-
雷竹Phyllostachys violascens又称早园竹,属禾本科Poaceae刚竹属Phyllostachys,具有出笋早、笋期长、产量高、笋味美等特点,是优良的笋用竹种[1]。自20世纪90年代以来,许多雷竹产区利用砻糠等有机材料进行覆盖栽培,使雷竹出笋提前至春节前,极大提高了雷竹的经济效益[2]。但随着雷竹覆盖栽培年限的增加,雷竹林出现了退化现象,从而限制了雷竹林的可持续发展[3]。因此,为了寻找一种新的方法或优化现有的覆盖增温技术,需要充分了解雷竹笋芽休眠解除的进程。
温度对植物休眠的诱导和解除具有重要的作用,不同植物的休眠解除对温度的需求不同[4]。如百合属Lilium植物休眠解除需要在2 ℃冷藏6~8周[5];李属Prunus植物休眠解除和恢复生长需要6~9 ℃的冷量积累1 000 h[6]。目前,对植物休眠的研究集中在落叶树种。这些植物与竹子不同,它们的芽直接暴露在低温环境下感受低温对其休眠解除带来的影响。雷竹主要通过地下抽鞭发芽,并生长繁殖成林。因此雷竹的侧芽其实是在土壤中完成发育生长,并最终出土成笋,而同时期的土壤和环境温度存在较大差异。因此,雷竹是像落叶树一样由环境低温诱导芽休眠解除,还是由直接接触鞭侧芽的土温诱导尚不清楚。
为了探究笋芽休眠解除过程中雷竹对低温的主要感应部位是地上部分还是地下部分,本研究通过对雷竹盆栽苗不同部位(地下和地上部分)的低温处理,比较各个处理雷竹笋芽休眠进程中相关生理指标的变化规律和差异,探究不同部位低温处理对雷竹笋芽休眠解除的影响,为提高雷竹林经营效率和优化雷竹林覆盖栽培技术提供理论参考。
-
研究区位于浙江省杭州市临安区浙江农林大学翠竹园(30°15′56.965″N,119°44′17.276″E)。该区属中亚热带季风气候,年均降水量为1 613.9 mm,年降水日为158.0 d,年均无霜期为237.0 d。年均气温为16.4 ℃,最低气温为−7.0 ℃,最高气温为41.0 ℃。
-
分别于2021和2022年的10月至翌年3月开展研究。选用2年生雷竹盆栽苗,苗高为1.3 m,苗基径为0.6 cm。育苗盆选用黑色塑料盆(25 cm×21 cm×22 cm)。雷竹盆栽苗地上部分留高约50~100 cm,地下部分留约25 cm的竹鞭。基于许烨荣[7]的前期工作,本研究针对雷竹盆栽苗地上和地下部分设置4个温度处理组:T1 (地上、地下部分18 ℃),T2 (地上部分18 ℃,地下部分自然低温),T3 (地上部分自然低温,地下部分18 ℃),T4 (地上、地下部分自然低温)。每个处理设置15盆雷竹盆栽苗。
温度处理装置主要由人工气候室(WTC)和保温隔热板组成。T1处理是盆栽苗直接放置在WTC中恒温18 ℃;T2处理是在WTC中放置保温隔热箱将盆栽苗隔开,箱体与外界空气互通实现地下部分自然低温,地上部分18 ℃;T3处理在防雨棚下通过加热保温隔热箱实现地下部分18 ℃,地上自然低温;T4处理为直接将盆栽苗放置在防雨棚下。在各处理中随机挑选3盆盆栽苗监测和记录温度变化。研究期间浇灌盆栽苗的水提前放置在相对应的温度环境下,确保浇水时不会影响盆栽苗的温度。
-
于2021年10月15日开始,生理指标每40 d测定1次,各处理每次取5盆盆栽苗。取样时洗净竹鞭后,将箨片剥至笋芽尖完全露出为止,完整切下笋芽并置于−80 ℃冰箱保存,用于各项生理指标测定;于2022年10月20日开始5-乙炔基-2′-脱氧尿苷(EdU)检测和维管束染色试验,每月取1次样,各处理每次取3盆雷竹盆栽苗。
-
雷竹笋芽可溶性糖、蔗糖质量分数采用蒽酮比色法测定,淀粉质量分数采用高氯酸法测定[8];超氧化物歧化酶(SOD)和过氧化物酶(POD)采用苏州科铭生物技术有限公司研制的酶活试剂盒测定;过氧化氢酶(CAT)采用紫外吸收法测定;脱落酸 (ABA)、赤霉素 (GA3)质量分数参考酶联免疫吸附实验法(ELISA)[9]测定。
-
参照相关研究方法[10],本研究将剥除箨片的雷竹笋芽在200 μmol·L−1 EdU中孵12 h,后在1 mL 体积分数为90%的丙酮溶液中冰浴10 min,再用1 mL 1×磷酸盐缓冲液(PBS)洗涤笋芽3次,除去上清液,用1 mL FAA固定液在压力泵中固定笋芽4 h,然后用震动切片将笋芽切成60 μm薄片(尽量取茎尖处的切片),用1 mL 体积分数为0.5% 的Triton X-100 (用1×PBS配制)震动洗涤2次,配制反应混合物对笋芽薄片黑暗避光染色30 min,重复2次,随后用1 mL 1×PBS洗涤笋芽3次,每次20 min。使用荧光显微镜绿光观察拍照。
-
本研究在ESSIAMAH等[11]、XIE等[12]染料吸收和运输速率的方法上稍微改良。每次从各处理随机剪下3段鞭,每根鞭上保留1个芽,尽量保证根须不被剪掉,设3个重复。将其竖着放入50 mL质量分数为0.5%的酸性品红染料中4 h后,在体视显微镜下观察鞭芽对染料的运输情况并拍照记录。
-
将笋芽从竹鞭上完整切下后,在FAA固定液中充分固定。根据石蜡切片的方法将笋芽切成8 μm厚的切片[13],采用高碘酸-锡夫反应法(PAS)染色[14]。
-
采用Excel进行数据统计和处理,用SPSS 26.0进行单因素方差分析(one-way ANVO),Duncan法检验不同处理间的差异显著性(显著性水平为0.05),利用Origin 2021进行非线性曲线拟合及作图。切片使用正置荧光显微镜Olympus BX60观察,用Olympus DP70全自动照相系统拍照。维管观察使用深圳奥斯微体视显微镜观察拍照。
-
光学显微镜的观察结果(图1)显示:越冬前,雷竹笋芽的淀粉主要储存在薄壁细胞、髓和叶原基中,呈紫粉色。蛋白质主要分布在芽顶端生长锥、腋芽芽尖和维管形成层等分生组织区,呈黄色。芽内淀粉和蛋白质变化基本是同步发生的。在2021年11月,芽内淀粉分布在薄壁细胞、髓和箨原基中,芽顶端生长锥、腋芽芽尖和维管形成层等分生组织呈淡黄色,萘酚黄染色明显。髓部淀粉着色明显,但是淀粉整体颜色比10月淀粉着色浅,整个髓分生组织呈锥形瓶状。芽中部细胞排列规则,纵向压扁,细胞内淀粉等物质聚集在细胞核周围。T2、T4处理的髓部淀粉分布较T3处理少,T4处理的髓部淀粉分布较T2处理少。T1处理变化不明显,髓部淀粉极少,蛋白质着色也不明显。2022年1月,随着温度持续降低,各处理淀粉着色整体变浅,主要在芽顶端生长锥、箨原基、维管形成层及腋芽芽尖。各处理的髓部淀粉着色基本消失,萘酚黄着色逐渐加深。其中T3顶端蛋白质着色较明显,淀粉着色也比12月深。其中T2、T4处理的薄壁细胞中淀粉着色较浅,而T1处理变化不明显。在2月,芽顶端蛋白质着色明显。笋芽中下部淀粉着色较1月稍有变深。T1处理的顶端蛋白质着色明显,淀粉分布基本不变。在随后的3月,T1、T4处理的蛋白质染色明显加深,淀粉被染成深紫色,细胞开始纵向伸长。且T2、T3处理的节间基本分化完毕,已经开始进行高度生长。
-
由图2A可知:可溶性糖质量分数整体随着处理时间的增加呈先升高后下降的趋势。T2和T3处理的可溶性糖质量分数在上升阶段一直都显著高于T1和T4处理(P<0.05),并都在80 d时达到峰值,分别为12.14 和12.37 mg·g−1,此时T2、T3、T4处理的可溶性糖质量分数分别比T1处理显著高20.67%、22.96%和7.91% (P<0.05)。而T1和T4处理的可溶性糖质量分数则在120 d时达到峰值,分别为10.33和10.95 mg·g−1。各处理的可溶性糖质量分数在达到各自峰值后都开始下降,其中T2和T3处理在2月时下降幅度最大,分别下降了24.86%和19.17%,而此时T1和T4处理的可溶性糖质量分数降幅分别为12.83%、15.29%。T2处理的可溶性糖质量分数最大降幅比T1、T3和T4处理分别高12.03%、5.69%和9.75%。
图 2 各处理笋芽中可溶性糖(A)和淀粉(B)质量分数的变化
Figure 2. Changes of soluble sugar (A) and starch (B) content in shoots of different treatments
由图2B可知:各处理组的淀粉质量分数随着处理时间的增加都呈先下降后上升的趋势。T1、T2、T3和T4处理的淀粉质量分数在120 d 时较0 d分别下降了43.59%、36.61%、24.93%和36.61%。各处理间的淀粉质量分数在80 d时首次出现显著差异,此时,T3处理的淀粉质量分数要显著高于T1、T2和T4处理(P<0.05),而T2和T4处理的淀粉质量分数则最先达到其最低值,均为11.13 mg·g−1,比T3处理降低了2.47 mg·g−1。T1和T3处理的淀粉质量分数则在120 d时才出现最低值,淀粉质量分数分别为9.9和13.18 mg·g−1。当各处理的淀粉质量分数降到最低值后又开始逐渐上升。其中最先上升的为T4和T2处理,分别上升了1.33和0.33 mg·g−1。
