留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响

周佳圆 钟玉 努尔阿斯娅·伊马木 崔敏龙 朴春兰

周佳圆, 钟玉, 努尔阿斯娅·伊马木, 等. 龙葵UNUSUAL FLORAL ORGANS类SnUFO2基因C端序列的保守性对花发育的影响[J]. 浙江农林大学学报, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217
引用本文: 周佳圆, 钟玉, 努尔阿斯娅·伊马木, 等. 龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响[J]. 浙江农林大学学报, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217
ZHAO Chenyan, YAO Lijian, YANG Zidong, et al. Automatic navigation of production platform in greenhouse based on wireless positioning[J]. Journal of Zhejiang A&F University, 2020, 37(3): 578-586. DOI: 10.11833/j.issn.2095-0756.20190364
Citation: ZHOU Jiayuan, ZHONG Yu, Nurasiya Imam, et al. Effect of conservation of C-terminal sequence of Solanum nigrum UNUSUAL FLORAL ORGANS family SnUFO2 on flower development[J]. Journal of Zhejiang A&F University, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217

龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响

DOI: 10.11833/j.issn.2095-0756.20220217
基金项目: 宁夏回族自治区重点研发计划重大项目(2019BFG02011)
详细信息
    作者简介: 周佳圆(ORCID: 0000-0001-9291-4659),从事花器官发育研究。E-mail: 357611773@qq.com
    通信作者: 朴春兰(ORCID: 0000-0001-9593-8023),助理研究员,从事生物技术和分子育种研究。E-mail: chunlan_piao@zafu.edu.cn
  • 中图分类号: Q75;S641

Effect of conservation of C-terminal sequence of Solanum nigrum UNUSUAL FLORAL ORGANS family SnUFO2 on flower development

  • 摘要:   目的  UNUSUAL FLORAL ORGANS (UFO)基因属于F-box基因家族,是重要的花器官特征基因。UFO基因N端能与Skp1类基因结合形成Skp1-Cullin1-F-box (SCF)复合体,参与泛素化过程并降解C端结合的靶蛋白。为了探究C端序列对龙葵Solanum nigrum花发育的影响,本研究克隆了一个C末端缺失的SnUFO2*基因并构建其表达载体转入龙葵植株中,观察转基因龙葵植株花器官变化,从而深入探讨UFO基因完整的C末端序列在龙葵花发育中的重要作用。  方法  利用生物信息学分析软件对SnUFO2*和全长的SnUFO2比较分析,采用实时荧光定量PCR(RT-qPCR)对SnUFO2*基因在野生型龙葵植株根、茎、叶、花苞中进行表达分析;通过超表达载体的构建、转基因植株表型的观察及石蜡切片技术验证SnUFO2基因的功能。  结果  SnUFO2*基因ORF长度为1302 bp,编码433个氨基酸,与龙葵中完整的SnUFO2基因相比,其C末端缺失了23个氨基酸。RT-qPCR结果显示:SnUFO2*基因在野生型植株的花苞中特异性表达。对转基因植株的表型观察发现:35S:: SnUFO2*转基因龙葵植株的花瓣向萼片转化。石蜡切片分析发现:转基因龙葵植株雄蕊缺失,雌蕊处有不确定的分生组织产生。  结论  35S:: SnUFO2*转基因龙葵植株花瓣、雄蕊和心皮发育异常。C端结构缺失可能降低了SnUFO2蛋白特异性识别靶蛋白的能力,说明该基因完整的C末端对龙葵花器官发育至关重要。图5表1参23
  • 农田氮磷养分在强降雨期间易随地表径流进入农田排水沟渠,再沿着沟渠迁移入江河湖泊中[1]。《第2次全国污染源普查公报》显示:农业面源污染物排放对水体影响依然不容忽视,其中总氮(TN)年排放量为141.49万t、铵态氮(NH4+-N)年排放量为21.62万t、总磷(TP)年排放量为21.20万t、化学需氧量(COD)年排放量为1067.13万t,分别占总排放量的46.52%、22.44%、67.22%和49.77%。国际上对农业面源污染的研究和治理通常实施“最佳管理措施”(BMPs),包括养分管理、河流改造、生态拦截、畜禽粪污清洁还田等治理手段。国内则在最佳管理措施的基础上进一步形成了“源头减量-过程阻断- 生态修复-养分再利用”(“4R”理论)的治理思路[2]。可见,在2种治理理念中拦截阻断技术都是重要的组成部分。

