-
土壤重金属污染是指人类活动导致土壤中重金属积累带来的生态环境质量恶化的现象[1]。土壤重金属污染危害周期长,范围广,持续时间长,污染隐蔽,且具有生物不可降解性和相对稳定性等特点,会导致大气和水环境质量的进一步恶化,影响农作物产量和质量;同时重金属会通过食物链不断地在生物体内富集,最终在人体内蓄积而危害人体健康[1]。节能灯生产是汞进入环境中的典型通道。有数据表明,2008年全国生产48亿支荧光灯共使用汞78.2 t[2-3],1支节能灯损坏后渗入地下的汞,会污染大约180 t水[2]。浙江省临安市高虹镇是节能灯生产聚集区,生产产量占到全国的1/3,是临安经济支柱产业之一[2]。研究显示,该地大米样品中总汞和甲基汞的含量都显著高于商品大米样品[4],提示节能灯生产已经对周围汞环境造成影响;而竹笋是临安经济的另一支柱产业,其产值约占全市农、林、牧、渔业产值的5.0%,2012年仅雷竹Phyllostachys violascens的栽植面积就达到216 km2[5-6],因此,竹林土壤的安全至关重要。有关不同行业对周围土壤重金属污染的研究报道已较多[7-10],但关于节能灯生产对竹林土壤重金属的影响并不常见。本研究以浙江省临安市高虹镇为研究区域,分析了竹林土壤重金属的时空分布特征,并用统计学方法对数据进行分析,以探明节能灯生产对竹林土壤中重金属含量及分布的影响。
-
本次研究共采集到竹林土壤样本113个,分析数据可知pH值为pH 5.55±0.09,呈弱酸性;变异系数为17.6%,表明研究区域竹林土壤具有较强的空间变异性。有机质质量分数为 (53.00±21.80) g·kg-1,表明该地质地肥沃,处于高肥力水平;变异系数为41.2%,表明空间变异性较强[12],与pH值所得结果一致。
正态分布检验采用描述性统计频率分布正态性检验法,偏度系数小于1则为正态分布;结合实验数据发现,pH值偏度1.16,有机质偏度1.38,均不符合正态分布。有数据显示[13-15],竹农为了提高竹笋产量,大量施用化肥和有机肥,单施化肥全年用量为3.0 ~ 4.5 t·hm-2,化肥和有机肥配施的全年用量分别为1.0 ~ 2.0 t·hm-2和80 ~100 t·hm-2。因此,可以推测研究区土壤有机质质量分数高很可能是竹农大量施肥造成的。
-
研究区竹林土壤重金属质量分数统计结果如表 1所示。通过计算,对9种重金属进行了异常值处理,分别剔除了3个铬、2个铜、1个铅、1个硒和1个汞的异常值。整体来看,研究区域竹林土壤重金属质量分数除镍外,其他均不符合正态分布。重金属质量分数表现为概率分布的正偏[16-17],表明研究区域的竹林土壤环境已经受到人为活动的影响。综合高虹镇节能灯生产、农业活动现状,可以推测节能灯生产排放的污水、废气,竹林施肥行为与土壤中重金属富集呈正相关关系。9种重金属的变异程度为汞>砷>锌>硒>铜>镍>铬>铅>镉;其中汞的变异系数最大,为81.98%,偏度为2.20。这种空间变异性较大的现象表明研究区域的汞受外界条件干扰明显[18]。研究区域内的汞质量分数最大值为0.61 mg·kg-1,高于土壤环境质量二级标准 (GB 15618-1995) 和食用农作物产地环境质量标准 (HJ/T 332-2006)(pH<6.5),说明当地节能灯产业已经引起了竹林土壤汞的污染。
表 1 高虹镇竹林土壤重金属质量分数统计
Table 1. Descriptive statistics summary of heavy metals concentration in bamboo forest soil in Gaohong
元素 分布类型 偏度 测量值范围/
(mg·kg-1)质量分数/
(mg·kg-1)变异系数/% 背景值/
(mg·kg-1)国家标准Ⅰ/
(mg·kg-1)国家标准Ⅱ/
(mg·kg-1)砷 非正态 1.603 0.90~12.80 3.59±1.92 53.50 15.00 40.0 40.0 镉 非正态 1.850 0.02~0.42 0.11±0.87 12.60 0.20 0.3 0.3 铬 非正态 1.735 3.24~27.61 11.79±4.64 34.20 90.00 150.0 150.0 铜 非正态 1.134 2.39~34.40 12.22±4.80 39.00 35.00 50.0 50.0 镍 正态 0.619 1.33-12.09 5.86±2.03 34.60 40.00 40.0 40.0 铅 非正态 3.192 9.83~54.47 18.49±5.41 29.40 35.00 80.0 250.0 硒 非正态 1.048 0.04~0.78 0.33±0.14 39.70 — — — 锌 非正态 4.980 26.67~233.07 50.18±24.37 48.60 100.00 200.0 200.0 汞 非正态 2.197 0.03~0.61 0.14±0.12 81.98 0.15 0.3 0.3 说明:国家标准Ⅰ为食用农作物产地环境质量标准 (HJ/T 332-2006)(pH<6.5),国家标准Ⅱ为土壤环境质量二级标准 (GB 15618-1995);-表示没有数值。各重金属质量分数值为每种重金属所有采样点的平均值±标准差。 -
竹林土壤重金属的空间分布特征见表 2。除汞外,其他重金属质量分数均低于土壤环境质量二级标准值,说明这几种重金属未对研究区域内的竹林土壤造成污染。汞在7号,10号,16号采样点的质量分数分别为0.37,0.61,0.47 mg·kg-1,超过了土壤环境质量二级标准;尤其10号采样点的汞质量分数超过土壤环境质量二级标准的2倍。比对采样位置可知,7号采样点靠近节能灯厂聚集区,10号采样点位于污水处理厂附近,16号采样点位于仇溪和猷溪的汇合处。本结果与LIANG等[19]发现的该地区污水处理厂周围水生生态系统中水体、沉积物以及生物体内汞含量均高于其他采样点的结果一致,推测原因是高虹镇污水厂排放到附近水体中汞含量超标,引水灌溉造成竹林土壤汞污染。雷竹是临安地区主要的竹类品种,竹林土壤汞污染会导致潜在的健康风险,需引起足够的重视。