在对各处理笋芽淀粉切片的动态观察中发现:T2、T3、T4处理的淀粉着色在1月最浅,且2月颜色差异不大(图1),推断出T2、T3、T4处理休眠释放为1—2月。再对T1、T2、T3、T4处理在休眠期间(2021年10月至2022年2月)的淀粉生化指标进行定量分析(图3),并通过非线性拟合找到1—2月淀粉质量分数最低点的横坐标的具体日期,判断淀粉质量分数达到最低的时间分别为:T1处理为2022年2月19日,T2、T3处理为2022年1月20日,T4处理为2022年1月12日。
-
从图4可见:2022年10、11、12月和2023年1月各处理均无红色圆点,只有T3处理在2023年1月出现了少量红色圆点。2023年2月仅T2、T3处理出现了红色圆点,且较为密集。随后的3月,T1、T2处理出现红色圆点较稀疏,并且T3、T4处理均观察到密集的红色圆点。而当笋芽与竹鞭之间的维管束能够被染料标记时,说明笋芽与竹鞭之间建立连接,维管束中导管已经开始进行水分运输,笋芽休眠逐渐解除。
-
当笋芽生态休眠解除后,会进入到快速生长时期。通过EdU的荧光标记来检测笋芽茎尖分生组织中的细胞增殖情况(图5)。在2023年1月的各处理中,T3处理最先检测出EdU荧光信号,整个笋芽切片中的绿色圆点集中在茎尖分生组织区域,原套下方的细胞开始快速生长,进行箨原基、芽原基的分化,说明T3处理的笋芽已经解除生态休眠。2月后,T2处理开始检测出极少的EdU荧光信号,T3处理的荧光信号依然明显,其他处理还未发现荧光信号。在3月,各处理均在茎尖分生组织中检测出EdU信号,此时各处理休眠均已解除。
-
由图6A所示:随着处理时间的增加,各处理的ABA质量分数呈先上升后下降的趋势,T2、T3、T4处理都在80 d时达到最高值,而T1处理在40 d时达到最高值。在120 d时,T2、T3、T4处理的ABA质量分数分别比80 d显著(P<0.05)下降了16.00%、23.13%、31.95%。T1处理的ABA质量分数在整个越冬时期变化不明显。
图 6 各处理笋芽中GA3、ABA质量分数及其比值
Figure 6. Contents and ratios of GA3 and ABA in shoots of different treatments
由图6B所示:GA3质量分数呈先上升后下降随后又上升的趋势,各处理的GA3质量分数都在80 d时达到最低值,且此时T2、T3、T4处理的GA3质量分数较40 d下降显著(P<0.05)。在120 d时,T3处理的GA3质量分数比80 d显著上升了35.07% (P<0.05),T2、T4处理也呈上升趋势。而在整个越冬期T1处理的GA3质量分数在13.88~18.48 ng·g−1内变化。
GA3和ABA的拮抗作用对芽的休眠与萌发有着重要的作用。由图6C可知:T2、T3、T4处理的GA3/ABA均为先上升后下降再上升的变化趋势,80 d时各处理均达到最低值。在120 d时,T3处理的GA3/ABA比80 d增长了约76.1%,T4处理的增长了约62.4%。而在整个越冬期T1处理的GA3/ABA差异不显著。
-
如图7A所示:从40 d开始,各处理的SOD活性开始下降,直到80 d时,T2、T3、T4处理的SOD活性降低到了最低值,且都显著低于T1处理(P<0.05),而此时T1处理的SOD活性反而比40 d时增加了16.27%。到120 d时T2、T3、T4处理的SOD活性均升高,其中T3处理增加了137 mg·g−1,而T1处理继续下降,与其他处理差异显著(P<0.05)。
如图7B所示:各处理的CAT活性呈先上升后下降的趋势。40 d时T1、T2、T3和T4处理的CAT活性分别为0 d的2.27、2.45、3.59、1.86倍。T2、T3、T4处理的CAT活性在80 d时达到最大值,而T1处理在120 d才达到最大值。T3和T4处理的CAT活性与T1处理的CAT活性在40 d时首次出现显著差异(P<0.05)。T1处理的CAT活性整体上变化不显著。
如图7C所示:各处理POD活性在整个处理时间阶段内呈现先上升后下降的趋势。在80 d时各处理的POD活性都达到最大值,其中T2、T3和T4处理的POD活性显著大于T1处理(P<0.05)。在80 d后,除T1处理外,各处理的POD活性均开始下降,直到160 d时POD活性在各处理间差异不显著。在40 d时,T3和T1处理的POD活性差异显著(P<0.05),T3处理比T1处理高53.33 mg·g−1,且显著差异一直持续到160 d。而在80 d时T2、T4处理与T1处理的POD活性差异显著(P<0.05)。在120 d时,T1处理的POD活性显著低于其他3个处理(P<0.05)。
-
碳水化合物是植物休眠解除和芽萌发生过程中各种生理代谢活动的主要能量来源[15]。在休眠解除过程中,淀粉会被酶水解为可溶性糖,不仅为植物提供能量,还可以作为调节休眠的信号物质[16]。在本研究中,T2和T4处理的淀粉质量分数最先达到最低值,说明在低温处理下尤其是地下部分低温处理更加有利于促进淀粉快速水解为可溶性糖,并为雷竹笋芽休眠解除后的生长发育提供能量。在对李属[17]、梨Pyrus pyrifolia[18]、苹果Malus pumila[19]、核桃Juglans regia[20]和白杨Populus tomentosa[21]等的研究中也发现:低温积累处理会使枝条中淀粉质量分数降低,而可溶性糖质量分数增加。因此,本研究推断低温处理尤其是地下部分低温处理可以增强雷竹笋芽对糖的利用能力,从而促进笋芽休眠的解除[22]。
ABA在多种植物中诱导茎停止生长,诱导芽休眠[23]。在本研究中,T2、T3、T4的ABA质量分数均在80 d时达到最高值后开始大幅下降,这与葡萄Vitis vinifera芽中内源ABA质量分数随着休眠的加深而逐步升高,在休眠解除期间又逐渐降低的结果较为一致[24]。说明低温处理可以促进雷竹笋芽ABA质量分数的降低。此外,有研究表明:ABA会抑制α-淀粉酶的活性,从而影响淀粉的降解,说明ABA与糖类之间存在干扰[25]。本研究中,雷竹盆栽苗笋芽ABA与淀粉质量分数都同时增加,正好也验证了这一点。而GA3作为休眠抑制物,在植物芽休眠的解除中发挥着关键作用,可以促进休眠的解除[26]。在芽休眠诱导后GA3质量分数迅速下降,并在休眠期间保持较低的水平,在接近休眠解除和芽萌发开始时升高[27]。本研究中,T2、T3、T4处理的GA3质量分数均在80 d时达到最低后开始急速上升,并且GA3/ABA同样也在80 d达到最低后快速升高。这与淀粉非线性曲线拟合结论是相符的,说明了低温处理可以促进休眠笋芽GA3的合成。同样GA3/ABA对沙棘Hippophae rhamnoides芽的休眠与萌发有控制作用,该比值高可以促进芽的萌发,反之则抑制萌发[28],说明GA3/ABA变化与休眠的解除程度是相吻合的[29]。
BEAUVIEUX等[30]强调了活性氧(ROS)和抗氧化代谢在休眠释放中的关键作用。植物芽中产生的ROS可能是休眠的关键信号[31]。本研究中,T1、T2、T3和T4处理的CAT和POD的活性呈先上升后下降的趋势,T2、T3和T4处理中这2种酶的活性均在80 d时达到最高。在杏树Prunus dulcis花芽休眠解除过程中,CAT和POD活性显著增加的研究结果[32]与本研究结果一致,说明在低温处理下雷竹笋芽休眠解除过程中伴随着氧化应激反应,因为,在低温环境下产生的ROS会对生物大分子造成损害,而植物会使用抗氧化酶以及非酶防御机制来预防或修复氧化损伤[33]。本研究中,T2、T3、T4处理在雷竹笋芽休眠解除过程中SOD酶活性呈先下降后上升的趋势,而在T1处理中SOD活性逐渐降低。根据雷竹笋芽休眠解除时间的确定,说明SOD活性在雷竹笋芽休眠解除后开始增强,并且相比CAT和POD活性,SOD活性一直处于相对较高的水平,说明SOD在雷竹笋芽休眠解除过程中也可能发挥着作用,但其应激反应却不如CAT和POD强烈。
-
一般来说,休眠前期植物器官中物质的化学合成大于水解,主要是低分子量的物质合成高分子量的化合物,而在休眠后期水解作用加强,开始逆向转化[34]。本研究对越冬期笋芽的淀粉及蛋白质分布进行了动态观测,发现在雷竹笋芽感受到低温刺激前,芽髓部有大量的淀粉和蛋白质。雷竹盆栽苗的笋芽随着处理的进行,淀粉着色颜色开始由紫红色变为浅粉色,尤其是地下、地上部分均是自然低温处理的结果变化明显,说明低温处理可以促进淀粉和蛋白质的水解,为笋芽的萌发提供能量和必要的养分[35]。到了120 d时,T2、T3、T4处理的切片中,淀粉颜色较80 d时的深。这是因为休眠解除后,可溶性糖又重新生成了淀粉,为笋芽的后续生长储存了能量[36]。由此可推断出,T2、T3、T4处理的休眠解除为1—2月。
-
在春季,植物汁液的流动也被认为是芽萌发和新陈代谢被激活的重要手段[37]。葡萄芽在休眠过程中与葡萄藤之间的木质部是分离的,而当芽开始膨胀时,它们之间的木质部连续性会重新建立[38]。本研究表明:T3处理的笋芽导管最先在1月恢复运输,说明与其他处理相比,T3处理的笋芽导管最早解除休眠恢复生长。这是因为温度对木质部的形成具有重要作用,当温度达到一定阈值时,将形成植物木质部[39]。并且维管束的重新连接可能与形成层细胞被激活、芽和茎的连接处微观组织重新形成有关[40]。
