric ratio

    • 本研究表明:玉米秸秆、羊粪以及生物质炭施用均能一定程度提高旱地红壤pH及有机碳、速效钾和有效磷质量分数,但三者之间效果差异较大。单施羊粪2 a后,土壤肥力提升效果最明显,可能是因为粪肥本身含有各种大量营养元素;而单施秸秆对土壤肥力无显著改善,可能是因为秸秆氮磷等养分少,有机质分解快,短期难以积累[29];而且还能提高土壤微生物活性,促进土壤本身养分分解[30]。与施用有机物料相比,施用生物质炭显著提升了土壤pH和有机碳质量分数。这是因为生物质炭呈碱性,灰分多[12],有机碳组分结构高度芳香化,不易分解[11],可快速提高土壤有机碳质量分数,降低土壤酸度。与单施秸秆或羊粪相比,配施生物质炭能进一步提高土壤有机碳、碱解氮、有效磷质量分数。这与生物质炭本身养分质量分数有密切关系。

      单施羊粪显著增加了土壤易矿化碳组分Ⅰ和惰性有机碳质量分数,而单施玉米秸秆对土壤的碳组分无显著影响,这与WEI等[31]研究结果一致。单施玉米秸秆短期内对土壤碳组分无影响,可能因为玉米秸秆富含纤维素和半纤维素,其腐熟能释放大量活性碳,短期内刺激微生物活性,促进活性碳组分分解,造成秸秆添加前后土壤碳组分变化不大。相反,粪肥还田不仅能提高土壤养分和活性碳质量分数,也能提高土壤惰性碳质量分数,增加土壤有机质[10]。与对照相比,单施生物质炭显著提高了土壤易分解有机碳质量分数,这可能与生物质炭中具有的溶解性有机碳有关。另一方面,生物质炭的空隙结构和有机碳固持作用可能在一定程度上保护了土壤可溶性碳组分的分解,降低了土壤碳组分的可利用性[32]。LU等[13]研究表明:生物质炭的多孔结构具有较高的养分和可溶性碳吸附能力,导致土壤易分解有机碳质量分数较低。包建平等[4]研究表明:生物质炭配施秸秆对土壤碳组分有显著交互作用。与单施秸秆、羊粪相比,生物质炭与秸秆或羊粪配施显著增加了惰性有机碳质量分数和有机碳难降解指数,降低了有机碳活性指数,说明生物质炭配施增加了土壤碳的抗分解能力。LIU等[33]研究发现:生物质炭增加了土壤芳香碳质量分数,提高了土壤碳的化学惰性和抗分解能力,导致土壤异养呼吸减少。

    • 土壤酶活性及其生态化学计量特征可以较好地反映微生物的代谢需求及其与环境中养分有效性之间的关系。 研究表明:不同类型和用量的有机物料及生物质炭添加对土壤酶活性产生了不同的影响[34]。生物质炭单独施用并不会显著改变与碳氮磷转化相关的水解酶和氧化酶的活性,这可能与生物质炭本身难降解、可溶性养分较低[11],难以改变微生物养分需求状况有关。β-葡萄糖苷酶活性与土壤活性碳循环相关,过氧化物酶活性与土壤有机质相关[35]。单施秸秆和羊粪这2种有机物料分别显著提高了β-葡萄糖苷酶和过氧化物酶活性,说明有机物料的添加使土壤的可利用碳基质增加,刺激微生物活动,进而分泌更多酶来降解有机物料。相反,生物质炭配施有机物料使β-葡萄糖苷酶、酸性磷酸酶和过氧化物酶活性显著降低,这可能因为生物质炭较大的比表面积和孔隙度对底物有较强的吸附能力,从而降低酶促反应[36]。BAILEY等[37]研究表明:生物质炭与有机肥配施导致酶活性降低,可能是生物质炭吸附改变酶活性位点,或阻止了底物与酶的结合。另一方面,生物质炭可能通过改变有机物料添加下土壤碳氮磷有效性,从而影响土壤酶活性和微生物养分需求[36]。单施秸秆显著提高了酶碳氮比和酶碳磷比,表明单施秸秆相对提高了碳降解酶活性。相反,与单施秸秆相比,生物质炭配施秸秆显著降低酶碳磷比,这与生物质炭配施一定程度抑制了碳降解酶活性有关。根据酶活力表征的向量图[19]和资源分配学说[16],本研究所有处理土壤酶活性的向量角度均大于45°,表明试验地红壤微生物受到较强的磷限制。酶的生态化学计量特征表明,土壤资源呈现磷相对于氮的限制,微生物会增加磷获取酶的合成代谢分配,以便满足磷代谢需求[21]。生物质炭配施秸秆一定程度提高了土壤有效磷质量分数,提高了磷的可利用性,这可能进一步降低微生物的磷素需求,从而缓解微生物的磷限制。