    沟渠是农田系统的重要组成部分,可以在非农田区域为水生或陆生动植物提供栖息场所与食物来源,是维护农田生物多样性的关键[3]。生长在沟渠内的植物,可以固持营养物质[4]。最初的研究主要集中在农田沟渠对农田排水中农药的净化作用[56],之后逐渐聚焦到对农业面源污染物的去除作用[34, 79]。生态沟渠技术利用沟渠在农田与河塘湖库之间水流“连通器”的地理优势,通过在渠内种植大量的优势水生植物,包括沉水植物、挺水植物、护坡植物和沟堤蜜源植物等,提高水生植物密度,兼顾污染净化、生态链恢复、植物季相、景观优化等因素;同时,在渠内建造反硝化除磷装置等设施,通过吸附材料,促进生物膜形成,强化净化作用;改造泥质边坡为生态边坡,增加边坡粗糙度,延长水力停留时间。通过以上改造形成的生态沟渠,加强了沟渠系统的生态拦截能力[910],因其不需额外占用耕地等优势,是应用比较广泛的农业面源污染过程拦截技术。

    已有不少研究验证了生态沟渠对总氮、铵态氮、总磷、化学需氧量等农业面源污染物的拦截效果,研究地区分布江苏[11]、上海[12]、四川[13]、陕西[14]、湖南[15]、珠三角[16]、东北三江平原[17]、滇池流域[18]等地。此外,胡博[19]通过成本收益分析法评价了农田生态沟渠的环境经济效益,认为生态沟渠具有可实施性与较好的经济性,可以作为防控农田面源污染的补偿机制与政策推荐。因而,农田生态沟渠是目前应用较广、效果较好的农业面源污染过程拦截技术,再结合景观工程,兼具了“氮磷拦截、生态修复、洁净排放、田园景观”四大功能。2018年起,浙江省在全省域建设农田生态沟渠系统。截至2021年底,浙江省已建成生态沟渠510条,沟渠总长度达592 km,覆盖农田面积2.4万hm2[20]。但是,目前有关浙江省推广建设生态沟渠的水质净化效果的相关理论成果较少,尤其是还没有关于在统一建设规范指导下[21]的生态边坡、水生植物、反硝化除磷装置等建设,与生态沟渠对农业面源污染物去除效果的相关性研究成果报道。因此,本研究选择了浙江省推广建设的6条农田生态沟渠,监测在降雨后生态沟渠中的水质变化情况,分析生态沟渠对农业面源污染物的拦截效果,并对生态边坡等相似建设内容与各污染物去除负荷进行相关性分析,为进一步推进生态沟渠建设提供科学依据,实现精准、科学治污。

    本研究选取的浙江省6条典型生态沟渠(表1),均在2020年上半年建成并投入运行,分别位于杭州市桐庐县江南镇莲塘村(桐庐沟渠)、杭州市临安区太阳镇沈家村(临安沟渠)、杭州市建德市钦堂乡蒲田村(建德沟渠)、金华市东阳市六石街道吴良村(东阳沟渠)、金华市义乌市毛店镇乔溪村(义乌沟渠)、绍兴市诸暨市安华镇三联村(诸暨沟渠)。

    表 1  生态沟渠采样渠段概况
    Table 1  Description of sampling sections of 6 ecological ditches
    沟渠位置边坡类型反硝化除磷装置数量/个水生植物覆盖度/%沟渠宽度/ m
    桐庐沟渠杭州市桐庐县江南镇莲塘村生态边坡6300.85~0.95
    临安沟渠杭州市临安区太阳镇沈家村三面光8322.40
    建德沟渠杭州市建德市钦堂乡蒲田村三面光6420.55
    东阳沟渠金华市东阳市六石街道吴良村生态边坡7302.40~3.00
    义乌沟渠金华市义乌市毛店镇乔溪村生态边坡8402.20
    诸暨沟渠绍兴市诸暨市安华镇三联村三面光6600.85
    下载: 导出CSV 
    | 显示表格