生长停止和细胞分裂停止是多年生植物芽进入休眠状态的典型特征[41]。本研究发现:T3处理的笋芽茎尖分生组织最先在1月检测出细胞增殖的信号,表明此时笋芽茎尖细胞已开始快速分裂增殖,与其他处理相比,T3处理的雷竹笋芽细胞增殖进程较早。这也与维管束水分运输能力验证实验的结果相符,T1处理没有得到足够的冷积累,其EdU荧光信号检测出的时间最晚且信号最少。虽然T2、T3、T4处理的休眠解除时间相近,但是T3处理的细胞增殖却早于其他处理,这可能是在雷竹笋芽休眠解除后,T3处理地下部分的高温为雷竹笋芽提供适宜的生长温度,使笋芽最早恢复正常的生长发育。
-
本研究发现:越冬前,雷竹笋芽的淀粉主要储存在薄壁细胞、髓和叶原基中,蛋白质主要分布在芽顶端生长锥、腋芽芽尖和维管形成层等分生组织区。随着温度持续的降低,淀粉的分布变为芽顶端生长锥、箨原基、维管形成层及腋芽芽尖,而蛋白质则主要分布在芽顶端。同时,低温处理主要通过增加休眠雷竹笋芽可溶性糖和GA3质量分数、改变维管束的连通状态并促进水分运输、降低淀粉质量分数等促进雷竹笋芽休眠的解除。此外,当笋芽休眠解除后,适宜高温可以促进雷竹笋芽细胞的快速分裂增殖。通过雷竹笋芽切片的淀粉观察和淀粉质量分数的非线性拟合,大致确定了T1处理的雷竹笋芽休眠解除的时间为2022年2月19日,T2、T3处理为2022年1月20日,T4处理为2022年1月12日。在休眠期间雷竹对低温的感知部位主要为地下部分。
Effect of low temperature treatment of different parts on dormancy release of Phyllostachys violascens shoots
-
摘要:
目的 探讨不同部位低温处理对雷竹Phyllostachys violascens笋芽休眠的影响,揭示笋芽休眠解除的生物学机制及感应低温的主要部位。 方法 以2年生雷竹盆栽苗为研究对象,分别于2021和2022年10月至翌年3月设置T1 (地上、地下部分18 ℃),T2 (地上部分18 ℃,地下部分自然低温),T3 (地上部分自然低温,地下部分18 ℃),T4 (地上、地下部分自然低温)共4种温度处理。观测笋芽母竹之间的维管束连接状态、淀粉和蛋白质分布及笋芽细胞的增殖情况,测定笋芽的可溶性糖、淀粉、脱落酸、赤霉素质量分数和抗氧化酶活性,明确不同部位的低温处理对雷竹笋芽休眠解除的影响。 结果 在雷竹笋芽休眠解除过程中,与T1处理相比,T2、T3和T4处理显著增加了笋芽的可溶性糖质量分数(P<0.05),显著降低了笋芽的淀粉质量分数(P<0.05)。根据淀粉切片观察和质量分数拟合,T4处理休眠解除的时间最早,其次为T2和T3处理,2个处理解除时间相同,分别比T1处理提前了37和29 d。T2、T3、T4处理笋芽的脱落酸(ABA)质量分数在120 d时的下降幅度分别是T1处理的1.68、2.18和3.40倍。T2、T3和T4处理笋芽的赤霉素(GA3)质量分数在80 d时分别比T1处理高17.55%、3.27%和10.91%,且T2、T3、T4处理笋芽的GA3/ABA在120 d时的增量分别是T1处理的1.11、3.46、2.67倍;T3处理的笋芽导管和茎尖分生组织均在1月观察到水分运输恢复和细胞增殖的信号,而T1、T2和T4处理则分别在3、2和3月才能观察到此现象。 结论 低温处理尤其是地下部分低温可以促进雷竹休眠笋芽中淀粉水解为可溶性糖,并通过降低ABA质量分数、提高GA3质量分数、增强抗氧化酶(过氧化氢酶和过氧化物酶)活性、促进笋芽维管束的连通和分生组织细胞的快速分裂增殖等来影响雷竹笋芽休眠的解除。综合分析认为:在笋芽休眠期间雷竹对低温的感知部位主要为地下部分。图7参41 Abstract:Objective This study, with an investigation into the effect of low temperature treatment of different parts on dormancy of Phyllostachys violascens shoots, is aimed to reveal the biological mechanism of shoot dormancy relief and the main parts of low temperature induction. Method With 2-year-old Ph. violascens potted plants used as the research subject, 4 treatments were set, namely, T1 (18 ℃ in above-ground parts and underground parts), T2 (18 ℃ in above-ground parts, natural low temperature in underground parts), T3 (natural low temperature in above-ground parts, 18 ℃ in underground parts) and T4 (natural low temperature in above-ground parts and underground parts) lasting from October 2021 to March 2022 and October 2022 to March 2023. Then the content of soluble sugar, starch, ablative acid, gibberellin and antioxidant enzyme activity of bamboo shoots were determined by observing the vascular bundle connection between bamboo shoots and mother bamboo, the distribution of starch and protein, and the proliferation of bamboo shoots. Result Compared with T1 treatment, T2, T3 and T4 treatments could significantly increase the content of soluble sugar (P<0.05) and significantly decrease the content of starch (P<0.05) in bamboo shoots during dormancy release. According to starch slice observation and content fitting, the dormancy release date of shoots treated with T4 was the earliest, followed by T2 and T3 treatments, which were 37 and 29 days earlier than T1 treatment, respectively. The decrease of abscisic acid (ABA) content in shoots treated with T2, T3 and T4 at day 120 was 1.68, 2.18 and 3.40 times of that of T1 in the same period, respectively. The content of GA3 in shoots treated with T2, T3 and T4 at day 80 was 17.55%, 3.27% and 10.91% higher than that treated with T1, respectively, and the increment of GA3/ABA in shoots treated with T2, T3 and T4 at day 120 was 1.11, 3.46 and 2.67 times that of T1, respectively and the signals of water transport recovery and cell proliferation were observed in T3 treated shoot ducts and stem tip meristem in January, while T1, T2 and T4 treated were observed in March, February and March, respectively. Conclusion Low temperature treatment, especially low temperature in the underground part, can promote the hydrolysis of starch to soluble sugar in the dormant shoots of bamboo shoots, and affect the release of dormancy of bamboo shoots by reducing ABA content, increasing GA3 content, enhancing the activities of CAT and POD antioxidant enzymes, promoting the connectivity of vascular bundle and the rapid division and proliferation of meristem cells. Also, with a comprehensive analysis, it was confirmed that the underground part of bamboo was mainly the part that senses low temperature during dormancy. [Ch, 7 fig. 41 ref.] -