      冗余分析表明:土壤 pH、养分及碳组分质量分数与碳、氮、磷水解酶活性及其向量特征有密切联系。酶氮磷比和土壤pH呈显著正相关,说明pH的提高可以改变微生物生活环境,进而影响酸性磷酸酶、多酚氧化酶和过氧化物酶的活性[38],改变土壤微生物养分限制状况等[39]。土壤碳、氮、磷化学计量比被认为是驱动微生物养分限制的关键因素,是衡量土壤质量的敏感指标[4041]。本研究中除了惰性碳组分外,土壤碳氮比、土壤碳磷比是影响酶活性和微生物代谢限制的关键因素。其中土壤碳氮比反映有机碳和氮的循环,碳磷比反映土壤磷素矿化能力。较低的土壤碳氮比利于有机质矿化,较低的土壤碳磷比说明土壤有效性高[38]。有机物料的施用并不显著改变土壤碳氮比和碳磷比,不显著影响微生物代谢和酶活性;生物质炭的施用显著改变了这两者比值,不利于有机质矿化,可能造成磷限制,减缓微生物代谢,抑制酶活性。土壤碳氮比、碳磷比与多酚氧化酶和过氧化物酶呈正相关,而易矿化碳组分Ⅱ则与其呈负相关,表明有机碳组分和氮磷养分变化均会影响酶活性。一方面,施入土壤的有机物料富含有机质,为土壤微生物提供碳源,改善土壤碳氮比、碳磷比,促进生化过程[42];另一方面配施的生物质炭有大量不易分解的芳香性碳源,减小活性碳库,增大难分解碳库,同时降低微生物活性,使土壤酶活性降低,利于土壤固碳培肥[2]。土壤中多酚氧化酶和过氧化物酶活性的变化和惰性碳组分紧密关联,说明此类酶活性可以较好地指示有机碳组分的变化,可能是这2种酶的功能与控制土壤有机质储存的3个催化过程(木质素解聚、腐殖化和苯酚降解)息息相关[43]。生物质炭配施有机物料改变了土壤的理化性质,促进团聚体的形成,即改变微生物的生存条件,影响了多酚氧化酶和过氧化物酶的活性,形成一种反馈机制,进而影响有机碳的组分。CUI等[44]研究发现:在磷有效性较低的土壤中,微生物磷限制可能抑制土壤有机碳的分解,提高微生物碳源利用效率。本研究中,有机物料施用提高了β-葡萄糖苷酶、过氧化物酶和多酚氧化酶活性,可能促进微生物对土壤有机碳的分解。相反,有机物料与生物质炭配施尽管提高了有效磷质量分数,却显著抑制了β-葡萄糖苷酶、过氧化物酶和多酚氧化酶活性,表明生物质炭配施更有利于土壤有机碳稳定,提高抗微生物分解能力。

    • 生物质炭与秸秆、羊粪配施显著增加了土壤有机碳和碱解氮质量分数,提高了惰性碳组分质量分数,降低了有机碳活性指数。与单施秸秆和羊粪相比,生物质炭配施显著抑制了β-葡萄糖苷酶、多酚氧化酶和过氧化物酶活性,减弱了微生物磷素限制。因此,相比有机物料单施,生物质炭与其配施可更好地提高土壤惰性碳组分质量分数,降低碳降解酶活性,缓解微生物碳磷限制,可作为改善红壤养分限制和提高储碳能力的有效措施。

参考文献 (44)

目录

/

返回文章
返回