    6条生态沟渠均位于浙西中低山丘陵区的水稻Oryza sativa种植区域,群山耸峙间为狭小河谷平原,山地与平原间则丘陵错落,适合水稻生长。临安沟渠为稻鳖共生生产模式;桐庐沟渠、东阳沟渠与诸暨沟渠的沟渠落差不明显,水流较为缓和; 建德沟渠位于山脚,生态沟渠落差较为明显,沟渠内水流较快;义乌沟渠位于山区稻蛙共生养殖基地,沟渠落差明显。表1记录了采样渠段概况,其中边坡类型分为生态边坡(生态砖坡面)与三面光(混凝土坡面),反硝化除磷装置包括底泥捕获井、氮磷去除模块、生态透水坝[22]。桐庐沟渠、东阳沟渠、义乌沟渠等3条沟渠为生态边坡,水生植物覆盖率分别为30%、30%、40%,沟渠宽度分别为0.85~0.95、2.40~3.00、2.20 m;临安沟渠、建德沟渠、诸暨沟渠等3条沟渠为三面光边坡,水生植物覆盖率分别为32%、42%、60%,沟渠宽度分别为2.40、0.55、0.85 m。

    一般认为:在降雨产生农田表面径流并进入沟渠时,生态沟渠起到对污染物的拦截作用,因而降雨期间是监测沟渠净化能力的关键时期[12]。本次取样时间为2021年9月6—10日,连续5 d,每天采集1次,分别记为T1、T2、T3、T4、T5。采样期间浙江省内以阴天为主,夜间普降阵雨,桐庐沟渠、临安沟渠、建德沟渠、东阳沟渠、义乌沟渠、诸暨沟渠降水总量分别为58.82、26.42、34.90、8.59、11.32、32.63 mm (数据来自国家气象科学数据中心)。沟渠内均有农田排水流入和明显的水流流动。生态沟渠取样长度控制在250 m,并保证采样沟渠段上游有农田排水口,且无分支沟渠进水。在取样渠段沿水流方向设置5个采样点(图1),分别记为P1、P2、P3、P4、P5,覆盖沟渠进水口(农田排水出口)、水生植物前后、反硝化除磷装置前后,测定采样点的横截面积与流速。

    图 1  生态沟渠采样渠段取水点示意图
    Figure 1  Description of sampling points in the sampling sections of the ecological ditch

    测定采集水样中的总氮、铵态氮、化学需氧量与总磷质量浓度,同时测定采样点流速并量取采样点横截面积。水样中的铵态氮质量浓度采用水杨酸分光光度法测定;总氮采用碱性过硫酸钾消解-紫外分光光度法测定;总磷采用过硫酸钾氧化-钼锑抗分光光度法测定;化学需氧量采用重铬酸盐法测定;流速和采样点横截面积分别采用浮标法和水道断面测量法测定。

    通过计算监测渠段首段与末端的污染物质量浓度,计算各污染物去除率情况,评估沟渠的拦截能力。各污染物去除率计算如下:

    $$ \eta \text=\left(\frac{{C}_{\mathrm{i}\mathrm{n}}-{C}_{\mathrm{o}\mathrm{u}\mathrm{t}}}{{C}_{\mathrm{i}\mathrm{n}}}\right) 。 $$ (1)

    式(1)中:η为污染物去除率(%),CinCout分别为沟渠起始和末端污染物质量浓度(mg·L−1)。

    通过计算监测渠段的流速与横截面积,计算水力负荷(Pw),即单位时间内通过单位面积的水体。从而计算进水负荷(Pin)及去除负荷(PL)。公式如下:

    $$ \text{}{P}_{\mathrm{w}}\text=\frac{{Q}}{{S}} \text{;} $$ (2)
    $$ {P}_{\mathrm{i}\mathrm{n}}\text={P}_{\mathrm{w}}\text{×}{{C}}_{\text{in}} \text{;} $$ (3)
    $$ {P}_{\mathrm{L}}\text={P}_{\mathrm{w}}\text{×}\text{(}{{C}}_{\text{in}}-{{C}}_{\text{out}}\text{)} 。 $$ (4)