近年来,国内绿道建设发展迅猛。目前,已有广东、浙江、河北、江苏、四川、福建、安徽、新疆等省(自治区)的众多城市开展了绿道网规划和建设工作。绿道网的规划建设行动源于对日趋严峻的城乡环境问题和对传统生态绿色空间保护政策实效的主动反思和应对,然而,在部分地区绿道建设的快速推进中也出现了绿道生态性不足,存在功能单一、基础设施缺乏、绿道特色欠缺等问题[1]。当前,亟需对已建成的绿道价值进行评价与分析,以便清晰地呈现绿道建设的综合效益,为科学规划和建设绿道提供参考和依据。国内对于绿道评价体系的研究已有一定积累,但多为对绿道某一方面的性质或功能评价,对于绿道服务价值全面系统的评价较少。研究主要集中在2个方面:一为景观资源评价,包括植物景观评价[2]和景观视觉评价等[3];二是功能评价,包括生态效益评价[4-5]、休闲游憩功能评价[6]、生态系统服务功能评价[7]、使用后评价(POE)[8-9]和社会绩效评价[10]。此外,也有学者提出了以“使用者(人)—绿道(环境)”关系为中心的区域绿道网评价体系研究假设以及研究思路,但未进行实证研究[11]。“景观绩效”是“衡量景观解决方案在实现其预设目标的同时满足可持续性方面效率的指标”[12],即基于可持续发展目标,从环境、经济、社会等3个方面对景观进行全面的绩效评价。其评价以生态系统服务为基础,补充适合景观研究内容的评价指标[13],因此更具有针对性。美国景观设计基金会(Landscape Architecture Foundation,简称 LAF)于 2010 年提出“景观绩效系列”(Landscape Performance Series,简称 LPS)研究计划,针对已建成的景观项目,形成一套依托案例调查研究(case study investigation, CSI)的开放性评价体系。当前,景观绩效研究呈现迅速增长的发展态势[13],其研究主要集中于评价指标的选取[14]、评价体系的构建[15-16]和评估方法的应用[17]等方面。国内景观绩效的研究多集中于较小尺度风景园林的建成项目[18-19],或景观绩效中某些可持续特征的部分[13,20],缺少对大尺度区域景观的研究,对建成项目从环境、经济、社会等3个方面进行全面评价的研究也较少。为此,笔者依托案例研究,尝试对浙江青山湖国家森林公园环湖绿道1期的景观绩效进行评价,以期全面评估绿道的综合价值,为绿道的设计与建设提供参考,并向社会传播绿道的综合价值。
1. 研究地概况与研究方法
1.1 研究地概况
浙江省杭州市临安区青山湖国家森林公园环湖绿道(简称“青山湖绿道”)1期,曾入选2017年“浙江省十大经典绿道”,并获2018年浙江建设工程“钱江杯”一等奖,2019年度中国风景园林学会科学技术奖一等奖。青山湖绿道位于杭州市临安区锦城镇东郊。青山湖为大型人工湖,水域开阔,湖山一体,环湖森林覆盖率79%,自然景色优美,生态环境优越。青山湖绿道沿湖而建,连接城、村、湖、山,全长42.195 km,分3期建设,于2019年7月全线贯通。本研究区段为青山湖绿道1期,长10 km,于2017年1月建成开放。
1.2 评价方法
根据中国住房与城乡建设部2016年9月编制的《绿道规划设计导则》(简称《导则》),郊野型绿道的功能包括生态环保、休闲健身、社会与文化、旅游与经济[21]。其中,生态环保作为其核心价值,体现在绿道有助于固土保水、净化空气、缓解热岛等,并为生物提供栖息地及迁徙廊道。以上功能与LPS中游径(trail,包含绿道类项目)[22]、滨水景观再开发(waterfront redevelopment)[23]等相关案例中所采用的评价指标(表1)高度吻合。另外,LPS基于可持续的发展目标,其经济评价指标还加入了节约建设成本。基于以上分析,结合青山湖绿道的实际情况,确定了本研究采用的景观绩效指标体系,包含环境、经济、社会等3个方面的17项指标(表2)。收集分析以上绩效数据,结合统计学、生态学、经济学、使用后评价等方法,进行景观绩效评价。
表 1 郊野型绿道的功能与LPS相关案例评价指标的对照表Table 1 Comparison between the function of country greenways and the evaluation indexes of LPS-related cases《绿道规划设计导则》中的郊野绿道功能 LPS相关案例采用的评价指标 生态环保 固土保水、净化空气、缓解热岛、生物提供栖息地及
迁徙廊道环境 土壤保护、水岸线保护、涵养水源、固碳释氧、空
气质量、调节气温和城市热岛效应、栖息地改善/
保护/创建/恢复旅游与经济 整合旅游资源,促进相关产业发展,提升沿线土地价值 经济 地产价值、工作岗位、旅游业收入、节约建设成本 休闲健身 提供亲近自然、游憩健身的场所和途径,倡导健康的生
活方式社会 娱乐及社会价值、文化保护、健康、教育、可达
性、景观质量社会与文化 连接城乡居民点、公共空间以及历史文化节点,保护和
利用文化遗产,促进人际交往、社会和谐与文化传承表 2 郊野型滨水绿道景观绩效指标体系Table 2 Country waterfront greenway landscape performance indicators system环境绩效 经济绩效 社会绩效 土壤保护 房产价值 文化保护 水岸线保护 工作岗位 健康 涵养水源 旅游业收入 教育价值 固碳释氧 节约建设成本 可达性 调节气温 娱乐及社会价值 景观质量 净化空气 增加物种多样性、
提高生态完整性等1.2.1 环境绩效评价方法
在LPS的案例中,环境绩效的评价多通过相应的绩效评估工具集进行计算,但由于本研究场地尺度较大,利用工具集评估所需的部分数据获取较为困难,故本研究的环境绩效评价,主要参考了欧阳志云等[24]对中国陆地生态系统服务功能进行评估时所综合运用的生态学及经济学方法。吴隽宇[8]曾采用此方法对珠江三角洲区域绿道1号线进行评估。首先确定绿道线路、类型和控制范围,再对其相应的生态系统面积进行计算。研究采用的绿道图纸由绿道的设计单位提供。《浙江省绿道规划设计技术导则》[25]规定,根据绿道所处区域和功能要求,分为城镇型绿道、乡野型绿道、山地型绿道3种类型。其中,乡野型绿道是指城镇规划建设用地范围外,依托林地、园地、湿地、水体、农田,连接风景名胜区、旅游度假区、历史文化名镇名村、农业观光区、特色乡村、农家乐等的绿道。乡野型绿道的总宽度一般不小于100 m。青山湖绿道依托青山湖国家森林公园,一面临水,一面靠山,属于该导则中的乡野型绿道。本研究将100 m作为其控制范围的宽度。以青山湖绿道1期的总体平面图为基本研究范围,将卫星图片导入Auto CAD软件,依据其控制范围的宽度,描绘其具体范围。再根据卫星图片及实地踏勘,确定绿道沿线生态系统的类型,主要包括林地、耕地、草地、湿地、水域等5种类型。根据设计单位提供的信息,在Auto CAD软件中分层描绘,并统计新增及因绿道建设而被保护的各类型生态系统的面积。在此基础上,分别计算其保持土壤、涵养水源、固碳释氧、调节气温、净化空气等方面的环境绩效。
1.2.2 经济绩效评价方法
经济绩效的评估采用市场价值法。工作岗位数据源自现场调研,旅游业收入的数据来自于对绿道周边乡村村委会的调研,节约建设成本的数据由绿道设计单位提供。
1.2.3 社会绩效评价方法
社会绩效的评估主要采用使用后评价、问卷调查等方法。在2017年3−5月、11月、2018年4月,本研究对583位场地使用者进行了现场问卷调查,其中有效问卷531份,问卷有效率91%。问卷内容根据社会绩效的相应指标设置,包括受访者对绿道的娱乐价值、文化保护、教育价值、景观质量评价,以及绿道对受访者健康的影响。
2. 结果与分析
2.1 环境绩效评价