表 2 高虹镇不同采样点重金属质量分数
Table 2. Concentration of heavy metals in different sampling sets in Gaohong
采样点 重金属质量分数/(mg·kg-1) 砷 镉 铬 铜 镍 铅 硒 锌 汞 1 4.18±1.82 0.08±0.09 10.03±2.00 8.72±2.34 5.80±2.04 17.28±6.08 0.26±0.12 51.80±20.13 0.07±0.02 2 2.69±0.99 0.10±0.04 10.60±1.45 16.58±18.84 6.03±1.48 18.61±3.09 0.28±0.10 45.69±9.78 0.09±0.03 3 2.48±1.77 0.08±0.04 10.10±1.62 14.88±4.76 5.61±0.75 17.58±2.92 0.27±0.05 48.28±3.45 0.07±0.19 4 2.65±0.73 0.05±0.04 5.19±1.36 7.99±3.21 2.33±0.80 18.58±2.53 0.36±0.09 31.06±3.06 0.06±0.17 5 2.64±1.71 0.53±0.99 9.07±1.09 11.62±4.56 4.14±1.35 15.55±2.11 0.27±0.09 47.33±9.59 0.15±0.11 6 4.32±1.07 0.15±0.06 16.20±1.77 17.02±5.57 7.22±0.55 24.35±2.23 0.50±0.08 70.90±10.26 0.13±0.03 7 3.87±1.23 0.15±0.03 18.07±2.45 19.39±3.16 8.47±1.08 20.59±2.38 0.40±0.07 74.80±5.35 0.37±0.12 8 2.74±1.50 0.11±0.03 13.23±5.41 10.06±1.59 4.87±0.97 16.75±2.37 0.29±0.14 45.08±10.79 0.24±0.11 9 2.77±1.18 0.08±0.04 11.54±1.48 9.87±4.40 6.36±2.31 19.12±6.37 0.33±0.14 46.22±13.40 0.14±0.50 10 3.48±3.47 0.07±0.09 9.05±6.03 12.87±7.35 3.96±2.11 16.83±9.94 0.27±0.39 41.64±41.30 0.61±0.50 11 2.74±2.33 0.08±0.15 11.72±5.91 11.02±14.15 5.15±2.00 17.21±3.01 0.34±0.23 46.62±60.92 0.22±0.32 12 4.33±1.74 0.13±0.05 10.93±0.12 11.78±3.05 5.87±0.61 20.37±4.92 0.41±0.14 52.73±12.77 0.14±0.10 13 4.21±0.96 0.08±0.07 10.81±2.78 7.83±3.71 6.25±1.76 15.62±1.75 0.34±0.09 46.86±9.31 0.13±0.06 14 4.93±2.49 0.09±0.07 15.55±5.03 12.46±2.94 7.72±1.05 15.96±2.02 0.34±0.06 45.75±8.96 0.11±0.08 15 3.94±2.08 0.10±0.08 11.68±4.83 17.25±4.02 6.35±1.94 23.90±8.68 0.37±0.23 55.70±13.21 0.12±0.11 16 6.58±0.81 0.11±0.05 9.21±2.35 9.37±3.69 4.80±1.42 14.80±2.17 0.39±0.09 45.33±15.38 0.47±0.15 17 4.36±1.26 0.07±0.06 8.89±1.31 9.85±1.83 4.43±1.10 16.50±1.88 0.41±0.12 40.86±10.96 0.11±0.50 对不同季节测定的重金属质量分数的统计学分析表明:9种重金属质量分数在四季中不存在显著性差异。因此,可以推断,季节变化对研究区域内土壤中重金属质量分数没有显著影响。
-
对研究区域土壤重金属进行相关性分析与聚类分析,结果如表 3所示:在所有样品中,铜与铬、铅;镍与铬;锌与铬、铜、镍、铅之间表现为极显著正相关关系 (P<0.01)。镍与铜;硒与铅、砷;汞与砷达到显著相关性 (P<0.05)。表明土壤中这些重金属的污染源相同[20-21]或者存在伴生关系[20, 22]。其他重金属之间相关性不显著,表明这些重金属来源可能差异较大。
表 3 高虹镇竹林土壤中9种重金属相关性分析
Table 3. Correlation analysis of the nine heavy metals in the bamboo forest soil in Gaohong