    式(2)~(4)中:Q为流量(m3·d−1),由流速与横截面积相乘得到,S为沟渠横截面积(m2)。

    对不同沟渠的总氮、铵态氮、化学需氧量与总磷去除率进行方差分析及显著性测验(最小显著性差异法),采用Excel 2010和Origin 2020对数据进行分析、制图。

    表2所示:监测期间6条生态沟渠对总氮的平均去除率为18.31%,其中义乌沟渠对总氮的去除率高于其他沟渠,达到82.41%,其他沟渠对总氮的平均去除率为0.75%~7.76%。

    表 2  不同生态沟渠对农业面源污染物的平均去除率
    Table 2  Average removal rates of non-point source pollutants in 6 ecological ditches
    沟渠名称 面源污染物去除率/%
    总氮 铵态氮 总磷 化学需氧量
    桐庐沟渠 7.45±10.87 b 68.64±9.67 a −4.55±10.31 b 15.04±15.30 a
    临安沟渠 5.68±8.39 b 14.40±7.30 b 13.76±2.46 b 17.21±23.29 a
    建德沟渠 7.76±8.17 b 33.95±12.41 b 0.08±8.56 b 13.72±15.99 a
    东阳沟渠 5.82±5.87 b 21.73±22.93 b −6.19±23.55 b 25.49±10.26 a
    义乌沟渠 82.41±1.11 a 80.24±4.01 a 62.47±31.14 a 44.00 ±25.91 a
    诸暨沟渠 0.75±15.71 b 13.48±6.17 b 15.37±43.16 ab 28.37±26.82 a
    平均 18.31±30.49 38.74±28.96 13.49±32.57 23.97±21.48
      说明:数据为平均值±标准差。不同小写字母表示不同沟渠间差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    6条生态沟渠对铵态氮的平均去除率为38.74%,普遍高于总氮与总磷。桐庐沟渠和义乌沟渠的铵态氮平均去除率显著高于其他沟渠(P<0.05),达65.00%以上。其他3条沟渠铵态氮去除率之间无显著差异。6条生态沟渠对总磷的平均去除率较低,为13.49%。义乌沟渠的总磷平均去除率显著高于其他沟渠(P<0.05)。6条生态沟渠对化学需氧量的平均去除率为23.97%,沟渠化学需氧量去除率之间无显著差异。

    进一步分析各沟渠农业面源污染物(总氮、铵态氮、总磷、化学需氧量)的进水质量浓度、出水质量浓度与去除率随时间变化情况(图2)可知:各生态沟渠进水中的主要污染物质量浓度均不同。临安沟渠以总氮与铵态氮污染物为主,并且始终保持较高的污染水平,总氮高达19.0 mg·L−1,其他生态沟渠的总氮也均高于地表水Ⅴ类水标准。东阳沟渠前3 d进水的铵态氮质量浓度较高,在T2时化学需氧量达到最高。义乌沟渠则在T2与T5时进水的总磷质量浓度较高,达0.3 mg·L−1以上。

    图 2  不同生态沟渠各农业面源污染物的进水质量浓度、出水质量浓度与去除率随时间的变化
    Figure 2  Variation of influent, effluent concentrations and removal rates of agricultural non-point source pollution in six ecological ditches

    临安沟渠对总氮的去除率在T1、T2时达到10%,总氮出水质量浓度依然保持较高水平;义乌沟渠对总氮、铵态氮、总磷的去除率在采样期间均保持在80%左右。桐庐沟渠相较于其他沟渠,对铵态氮去除率在采样区间均保持较高水平。可见,不同沟渠各污染物的进水负荷以及沟渠对污染物的去除率均存在较大差异。