根据彭建等[26]的经验,生态系统面积为有效林地、草地、湿地沼泽和水域面积的和,其中有效林地面积=林地面积+耕地面积×0.2(表3)。
表 3 青山湖绿道1期生态系统面积Table 3 Ecosystem area of Qingshan Lake Greenway Phase I有效林地/hm2 草地/hm2 湿地沼泽/hm2 水域/hm2 生态系统面积/hm2 针叶林 阔叶林 耕地(按0.2系数折算成林地) 1.670 13.692 0.896 7.198 17.250 0.134 40.840 2.1.1 保持土壤效益
保持土壤带来的经济价值,以林地、草地每年减少土壤侵蚀的总量为基础,计算林地、草地对表土损失、肥力损失和减轻泥沙淤积灾害3个方面的价值。(1)林地、草地每年减少的土壤侵蚀总量。潜在土壤侵蚀量是指无任何植被覆盖的情况下,土壤的最大侵蚀量。而不同植被覆盖下的土壤侵蚀量有很大差别。林地、草地减少的土壤侵蚀量=潜在土壤侵蚀量−林地、草地覆盖区土壤侵蚀量。本研究参考欧阳志云等[24]统计的侵蚀模数进行计算(表4~6)。(2)效益估算。①每年减少的土地损失面积及间接价值。根据土壤侵蚀量和土壤耕作层的平均厚度来推算土地损失面积。每年减少的土壤损失量按表5的平均值计,土壤密度以1.3 g·cm−3计,先算出每年减少的土壤损失量对应的体积。将中国耕作土壤的平均厚度0.5 m作为林地、草地的土层厚度[16],进而算出每年林地、草地减少的土地损失面积分别为0.798、0.353 hm2·a−1。单位面积的生产收益根据2014年浙江省林业、牧业生产的平均收益2 224.8和1 489.7元·hm−2·a−1计算,则每年减少的林地、草地损失的经济价值分别为1 094、2 620元·a−1。②减少土壤肥力损失的间接效益。土壤侵蚀带走了大量的土壤营养物质,主要是土壤有机质、氮、磷、钾。根据实地调查,绿道所在区域土壤主要为红黄泥土,按照临安农林信息网[27]中红黄泥土的有机质、氮、磷、钾质量分数为标准,结合每年林地、草地分别减少的土壤损失平均值,估算林地、草地每年减少的有机质、氮、磷、钾元素的损失量分别为195.10 t·a−1、9.21 t·a−1、51.51 kg·a−1、1 075.05 kg·a−1。根据浙江价格网的公示,2018年第3季度浙江省化肥市场价格的平均值约2.52元·kg−1,据此可以估算林地、草地每年减少的土壤氮、磷、钾损失的经济价值为26 044元·a−1。③减少泥沙淤积的经济效益。根据中国主要流域的泥沙运动规律,一般土壤侵蚀流失的泥沙有24%淤积于水库、江河、湖泊,另有33%滞留,37%入海[28]。本研究仅考虑淤积于水库、江河、湖泊的24%,这部分泥沙直接造成蓄水量的下降。按林地、草地每年减少的土壤损失量平均值计算蓄水损失量,再根据蓄水成本计算其价值。按水库建设需投入成本5.714元·m−3计[29],减少泥沙淤积的经济价值为7 897元·a−1。
表 4 每年林地草地的潜在土壤侵蚀量Table 4 Annual potential soil erosion of woodland and grassland侵蚀模数/(t·hm−2·a−1) 林地 草地 总潜在侵蚀量/(t·a−1) 面积/hm2 潜在侵蚀量/
(t·a−1)面积/hm2 潜在侵蚀量/
(t·hm−2·a−1)最低值 192.0 16.258 3 121.536 7.198 1 382.016 4 503.552 最高值 447.7 7 278.707 3 222.545 10 501.251 平均值 319.8 5 199.308 2 301.920 7 501.229 表 5 每年林地草地覆盖区的土壤侵蚀量Table 5 Annual soil erosion of woodland and grassland林地 草地 总侵蚀量/(t·a−1) 侵蚀模数/(t·hm−2·a−1) 面积/hm2 侵蚀量/(t·a−1) 侵蚀模数/(t·hm−2·a−1) 面积/hm2 侵蚀量/(t·a−1) 0.630 16.258 10.243 0.500 7.198 4.535 14.777 表 6 每年林地草地减少的土壤损失量Table 6 Annual reduction in soil loss of woodland and grassland林地减少的土壤损失量/(t·a−1) 草地减少的土壤损失量/(t·a−1) 总减少土壤损失量/(t·a−1) 最低值 3 111.293 最低值 1 377.481 4 488.775 最高值 7 268.464 最高值 3 218.010 10 486.474 平均值 5 189.066 平均值 2 297.386 7 486.452 综合以上,青山湖绿道1期每年保持土壤的总经济价值包括减少土壤损失面积的经济价值3 714元·a−1,减少土壤氮磷钾损失的经济价值26 044元·a−1,减少泥沙淤积的经济价值为7 897元·a−1,合计37 655元·a−1。
2.1.2 涵养水源效益
本研究采用替代工程法评估涵养水源的价值。根据浙江省杭州市临安区气象局的数据,临安多年年均降水量为1 506.0 mm。参考陈波等[30]对杭州西湖风景区绿地储水保土研究,假设降水的蒸散量为65%,则青山湖绿道1期每年截留水量为1 506.0 mm×35%×23.45 hm2=123 636.58 m3。单位库容的水库工程费用仍以5.714元·m−3计,则每年涵养水源价值为70.65万元·a−1。
2.1.3 固碳释氧效益
参考孙燕飞[31]在临安的研究,杉木Cunninghamia Lanceolata林的固碳量为2.44 t·hm−2·a−1,释氧量为6.52 t·hm−2·a−1;针阔混交林的固碳量为2.16 t·hm−2·a−1,释氧量为5.76 t·hm−2·a−1。根据温家石[32]对城市建成区所做研究,考虑到绿道的草坪修剪次数远低于城市内部,假设绿道的草坪修剪次数是后者的1/4,得出绿道草地固碳量6.68 t·hm−2·a−1,草地释氧量为11.55 t·hm−2·a−1。对于生态系统二氧化碳吸收功能经济价值的评估多采用碳税法和造林成本法[33],并取两者的平均值。国际上通常采用瑞典碳税,折合人民币1 010元·t−1,中国造林成本折合为255元·t−1[34]。对于释放氧气的价值采用工业制氧法进行评估,中国工业制氧的平均成本为400元·t−1。经计算可得青山湖绿道1期每年固碳价值为5.17万元·a−1元,释放氧气价值为6.92万元·a−1。
2.1.4 调节气温效益
根据已有研究测定[35],夏季绿地可从环境中吸收81.8 MJ·hm−2·d−1的热量,相当于189台空调机全天工作的制冷效果。室内空调机耗电0.86 kWh·h−1·台−1,电费按浙江省电费价格0.538元·kWh−1计,则绿地节约电费为2 098.7元·hm−2·d−1。按每年使用空调60 d计,则青山湖绿道1期每年调节气温所创造的价值为295.29万元·a−1。
2.1.5 净化空气效益
(1)吸收二氧化硫的价值。阔叶林对二氧化硫的吸收能力为88.65 kg·hm−2·a−1,针叶林对二氧化硫的平均吸收能力值为215.60 kg·hm−2·a−1,两者对二氧化硫的平均吸收能力为152.13 kg·hm−2·a−1,二氧化硫的治理代价为3 000元·t−1,得到吸收二氧化硫价值为0.74万元·a−1。(2)吸收氮氧化物的价值。目前,汽车尾气脱氮治理的代价是1.6万元·t−1。林地可吸收氮氧化物380 kg·hm−2·a−1,得到吸收氮氧化物价值为9.88万元·a−1。(3)滞尘价值。针叶林的滞尘能力为33.20 t·hm−2·a−1,阔叶林的滞尘能力为10.11 t·hm−2·a−1,平均为21.67 t·hm−2·a−1。削减粉尘价格为170元·t−1,则其滞尘价值为5.99万元·a−1。因此,绿道净化空气的总价值为16.61万元·a−1。
2.2 经济绩效评估
2.2.1 房产价值
绿道的建设,极大地改善了周边居民的生活环境。根据安居客网站的数据,绿道建设前的2015年11月与竣工投入使用后的2018年12月相比,紧邻绿道的房产单价增幅约27.76%,可见绿道对于房产价值提升有积极影响。
2.2.2 工作岗位和旅游业收入
绿道建成后为管理维护提供了20个就业岗位,为带动旅游业发展而提供了37个就业岗位。绿道建成后对周边如泥山湾村等乡村的农家乐、民宿等有显著促进作用。据不完全统计,该区域旅游产值增幅超过20.00%。
2.2.3 节约建设成本
回收利用场地遗留的废旧材料,如红砖、青砖、石等,节约了废旧材料外运与处理费用,以及购买等量新材料的材料费和运输费用,节约成本为23.33万元(表7)。利用原有水利废弃设施等构筑物而产生的节约费用,包括拆除、清运、处理费用,及新建相应设施的费用,合计66.75万元(表8)。