砷 镉 铬 铜 镍 铅 硒 锌 汞 砷 1 镉 -0.162 1 铬 0.181 0.012 1 铜 -0.090 0.113 0.612** 1 镍 0.274 -0.081 0.890** 0.590* 1 铅 -0.082 -0.109 0.410 0.662** 0.412 1 硒 0.506* -0.138 0.373 0.235 0.310 0.551* 1 锌 0.206 0.173 0.812** 0.719** 0.784** 0.637** 0.480 1 汞 0.491* 0.110 0.312 0.077 0.193 -0.144 0.310 0.324 1 说明:*表示在0.05水平 (双侧) 上显著相关。**表示在0.01水平 (双侧) 上显著相关。 聚类分析的结果 (图 2) 显示:镉、硒、砷、镍、铬、铜和铅之间的聚类距离非常接近,污染同源的可能性较大。镍、铬、铜、铅、锌的聚类距离也较为接近,但与镉、硒、硒、镍、铬、铜和铅有一定的聚类距离,其来源有一定的差异,锌与另外4种重金属之间呈现相互伴随的复合污染现象。而汞与另外8种重金属的聚类距离相距甚远,表现出其污染来源的独特性。由此可知:除汞外,其他重金属来源几乎相同,可能是因为用于竹林灌溉的水源相同,抑或是竹林施肥措施相同所致。而汞的来源独特,极有可能与高虹节能灯生产引起的汞沉降有关,这与前面竹林土壤重金属统计分析及时空分布特征分析结果一致。
Temporal and spatial distribution of heavy metal contamination in Gaohong, Lin'an, Zhejiang Province
-
摘要: 于2012年3月、6月、10月,2013年1月在典型节能灯生产集聚区浙江省临安市高虹镇沿仇溪与猷溪选取17个采样点采集竹林土壤样品,分析其理化性质并测量重金属质量分数,运用统计学原理对土壤重金属进行描述性分析与聚类分析,并研究其时空分布特征。结果表明:研究区域竹林土壤平均pH值为pH 5.55,呈弱酸性,有机质质量分数为53.00 g·kg-1,土壤质地肥沃;剔除异常值后,除镍外,其他重金属均属非正态分布,空间变异程度为汞>砷>锌>硒>铜>镍>铬>铅>镉,说明竹林土壤重金属已经受到人为影响;汞的最高值为0.61 mg·kg-1,超出食用农作物产地环境质量标准(HJ/T 332-2006)和土壤环境质量二级标准(GB 15618-1995);其他重金属质量分数在土壤背景值附近,表明研究区域部分竹林土壤已经受到汞的污染。相关性与聚类分析结果显示:汞与其他重金属来源不同,锌与铅、镍、铜、铬有极显著相关性关系(P < 0.01)。Abstract: Gaohong, a small town situated at the west of Hangzhou, is one of the largest production bases of compact fluorescent lamps (CFLs) in China. To determine the influence of local CFL production on temporal and spatial distribution characteristics of heavy metals in ambient bamboo forest soils during the four seasons, a systematic survey was conducted in March, July, and October of 2012 and January of 2013 with a total of 272 soil samples collected at 17 sampling sites in CFL production areas. Each sampling site was 8 m×8 m, on which four topsoil samples (0-10 cm) per time were collected by a soil auger in the diagonal position. Each sample's representativeness was ensured by collecting four field replicates in a one-meter diameter area and then mixed together as one sample. The chemical properties and heavy metals contents of the samples were determined, and the spatial and temporal distribution characteristics of heavy metals in soils was elucidated using descriptive and cluster analysis. Results showed that the average pH value of the bamboo forest soils was 5.55, and the mean organic matter content was 53.00 g·kg-1. The highest value for Hg was 0.61 mg·kg-1, two times higher than the Environmental Threshold for Agricultural Soil (HJ/T 332-2006) and the Grade Ⅱ Standard of Soil Environment Quality in China (GB 15618-1995). Spatial variability of the heavy metals was in an order of Hg > As > Zn > Se > Cu > Ni > Cr > Pb > Cd. After eliminating outliers, the heavy metals, except Ni, were non-normally distributed. The cluster analyses showed that there was a significant mutually associated compound contamination property between Zn and