    图3可知:义乌沟渠对总氮、铵态氮、总磷、化学需氧量去除负荷随着进水负荷的增大而增大。桐庐沟渠对总氮、铵态氮、化学需氧量去除负荷与其进水负荷,临安沟渠对总磷、化学需氧量去除负荷与其进水负荷,诸暨沟渠对总磷去除负荷与其进水负荷均有较好的线性关系(P<0.05),说明沟渠对相应地污染物表现出较好的去除能力,能够抵抗径流产生期间的污染负荷波动。但是也有部分沟渠的去除负荷与进水负荷的决定系数(R2)较低,说明沟渠去除负荷除了受到进水负荷影响,还受到其他因素的影响。此外,污染物进水负荷处于较低水平,污染物的去除负荷与其进水负荷的线性关系越差。

    图 3  各沟渠农业面源污染物进水负荷与其去除负荷的相关关系
    Figure 3  Correlation of influent loading and removal loading of agricultural non-point source pollutants in six ecological ditches

    图4中红色箭头为生态沟渠建设中的主要环节或模块,蓝色箭头为水力负荷和本研究需评估的污染物负荷指标。若蓝色箭头与红色箭头夹角较小,箭头长度越长,说明两者相关性强,反之则说明相关性弱。可见:总氮、铵态氮去除负荷与边坡类型、反硝化除磷装置数量有较好的正相关,生态边坡赋值为1.0,三面光赋值为0.5,表明生态边坡有利于总氮、铵态氮去除;总氮、铵态氮去除负荷与植物密度相关性弱,与沟渠宽度呈较好的负相关,表明较窄的沟渠对总氮、铵态氮去除较好。总磷、化学需氧量去除负荷与植物密度、反硝化除磷装置数量正相关性较好,与边坡类型、沟渠宽度相关性弱,表明提高植物密度、反硝化除磷装置数量可以促进沟渠对总磷、化学需氧量的去除。

    图 4  不同生态沟渠类型对各农业面源污染物去除负荷的冗余分析
    Figure 4  RDA of impact of different types of ecological ditch on removal loading of agricultural non-point source pollutants

    污染物去除率是评估生态沟渠净化效果普遍采用的指标[2225]。文献中有关生态沟渠对总氮的去除率为9.52%~88.86%[9, 1114, 26],总磷去除率为19.94%~70.00%[1114, 26],铵态氮去除率为44.50%~77.80%[1113, 16],也有沟渠在添加Fe2+与碳源后对总氮、铵态氮、总磷的72 h去除率均超过80.56%[17]。江苏镇江氮磷拦截沟渠的化学需氧量去除率达46.9%[24]。本研究中,义乌沟渠对总氮平均去除率与文献记载相近,其他沟渠对总氮的平均去除率仅在10%左右,接近文献记载最低水平;桐庐沟渠、义乌沟渠与建德沟渠的铵态氮平均去除率接近文献记载,其他3条沟渠铵态氮去除率低于文献记载。本研究生态沟渠对总磷、化学需氧量的平均去除率低于文献记载,原因之一可能是文献中的一些沟渠在建设完工初期进行了水质监测,建设初期沟渠水泥边坡、透水坝中的吸附材料均具有较强的吸附作用[16, 26],而本研究中生态沟渠均已建设完成1 a以上;也有文献采用的是累计去除率[9, 27],本研究采用的是监测时刻的平均去除率;另外,文献中的一些生态沟渠,特别是室内模型实验为植生型沟渠,通过种植高密度水生植物实现净化作用[10, 12],而实际生态沟渠中,要兼顾植物种植面积和美观度。这些可能是导致去除率低于文献记载的主要原因。

    相较于污染物去除率,污染物去除负荷的度量不仅计入了污染物质量浓度的变化,还兼顾了水力负荷以及沟渠系统的横截面积,更能反映沟渠系统的去污能力。王迪等[15]在采用进水口和出水口污染物质量浓度变化计算去除率的基础上,将沟渠流量变化用于计算沟渠对污染物的拦截率,并将去除率与拦截率进行对比,结果几乎一致。刘福兴等[28]也采用生态沟渠对单位面积的水体污染物的去除量来衡量沟渠净化效果。因此,本研究也着重研究了各条沟渠对污染物的去除负荷与进水负荷的线性关系,并结合去除率进行分析。