表 7 利用废旧建材产生的节约建设成本Table 7 Construction costs savings from the use of waste building materials废旧材料 工程量/ m3 外运处理总价/元 新材料单价(含材料费、运费)/元 新材料总价/元 合计节约建设成本/元 砖 4.4 132 730 3 212 3 344 卵石 16.3 489 330 5 379 5 868 景观石 233.4 2 334 810 189 054 191 388 老石板 54.0 162 603 32 562 32 724 合计 233 324 表 8 利用原有构筑物产生的节约建设成本Table 8 Construction costs savings from the use of existing structures构筑物名称 工程量/ m3 拆除、清运、处理费用/元 新建栈道基础费用/元 合计节约建设成本/元 钓鱼台 63 15 750 31 500 47 250 观星台 675 168 750 337 500 506 250 “鱼头”小品 51 12 750 25 500 38 250 青风徐来亭 101 25 250 50 500 75 750 合计 667 500 2.3 社会绩效评价
根据问卷调查统计结果,青山湖绿道在1期自开放以来,已吸引大量长期使用者,首次来绿道的人群比例较低;绿道的使用者主要来自临安本地,尽管绿道距离杭州主城区有36 km,依然吸引了不少来自杭州的游人。表9记述了社会绩效调查的结果。多数使用者认为绿道建设提升了城市形象,绿道设计体现了临安的历史文化。82.7%的受访者对绿道的骑行或步行体验表示满意。多数受访者认为绿道提升了其户外活动的参与度,近半数使用者表示绿道改变了其生活方式。在可达性方面,公共交通的可达性较差,间接导致了选择私家车出行的游人增多,在节假日游客高峰时期,交通及停车问题较为突出。10.0%的受访者表示绿道当前最突出的问题即到达绿道的路线不畅通。增设绿道附近的公交站点,是增强其可达性及缓解交通与停车压力的有效方式。作为郊野型绿道,青山湖绿道吸引游客的主要因素是其自然环境优美,而绿道设计中对于乡土材料的应用也受到了使用者的关注,57.0%的受访者表示对于可持续设计有了更深的了解。
表 9 青山湖绿道1期的景观绩效评价结果Table 9 Landscape performance evaluation results of Qingshan Lake Greenway Phase I类别 项目 指标 评价结果 环境
绩效土地 土壤保护 经济价值为3.8万元 水岸线保护 未进行评估 水 涵养水源 经济价值为70.65万元 碳及空
气质量固碳释氧 固碳价值为5.17万元,释氧价值为6.92万元 调节气温 经济价值为295.29万元 净化空气 经济价值为16.61万元 栖息地 增加物种多样性、提高
生态完整性等未进行评估 经济
绩效房产价值 绿道建设后,紧邻绿道的房产单价增幅约27.76% 工作岗位 绿道建成后管理维护提供了57个就业岗位 旅游业收入 绿道拉动了地方旅游业的发展,旅游产值增幅超过20.00% 节约建设成本 利用废旧建材节约23.33万元,利用原有构筑物设节约66.75万元 社会
绩效娱乐及社会价值 531名受访者中有82.7%对绿道骑行或步行的体验是满意的,67.0%的受访者认为绿道建设提升了城市形象,有组织的大型徒步、毅行、马拉松活动达到近1.5万余人次 文化保护 73.4%的受访者表示绿道设计体现了临安的历史文化 健康 65%的受访者表示绿道提升了其户外活动的参与度,68%的受访者来绿道活动的目的是散 步,25%选择了旅游观光,17%选择了骑行,10%选择聚会;43%的受访者表示绿道改变 了其生活方式,骑行、散步、聚会、摄影、钓鱼等活动对其生活产生了积极影响; 82%的受访者表示愿意居住在步行可达的范围内 教育价值 9%的受访者表示来此地是为了研究学习,57%的受访者表示对于可持续设计有了更深 的了解 可达性 38%的受访者开私家车到达绿道,其次为步行占30%,骑自行车或电动自行车前来的 占20%,采用公交交通者仅占11% 景观质量 82%的受访者表示由于绿道自然环境优美而选择来此 3. 结论
在环境绩效评价中,青山湖绿道1期的相应经济价值约398.44万元·a−1,其中调节气温价值为295.29万元·a−1,占总价值的74%,其次为涵养水源价值为70.65万元·a−1,占总价值的18%,净化空气价值为16.61万元·a−1,固碳释氧价值为12.09万元·a−1,保持土壤的经济价值较低,为3.80万元·a−1。
在经济绩效评价中,青山湖绿道1期充分利用废旧建材与原有构筑物,节约建设成本约90.08万元;绿道建成后提供了新的工作岗位,拉动了当地旅游业发展。
在社会绩效评价中,绿道的建设提升了城市形象,体现了临安的历史文化,提升了人们的户外活动参与度,在一定程度上改变了人们的生活方式,大多数人因自然环境优美而来到绿道,超半数受访者表示对可持续设计有了更深的了解。
本研究的郊野型滨水绿道景观绩效进行了较为全面的评价,客观、清晰地呈现了绿道建设的综合效益。青山湖绿道1期的建设投入约7 200万元,仅以环境绩效价值398.44万元·a−1计算,约18 a可获得与建设投入相当的经济价值,而其对于地区发展和市民健康的促进也将产生更大的价值。对于场地中废旧建材与原有构筑物进行充分利用,能够创造较大的经济价值。
景观绩效评价可以更全面地考察、直观地展现绿道建成的综合价值,但因绿道的规模尺度较大,沿线的自然、人文资源类型丰富,需要在绿道建设前,即结合评价指标体系进行全面的数据收集,且此过程需要延续至项目建成后的数年,才能够得到更客观且全面的评价结果。本研究也存在一定局限,其中水岸线保护、栖息地恢复等指标由于原始数据缺失而无法获取;经济绩效中,房产价值的增长未排除绿道之外的其他要素影响比例;针对健康等方面的评价可在对使用者进行问卷调查的基础上,采用更完善的研究方法,以获得更客观、准确的结果。
4. 致谢
浙江农林大学风景园林与建筑学院史琰副教授对本文写作提供帮助,谨致谢意。
-
-
[1] 胡超宗, 金爱武, 郦章顺. 等. 早竹保护地栽培覆盖材料的研究[J]. 浙江林学院学报, 1996, 13(1): 5−9. HU Chaozong, JIN Aiwu, LI Zhangshun, et al. Mulching materials on Phyllostachys praecox forest of protected cultivation [J]. Journal of Zhejiang Forestry College, 1996, 13(1): 5−9. [2] 方伟, 何钧潮, 卢学可, 等. 雷竹早产高效栽培技术[J]. 浙江林学院学报, 1994, 11(2): 121−128. FANG Wei, HE Junchao, LU Xueke, et al. Cultivation techniques of early shooting and high yielding for lei bamboo sprout [J]. Journal of Zhejiang Forestry College, 1994, 11(2): 121−128. [3] 余树全, 姜春前, 周国模, 等. 雷竹林生态系统健康的研究[J]. 北京林业大学学报, 2003, 25(5): 15−19. YU Shuquan, JIANG Chunqian, ZHOU Guomo, et al. Study on Phyllostachys praecox forest ecosystem health [J]. Journal of Beijing Forestry University, 2003, 25(5): 15−19. [4] HORVATH D. Common mechanisms regulate flowering and dormancy [J]. Plant Science, 2009, 177(6): 523−531. [5] 罗丽兰, 石雷, 张金政. 低温对解除百合鳞茎休眠和促进开花的作用[J]. 园艺学报, 2007, 34(2): 517−524. LUO Lilan, SHI Lei, ZHANG Jinzheng. Advances in studies on the effect of low temperature on releasing domancy and accelerating flower of lily bulbs [J]. Acta Horticulturae Sinica, 2007, 34(2): 517−524. [6] HEIDE O M. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species [J]. Scientia Horticulturae, 2008, 115: 309−314. [7] 许烨荣. 温度对雷竹笋芽萌发的影响[D]. 