Pb, Ni, Cu, and Cr (P < 0.01), while Hg and the other heavy metals (Zn, Pb, Cu, Cr, Ni, As, Se, and Cd) might have originated from different sources. Thus, even though these acidic bamboo forest soils with abundant organic matter had been polluted by mercury, an essential raw material for the CFL industry, and even though heavy metal contamination had possibly been induced by anthropogenic activities, it was possible that Zn, Pb, Cu, Cr, Ni, As, Se, and Cd in the bamboo soils did not originate from the CFL industry.
-
Key words:
- forest soils /
- CFL production /
- heavy metals /
- mercury /
- cluster analysis /
- spatial-temporal distribution
-
表 1 高虹镇竹林土壤重金属质量分数统计
Table 1. Descriptive statistics summary of heavy metals concentration in bamboo forest soil in Gaohong
元素 分布类型 偏度 测量值范围/
(mg·kg-1)质量分数/
(mg·kg-1)变异系数/% 背景值/
(mg·kg-1)国家标准Ⅰ/
(mg·kg-1)国家标准Ⅱ/
(mg·kg-1)砷 非正态 1.603 0.90~12.80 3.59±1.92 53.50 15.00 40.0 40.0 镉 非正态 1.850 0.02~0.42 0.11±0.87 12.60 0.20 0.3 0.3 铬 非正态 1.735 3.24~27.61 11.79±4.64 34.20 90.00 150.0 150.0 铜 非正态 1.134 2.39~34.40 12.22±4.80 39.00 35.00 50.0 50.0 镍 正态 0.619 1.33-12.09 5.86±2.03 34.60 40.00 40.0 40.0 铅 非正态 3.192 9.83~54.47 18.49±5.41 29.40 35.00 80.0 250.0 硒 非正态 1.048 0.04~0.78 0.33±0.14 39.70 — — — 锌 非正态 4.980 26.67~233.07 50.18±24.37 48.60 100.00 200.0 200.0 汞 非正态 2.197 0.03~0.61 0.14±0.12 81.98 0.15 0.3 0.3 说明:国家标准Ⅰ为食用农作物产地环境质量标准 (HJ/T 332-2006)(pH<6.5),国家标准Ⅱ为土壤环境质量二级标准 (GB 15618-1995);-表示没有数值。各重金属质量分数值为每种重金属所有采样点的平均值±标准差。 表 2 高虹镇不同采样点重金属质量分数
Table 2. Concentration of heavy metals in different sampling sets in Gaohong
采样点 重金属质量分数/(mg·kg-1) 砷 镉 铬 铜 镍 铅 硒 锌 汞 1 4.18±1.82 0.08±0.09 10.03±2.00 8.72±2.34 5.80±2.04 17.28±6.08 0.26±0.12 51.80±20.13 0.07±0.02 2 2.69±0.99 0.10±0.04 10.60±1.45 16.58±18.84 6.03±1.48 18.61±3.09 0.28±0.10 45.69±9.78 0.09±0.03 3 2.48±1.77 0.08±0.04 10.10±1.62 14.88±4.76 5.61±0.75 17.58±2.92 0.27±0.05 48.28±3.45 0.07±0.19 4 2.65±0.73 0.05±0.04 5.19±1.36 7.99±3.21 2.33±0.80 18.58±2.53 0.36±0.09 31.06±3.06 0.06±0.17 5 2.64±1.71 0.53±0.99 9.07±1.09 11.62±4.56 4.14±1.35 15.55±2.11 0.27±0.09 47.33±9.59 0.15±0.11 6 4.32±1.07 0.15±0.06 16.20±1.77 17.02±5.57 7.22±0.55 24.35±2.23 0.50±0.08 70.90±10.26 0.13±0.03 7 3.87±1.23 0.15±0.03 18.07±2.45 19.39±3.16 8.47±1.08 20.59±2.38 0.40±0.07 74.80±5.35 0.37±0.12 8 2.74±1.50 0.11±0.03 13.23±5.41 10.06±1.59 4.87±0.97 16.75±2.37 0.29±0.14 45.08±10.79 0.24±0.11 9 2.77±1.18 0.08±0.04 11.54±1.48 9.87±4.40 6.36±2.31 19.12±6.37 0.33±0.14 46.22±13.40 0.14±0.50 10 3.48±3.47 0.07±0.09 9.05±6.03 12.87±7.35 