    义乌沟渠、桐庐沟渠对总氮、铵态氮表现出较高的去除率,并且去除负荷与总氮、铵态氮进水负荷呈线性关系,说明沟渠可以抵抗径流产生期间的污染负荷波动[29]。通过冗余分析,推测可能原因是义乌沟渠、桐庐沟渠均为生态边坡并且宽度较窄,因而增加了边坡粗糙度以及水流与边坡的接触面积,延长了水力停留时间。王岩等[27]研究表明:三面光沟渠主要由沉积物和混凝土板材的吸附作用去除污染物,只能在建设初期表现出较好的拦截效果。此外,三面光沟渠流速较快,污染物无法在生态沟渠中滞留,有限的水力停留时间限制了生态沟渠的净化能力。赫贝贝等[16]研究表明:多孔砖生态沟渠对水体铵态氮、${\mathrm{NO}}_3^- $、总氮、总磷和化学需氧量的平均去除率较高。虽然东阳沟渠也为生态边坡,但因渠道较宽,可能削弱了一定部分生态边坡带来的积极作用。

    诸暨沟渠表现出较好的总磷去除率,并且去除负荷也与总磷进水负荷呈线性关系。通过冗余分析,推测是因为诸暨沟渠植物密度高达60%,是其他沟渠植物密度的1.5倍以上。MOORE等[4]研究发现:相较于无植物沟渠,有植物沟渠对各形态磷的去除能力更稳定。植物也可以有效促进污染物的沉积[30]。研究发现:在长有植物的沟渠水中,总固体中含有28%可悬浮沉积物,而在无植物沟渠水中这一指标达95%以上。这是因为植物可以有效增加排水通道的摩擦阻力与粗糙度,从而延长水力停留时间[3132]。但是本研究中,沟渠植物密度与铵态氮去除负荷呈现负相关,与总氮去除负荷相关性不强,这与部分文献[4, 33]结果不一致,可能原因是生态沟渠中的植物量是有限的,进入沟渠的氮总量超过植物吸收氮量的阈值,会导致生态沟渠对氮的去除率也相应下降[27]。此外,当水力停留时间较短,沟渠壁对氮的吸附作用占主导,当水力停留时间较长,沟渠中的植物对氮的吸收占主导地位[27]。王迪等[15]研究认为:水生植物密度可以提升沟渠对氮素的去除能力,但是较短的水力停留时间会导致氮素去除率的降低,侧面说明本研究所调查沟渠的水力停留时间较短。

    本研究中6条生态沟渠均设置有相当数量的反硝化除磷装置。本研究发现:反硝化除磷装置数量与总氮、铵态氮、总磷和化学需氧量去除负荷呈较好的正相关关系。反硝化除磷装置是浙江省推广生态沟渠的关键技术环节。沟渠中的反硝化除磷装置通过形成微生物膜,起到减缓水流、延长水力停留时间的作用,使得流水携带的颗粒物质和养分等得以沉淀,提高对污染物的拦截效果,促进沟渠内植物及附着其根系的微生物对氮磷的吸收 [24, 34]

    本研究连续监测了在浙江省推广应用的生态沟渠的水质。监测结果表明:生态沟渠对总氮、铵态氮、总磷、化学需氧量的平均去除率分别为18.31%、38.74%、13.49%、23.97%。不同沟渠各污染物的进水负荷以及沟渠对其去除率均存在较大差异,其中污染物进水负荷与去除负荷相关性较强,采用生态边坡、反硝化除磷装置对总氮、铵态氮去除作用强,增大植物密度与设置反硝化除磷装置对总磷、化学需氧量去除作用较强。在后续浙江省生态沟渠建设中,应加大水质样本监测力度,进一步增加生态沟渠各指标与污染物去除效果的相关性分析,为后续生态沟渠推广应用提供数据支持。

  • 图  1  SnUFO2*系统发育树分析及Motif分析

    Figure  1  SnUFO2* phylogenetic tree analysis and Motif analysis

    图  2  龙葵SnUFO2*氨基酸序列比对

    Figure  2  Amino acid sequence alignment of S. nigrum SnUFO2*

    图  3  野生型龙葵中SnUFO2*不同组织部位表达量分析

    Figure  3  Expression analysis of SnUFO2* in different tissues of wild-type S. nigrum