杭州: 浙江农林大学, 2020. XU Yerong. The Effect of Temperature on Phyllostachys violascens Shooting [D]. Hangzhou: Zhejiang A&F University, 2020. [8] HEWITT B R. Spectrophotometric determination of total carbohydrate [J]. Nature, 1958, 182(4630): 246−247 [9] ZHAO Jing, LI Gang, YI Guoxiang, et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules [J]. Analytica Chimica Acta, 2006, 571(1): 79−85. [10] TALAREK N, PETIT J, GUEYDON E, et al. EdU incorporation for FACS and microscopy analysis of DNA replication in budding yeast [J]. Methods in Molecular Biology, 2015, 1300: 105−112. [11] ESSIAMAH S, ESCHRICH W. Water uptake in deciduous trees during winter and the role of conducting tissues in spring reactivation [J]. International Association of Wood Anatomists journal, 1986, 7(1): 31−38. [12] XIE Zhaosen, FORNEY C F, BONDADA B. Renewal of vascular connections between grapevine buds and canes during bud break [J]. Scientia Horticulturae, 2018, 233: 331−338. [13] DEL BARRIO R A, ORIOLI G A, BRENDEL A S, et al. Persian walnut (Juglans regia L. ) bud dormancy dynamics in northern Patagonia, Argentina [J/OL]. Frontiers in Plant Science, 2022, 12 : 3341[2024-05-08]. DOI: 10.3389/fpls.2021.803878. [14] 董宁光. 杨树嫩茎生根机理及调控激素的组织细胞原位分析[D].北京: 北京林业大学,2012. DONG Ningguang. Mechanism and Histocytic in situ Analysis of Regulating Hormones during the Rhizogenesis of Poplar Shoot [D]. Beijing: Beijing Forestry University, 2012. [15] LI Xueyan, WANG Chunxia, CHENG Jinyun, et al. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor [J/OL]. BMC Plant Biology, 2014, 14 : 358[2024-05-08]. DOI: 10.1186/s12870-014-0358-4. [16] ZHANG Yuxi, YU Dan, LIU Chunying, et al. Dynamic of carbohydrate metabolism and the related genes highlights PPP pathway activation during chilling induced bud dormancy release in tree peony (Paeonia suffruticosa) [J]. Scientia Horticulturae, 2018, 242: 36−43. [17] GONZALEZ-ROSSIA D, REIG C, DOVIS V, et al. Changes on carbohydrates and nitrogencontent in the bark tissues induced by artificial chilling and its relationship with dormancy bud break in Prunus sp. [J]. Scientia Horticulturae, 2008, 118(4): 275−281. [18] HORIKOSHI H M, SEKOZAWA Y, SUGAYA S. Inhibition of carbohydrate metabolism by thermal fluctuations during endodormancy lead to negative impacts on bud burst and incidence of floral necrosis in ‘Housur’ Japanese pear flower buds [J]. Scientia Horticulturae, 2017, 224: 324−331. [19] SIVACI A. Seasonal changes of total carbohydrate contents in three varieties of apple (Malus sylvestris Miller) stem cuttings [J]. Scientia Horticulturae, 2006, 109(3): 234−237. [20] CHARRIER G, POIRIER M, BONHOMME M, et al. Frost hardiness in walnut trees (Juglans regia L. ): how to link physiology and modelling? [J] Tree Physiology, 2013, 33 (11): 1229−1241. [21] ELLE D, SAUTER J J. Seasonal changes of activity of a starch granule bound endoamylase and of a starch phosphorylase in poplar wood (Populus × canadensis Moench robusta) and their possible regulation by temperature and phytohormones [J]. Plant Physiology, 2000, 156(5/6): 731−740. [22] ROHDE A, BHALERAO R P. Plant dormancy in the perennial context [J]. Trends in Plant Science, 2007, 12: 217−223. [23] 李健. 河北杨顶芽休眠解除的miRNA调控机制研究[D]. 北京: 北京林业大学, 2020. LI Jian. Dormancy Release Mechanism of Buds Mediated by miRNAs in Populus hopeiensis [D]. Beijing: Beijing Forestry University, 2020. [24] ZHENG Chuanlin, ACHEAMPONG A K, SHI Zhaowan, et al. Abscisic acid catabolism enhances dormancy release of grapevine buds [J]. Plant Cell and Environment, 2018, 41(10): 2490−2503. [25] PANNEERSELVAM R, JALEEL C A, SOMASUNDARAM R, et al. Carbohydrate metabolism in Dioscorea esculenta (Lour. ) Burk. tubers and Curcuma longa L. rhizomes during two phases of dormancy [J]. Colloids and Surfaces B-Biointerfaces, 2007, 59(1): 59−66. [26] CHEN Zhaoyu, CHEN Yadi, SHI Lanxi, et al. Interaction of phytohormones and external environmental factors in the regulation of the bud dormancy in woody plants [J/OL]. International Journal of Molecular Sciences, 2023, 24 (24): 17200[2024-05-08]. DOI: 10.3390/ijms242417200. [27] ZAWASKI C, KADMIEL M, PICKENS J, et al. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering [J]. Planta, 2011, 234(6): 1285−1298. [28] 李丽霞, 梁宗锁, 魏宇昆, 等. 土壤干旱胁迫下沙棘休眠、萌芽期内源激素变化及外源GA3的调节[J]. 西北林学院学报, 2001, 16(2): 10−14. LI Lixia, LIANG Zongsuo, WEI Yukun, et al. Changes of endogenous hormonr of sea buckthorn in dormancy stage and sprout period under soil water stress and exogenous GA3 regulation [J]. Journal of Northwest Forestry College, 2001, 16(2): 10−14. [29] 郑国生, 盖树鹏, 盖伟玲. 低温解除牡丹芽休眠进程中内源激素的变化[J]. 林业科学, 2009, 45(2): 48−52. ZHENG Guosheng, GAI Shupeng, GAI Weiling. Changes of endogenous hormones during dormancy release by chilling in tree peony [J]. Scientia Silvae Sinicae, 2009, 45(2): 48−52. [30] BEAUVIEUX R, WENDEN B, DIRLEWANGER E. Bud dormancy in perennial fruit tree species: a pivotal role for oxidative cues [J/OL]. Frontiers in Plant Science, 2018, 9 : 657[2024-05-08]. DOI: 10.3389/fpls.2018.00657. [31] HUSSAIN S, NIU Q, YANG F, et al. The possible role of chilling in floral and vegetative bud dormancy release in Pyrus pyrifolia [J]. Biology Plant, 2015, 59: 726−734. [32] PRUDENCIO A S, DÍAZ-VIVANCOS P, DICENTA F, et al. Monitoring the transition from endodormancy to ecodormancy in almond through the analysis and expression of a specific class Ⅲ peroxidase gene [J/OL]. Tree Genetics & Genomes, 2019, 15 (3): 44[2024-05-08]. DOI: 10.1007/s11295-019-1351-8. [33] BHARDWAJ P K, MALA D, KUMAR S. 2-Cys peroxiredoxin responds to low temperature and other cues in Caragana jubata, a plant species of cold desert of Himalaya [J]. Molecular Biology Reports, 2014, 41: 2951−2961. [34] 赵成帅. 枣树营养贮藏蛋白质的细胞学研究[D]. 太原: 山西农业大学, 2014. ZHAO Chengshuai. Cytological Research of Vegetative Storage Proteins in Zizyphus jujuba [D]. Taiyuan: Shanxi Agricultural University, 2014. [35] VITRA A, LENZ A, VITASSE Y. Frost hardening and dehardening potential in temperate trees from winter to budburst [J]. New Phytologist, 2017, 216(1): 113−123. [36] 许曈, 邵灵梅, 王小斌, 等. 多年生单子叶植物的越冬休眠研究进展[J]. 园艺学报, 2022, 49(12): 2703−2721. XU Tong, SHAO Lingmei, WANG Xiaobin, et al. Research progress on winter dormancy of perennial monocots [J]. Acta Horticulturae Sinica, 2022, 49(12): 2703−2721. [37] BAZOT S, BARTHES L, BLANOT D, et al. Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages [J]. Trees Structure and Function, 2013, 27: 1023−1034. [38] BARTOLINI S, GIORGELLI F. Observations on development of vascular connections in two apricot cultivars [J]. Advances in Horticultural Science, 1994, 8: 97−100. [39] ROSSI S, DESLAURIERS A, ANFODILLO T, et al. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes [J]. Oecologia, 2007, 152(1): 1−12. [40] ALONI R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation [J]. Planta, 2013, 238(5): 819−830. [41] LANG G A, EARLY J D, MARTIN G C, et al. Endodormancy, paradormancy, and ecodormancy-physiological terminology and classification for dormancy research [J]. Hortscience, 1987, 22(3): 371−377. 期刊类型引用(9)
1. 宋雨璇,刘静. 基于多源数据视角下的厦门山海健康步道活力提升策略研究. 福建建筑. 2024(04): 14-20 . 百度学术
2. 邓迪雅,徐文辉,林旭. 郊野绿道生物多样性的公众感知——以杭州青山湖绿道为例. 中国城市林业. 2024(05): 75-81 . 百度学术
3. 温瑀,秦津,关泽. 秦皇岛海滨国家森林公园北园景观绩效评价. 河北环境工程学院学报. 2023(02): 59-66 . 百度学术
4. 蔡益杭,张明如,张建国. 浙江青山湖绿道小气候要素与游人游憩行为的关系探析. 生态科学. 2023(04): 154-162 . 百度学术
5. 陶一舟,李朝晖,严少君. 安吉天荒坪森林特色小镇景观绩效评价. 浙江农林大学学报. 2023(04): 883-891 . 本站查看
6. 张聪,唐宇力,郭婷婷,张洁,傅东示,幸怡,杨意帆,邵锋. 青山湖滨水绿道景观特征要素与美学感知关系研究. 浙江林业科技. 2023(04): 74-81 . 百度学术
7. 陈丽军,万志芳. 历次五年计划期间中国新建国家森林公园时空分布及动态演化. 世界林业研究. 2022(03): 61-66 . 百度学术
8. 唐庭庭,蒋文伟. 夏季小气候效应对人体舒适度的影响——以临安青山湖绿道为例. 现代园艺. 2022(15): 32-34 . 百度学术
9. 仲启铖,张浪,张桂莲. 基于城市搬迁地的公园绿地建设项目综合效益评价研究——以上海世博公园为例. 园林. 2021(10): 2-10 . 百度学术
其他类型引用(15)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240343