3.96±2.11 16.83±9.94 0.27±0.39 41.64±41.30 0.61±0.50 11 2.74±2.33 0.08±0.15 11.72±5.91 11.02±14.15 5.15±2.00 17.21±3.01 0.34±0.23 46.62±60.92 0.22±0.32 12 4.33±1.74 0.13±0.05 10.93±0.12 11.78±3.05 5.87±0.61 20.37±4.92 0.41±0.14 52.73±12.77 0.14±0.10 13 4.21±0.96 0.08±0.07 10.81±2.78 7.83±3.71 6.25±1.76 15.62±1.75 0.34±0.09 46.86±9.31 0.13±0.06 14 4.93±2.49 0.09±0.07 15.55±5.03 12.46±2.94 7.72±1.05 15.96±2.02 0.34±0.06 45.75±8.96 0.11±0.08 15 3.94±2.08 0.10±0.08 11.68±4.83 17.25±4.02 6.35±1.94 23.90±8.68 0.37±0.23 55.70±13.21 0.12±0.11 16 6.58±0.81 0.11±0.05 9.21±2.35 9.37±3.69 4.80±1.42 14.80±2.17 0.39±0.09 45.33±15.38 0.47±0.15 17 4.36±1.26 0.07±0.06 8.89±1.31 9.85±1.83 4.43±1.10 16.50±1.88 0.41±0.12 40.86±10.96 0.11±0.50 表 3 高虹镇竹林土壤中9种重金属相关性分析
Table 3. Correlation analysis of the nine heavy metals in the bamboo forest soil in Gaohong
砷 镉 铬 铜 镍 铅 硒 锌 汞 砷 1 镉 -0.162 1 铬 0.181 0.012 1 铜 -0.090 0.113 0.612** 1 镍 0.274 -0.081 0.890** 0.590* 1 铅 -0.082 -0.109 0.410 0.662** 0.412 1 硒 0.506* -0.138 0.373 0.235 0.310 0.551* 1 锌 0.206 0.173 0.812** 0.719** 0.784** 0.637** 0.480 1 汞 0.491* 0.110 0.312 0.077 0.193 -0.144 0.310 0.324 1 说明:*表示在0.05水平 (双侧) 上显著相关。**表示在0.01水平 (双侧) 上显著相关。 -
[1] 刘春阳, 张宇峰, 滕洁.土壤中重金属污染的研究进展[J].污染防治技术, 2006, 19(4):42-45, 64. LIU Chunyang, ZHANG Yufeng, TENG Jie. Advances on pollution soils by heavy metals[J]. Pollut Control Technol, 2006, 19(4):42-45, 64. [2] 尤琼智. 节能灯生产区汞污染特征研究及人体健康暴露评估[D]. 浙江: 浙江农林大学, 2014. YOU Qiongzhi. Study on Characteristics of Mercury Pollution and Human Health Exposure Assessment in Fluorescent Lamps Production Area[D]. Lin'an:Zhejiang A & F University, 2014. [3] HU Yuanan, CHENG Hefa. Mercury risk from fluorescent lamps in China:current status and future perspective[J]. Environ Int, 2012, 44(1):141-150. [4] LIANG Peng, FENG Xinbin, ZHANG Chan, et al. Human exposure to mercury in a compact fluorescent lamp manufacturing area:by food (rice and fish) consumption and occupational exposure[J]. Environ Pollut, 2015, 198:126-132. [5] 方晓波, 史坚, 廖欣峰, 等.临安市雷竹林土壤重金属污染特征及生态风险评价[J].应用生态学报, 2015, 26(6):1883-1891. FANG Xiaobo, SHI Jian, LIAO Xinfeng, et al. Heavy metal pollution characteristics and ecological risk analysis for Phyllostachys praecox stands of Lin'an[J]. Chin J Appl Ecol, 2015, 26(6):1883-1891. [6] 祝小祥, 谢国雄, 徐进, 等.临安市雷竹林土壤肥力分析与培肥措施[J].中国农学通报, 2013, 29(28):72-76. ZHU Xiaoxiang, XIE Guoxiong, XU Jin, et al. The fertilization measures and analysis of soil fertility in the bamboo shoot croves (cv. Ventricousinternode) in Lin'an City[J]. Chin Agric Sci Bull, 2013, 29(28):72-76. [7] 王大勇, 吴效中, 张滋芳, 等.