    图  4  35S::SnUFO2* 转基因植株表型图

    Figure  4  Phenotypic map of 35S::SnUFO2* transgenic plants

    图  5  野生型及35S::SnUFO2*转基因株系花苞石蜡切片

    Figure  5  Paraffin sections of flower buds of wild-type and 35S::SnUFO2 * transgenic lines

    表  1  基因克隆及RT-qPCR引物列表

    Table  1.   Gene cloning and RT-qPCR primer list

    引物名称上游引物(5′→3′)下游引物(5′→3′)
    SnUFO2 AAGGATCCATGGAAGCTTTTCATCATCCC AAGAGCTCTCAGTTGAAAGACTGAAAGGG
    qSnUFO2 GCTGTGGCTGGTGATAACTTG CGGCATACGGGCAATTTCTT
    SnAPRT GAGATGCATGTAGGTGCTGTGCAA GGCCCTTCAATTCTGGCAACTCAA
      说明:下划线处为酶切位点,分别为BamHⅠ和Sac
    下载: 导出CSV
  • [1] CHO L H, YOON J, AN G. The control of flowering time by environmental factors [J]. The Plant Journal, 2017, 90(4): 708 − 719.
    [2] 杨传平, 刘桂丰, 魏志刚. 高等植物成花基因的研究[J]. 遗传, 2002, 24(3): 379 − 384.

    YANG Chuanping, LIU Guifeng, WEI Zhigang. Studies of flowering genes of plants [J]. Hereditas, 2002, 24(3): 379 − 384.
    [3] ABD-HAMID N A, AHMAD-FAUZI M I, ZAINAL Z, et al. Diverse and dynamic roles of F-box proteins in plant biology[J/OL]. Planta, 2020, 251(3): 68[2022-01-20]. doi: 10.1007/s00425-020-03356-8.
    [4] XU Guixia, MA Hong, NEI M, et al. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification [J]. Proceedings of the National Academy of Sciences, 2009, 106(3): 835 − 840.
    [5] MO Fulei, ZHANG Nian, QIU Youwen, et al. Molecular characterization, gene evolution and expression analysis of the F-box gene family in tomato (Solanum lycopersicum)[J/OL]. Genes, 2021, 12(3): 417[2022-01-20]. doi: 10.3390/genes12030417.
    [6] ZHANG Shulin, TIAN Zailong, LI Haipeng, et al. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. [J/OL]. BMC Genomics, 2019, 20(1): 993[2022-01-20]. doi: 10.1186/s12864-019-6280-2.
    [7] LEVIN J Z, MEYEROWITZ E M. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development [J]. Plant Cell, 1995, 7(5): 529 − 548.
    [8] LEE I, WOLFE D S, NILSSON O, et al. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS [J]. Current Biology, 1997, 7(2): 95 − 104.
    [9] SAMACH A, KLENZ J E, KOHALMI S E, et al. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem[J]. The Plant Journal, 1999, 20(4): 433 − 445.
    [10] RISSEEUW E, VENGLAT P, XIANG Daoquan, et al. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems[J/OL]. PLoS One, 2013, 8(12): e83807[2022-09-23]. doi: 10.1371/journal.pone.0083807.
    [11] ZHAO Dazhong, YU Qilu, CHEN Min, et al. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis[J]. Development, 2001, 128(14): 2735 − 2746.
    [12] CHAE E, TAN Q K, HILL T A, et al. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development [J]. Development, 2008, 135(7): 1235 − 1245.
    [13] DURFEE T, ROE J L, SESSIONS R A, et al. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2003, 100(14): 8571 − 8576.
    [14] ZHANG Shulu, SANDAL N, POLOWICK P L, et al. PROLIFERATING FLORAL ORGANS (PFO), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein[J]. The Plant Journal, 2003, 33(4): 607 − 619.
    [15] TAYLOR S, HOFER J, MURFET I. STAMINA PISTILLOIDA, the pea ortholog of FIM and UFO, is required for normal development of flowers, inflorescences, and leaves[J]. Plant Cell, 2001, 13(1): 31 − 46.
    [16] 孙皎, 倪彦博, 冯舒, 等. 不同栽培条件对龙葵生物碱积累的影响[J]. 北方园艺, 2017(13): 157 − 160.