汾河临汾段主要污染源周边土壤重金属来源及抗性植物调查[J].山西农业科学, 2015, 43(10):1290-1296. WANG Dayong, WU Xiaozhong, ZHANG Zifang, et al. Origins of soil heavy metals and resistant plants around primary pollutant sources in the Linfen Area of the Fenhe River[J]. J Shanxi Agric Sci, 2015, 43(10):1290-1296. [8] 黄凤球, 纪雄辉, 鲁艳红, 等.不同工业废弃物对稻田土壤中镉铅生物有效性及其形态的影响[J].农业环境科学学报, 2007, 26(4):1316-1321. HUANG Fengqiu, JI Xionghui, LU Yanhong, et al. Effects of different industrial wastes on bio-availability of cadmium, lead and their formation in paddy soils[J]. J Agro-Environ Sci, 2007, 26(4):1316-1321. [9] GONDAL M A, DASTAGEER M A, AL-ADEL F F, et al. Detection of highly toxic elements (lead and chromium) in commercially available eyeliner (kohl) using laser induced break down spectroscopy[J]. Optics Laser Technol, 2015, 75:99-104. [10] LU Huixia, WANG Yuzhen, WANG Jianyou. Recovery of Ni2+ and pure water from electroplating rinse wastewater by an integrated two-stage electrodeionization process[J]. J Clean Prod, 2015, 92:257-266. [11] 赵海侠. 浙西典型节能灯加工聚集区汞含量特征研究[D]. 临安: 浙江农林大学, 2013. ZHAO Haixia. Study on Mercury Content Characteristics in the Typical Energy-saving Lamps Industry Cluster District of Western Zhejiang Province[D]. Lin'an:Zhejiang A & F University, 2013. [12] 冯玲, 张威, 修光利, 等.三江源区玉树县和玛多县土壤汞含量分布特征[J].生态与农村环境学报, 2014, 30(2):262-267. FENG Ling, ZHANG Wei, XIU Guangli, et al. Distribution of mercury in soil of Yushu and Maduo in the Three Rivers Source Region[J]. J Ecol Rural Environ, 2014, 30(2):262-267. [13] CHENG Jinping, WANG Wenhua, JIA Jinping, et al. Expression of c-fos in rat brain as a prelude maker of central nervous system injury in response to methylmercury-stimulation[J]. Biomed Environ Sci, 2006, 19(1):67-72 [14] 姜培坤, 徐秋芳, 周国模.雷竹林土壤质量及其演变趋势[M].北京:中国农业出版社, 2009. [15] 陈闻, 吴家森, 姜培坤, 等.不同施肥对雷竹林土壤肥力及肥料利用率的影响[J].土壤学报, 2011, 48(5):1021-1028. CHEN Wen, WU Jiasen, JIANG Peikun, et al. Effects of different fertilization on soil fertility quality, fertilizer use efficiency, and bamboo shoot yields of Phyllostachys praecox stand[J]. Acta Pedol Sin, 2011, 48(5):1021-1028. [16] 夏学齐, 陈俊, 廖启林, 等.南京地区表土镉汞铅含量的空间统计分析[J].地球化学, 2006, 35(1):95-102. XIA Xueqi, CHEN Jun, LIAO Qilin, et al. Spatial statistics for cadmium, mercury and lead contents in topsoil of Nanjing[J]. Geochimica, 2006, 35(1):95-102. [17] LIN Yupin, CHANG T K. Geostatistical simulation and estimation ofthe spatial variability of soil zinc[J]. J Environ Sci Health A, 2000, 35(3):327-347. [18] ACIEGO PIETRI J C, BROOKES P C. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biol Biochem, 2008, 40(7):1856-1861. [19] LIANG Peng, FENG Xinbin, YOU Qiongzhi, et al. Mercury speciation, distribution, and bioaccumulation in a river catchment impacted by compact fluorescent lamp manufactures[J]. Environ Sci Pollut Res, 2016, 23(11):10903-01910. [20] 丁明, 倪张林, 莫润宏, 等.浙西南竹笋主产县土壤重金属环境质量分析与评价[J].中国农学通报, 2015, 31(33):236-242. DING Ming, NI Zhanglin, MO Runhong, et al. Analysis and evaluation of heavy metal environmental quality in bamboo shoot producing areas in south-west Zhejiang Province[J]. Chin Agric Sci Bull, 2013, 31(33):236-242. [21] 程芳, 程金平, 桑恒春, 等.大金山岛土壤重金属污染评价及相关性分析[J].环境科学, 2013, 34(3):1062-1066. CHENG Fang, CHENG Jinping, SANG Hengchun, et al. Assessment and correlation analysis of heavy metals pollution in soil of Dajinshan Island[J]. Envir Sci, 2013, 34(3):1062-1066. [22] 王济, 张凌云.贵阳市表层土壤重金属污染元素之间的相关分析[J].贵州师范大学学报 (自然科学版), 2006, 24(3):33-36. WANG Ji, ZHANG Lingyun. The relativity between elements of heavy metal contamination in surficial soil of Guiyang, Guizhou[J]. J Guizhou Norm Univ Nat Sci, 2011, 24(3):33-36. [23] 戴万宏, 黄耀, 武丽, 等.中国地带性土壤有机质含量与酸碱度的关系[J].土壤学报, 2009, 46(5):851-860. DAI Wanhong, HUANG Yao, WU li, et al. Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China[J]. Acta Pedol Sin, 2009, 46(5):851-860. [24] POST W M, EMANUEL W R, ZINKE P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(5870):156-159. [25] VANCE, GEORGE F, DAVID, et al. Forest soil response to acid and salt additions of sulfate (Ⅲ) solubilization and composition of dissolved organic carbon[J]. Soil Sci, 1991, 151(4):297-305. [26] MOTAVALLI P P, PALM C A, PARTON W J, et al. Soil pH and organic C dynamics in tropical forest soils:evidence from laboratory and simulation studies[J]. Soil Biol Biochem, 1995, 27(12):1589-1599. [27] CURTIN D, CAMPBELL C A, JALIL A. Effects of acidity on mineralization:pH dependence of organic matter mineralization in weakly acidic soils[J]. Soil Biol Biochem, 1998, 30(1):57-64. [28] 冯新斌, 仇广乐, 付学吾, 等.环境汞污染[J].化学进展, 2009, 21(2/3):436-457. FENG Xinbin, QIU Guangle, FU Xuewu, et al. Mercury pollution in the environment[J]. Prog Chem, 2009, 21(2/3):436-457. [29] 马跃峰, 武晓燕, 薛向明.汞污染土壤修复技术的发展现状与筛选流程研究[J].环境科学与管理, 2015, 40(12):107-111. MA Yuefeng, WU Xiaoyan, XUE Xiangming. Present situation and screening strategies of remediation technology for mercury-contaminated soil[J]. Environ Sci Manage, 2015, 40(12):107-111. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.03.014