    SUN Jiao, NI Yanbo, FENG Shu, et al. Effect of different cultivation conditions on accumulation of alkaloids of Solalum nigrum [J]. Northern Horticutlure, 2017(13): 157 − 160.
    [17] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, 33(7): 1870 − 1874.
    [18] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202.
    [19] 祁宏英, 姚美玲, 徐洪国. 龙葵花芽分化形态解剖学研究[J]. 北方园艺, 2017(9): 135 − 138.

    QI Hongying, YAO Meiling, XU Hongguo. Anatomical and morphological characteristics of development of flower bud differentiation in Solanum nigrum L. [J]. Northern Horticulture, 2017(9): 135 − 138.
    [20] SOUER E, REBOCHO A B, BLIEK M, et al. Patterning of inflorescences and flowers by the F-box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of Petunia [J]. Plant Cell, 2008, 20(8): 2033 − 2048.
    [21] NI Weimin, XIE Daoxin, HOBBIE L, et al. Regulation of flower development in Arabidopsis by SCF complexes [J]. Plant Physiology, 2004, 134(4): 1574 − 1585.
    [22] CHEN Yue, WEN Haifan, PAN Jian, et al. CsUFO is involved in the formation of flowers and tendrils in cucumber [J]. Theoretical and Applied Genetics, 2021, 134(7): 2141 − 2150.
    [23] SIMON R, CARPENTER R, DOYLE S, et al. Fimbriata controls flower development by mediating between meristem and organ identity genes [J]. Cell, 1994, 78(1): 99 − 107.
  • [1] 郑正权, 赵梦婧, 高燕会.  换锦花LsMYB7基因克隆与功能研究 . 浙江农林大学学报, 2024, 41(3): 586-596. doi: 10.11833/j.issn.2095-0756.20230368
    [2] 尚林雪, 王群, 张国哲, 赵雨, 顾翠花.  紫薇LiCMB1基因的克隆及表达特性分析 . 浙江农林大学学报, 2023, 40(2): 330-337. doi: 10.11833/j.issn.2095-0756.20220333
    [3] 郭雅琨, 赵岩秋, 杜娟, 卢孟柱.  DNA拓扑异构酶基因PagTOP2b对银腺杨‘84K’生长发育的影响 . 浙江农林大学学报, 2022, 39(6): 1155-1162. doi: 10.11833/j.issn.2095-0756.20220372
    [4] 郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰.  欧洲千里光SvAPETALA1基因的克隆及功能分析 . 浙江农林大学学报, 2022, 39(4): 821-829. doi: 10.11833/j.issn.2095-0756.20210651
    [5] 帅敏敏, 张启香, 黄有军.  光周期途径成花关键基因CONSTANS的进化机制 . 浙江农林大学学报, 2019, 36(1): 7-13. doi: 10.11833/j.issn.2095-0756.2019.01.002
    [6] 胡肖肖, 段玉侠, 金荷仙, 唐宇力, 庄晓林.  4个杜鹃花品种的耐荫性 . 浙江农林大学学报, 2018, 35(1): 88-95. doi: 10.11833/j.issn.2095-0756.2018.01.012
    [7] 程占超, 侯丹, 马艳军, 高健.  毛竹生长素反应因子基因的生物信息学分析及差异表达 . 浙江农林大学学报, 2017, 34(4): 574-580. doi: 10.11833/j.issn.2095-0756.2017.04.002
    [8] 赵传慧, 周厚君, 童再康, 林二培, 黄华宏, 牛明月.  光皮桦成花相关MADS-box基因BlMADS1的克隆与表达 . 浙江农林大学学报, 2015, 32(2): 221-228. doi: 10.11833/j.issn.2095-0756.2015.02.008
    [9] 侯传明, 郑雅文, 王正加, 徐英武.  山核桃MADS-like基因的克隆与分析 . 浙江农林大学学报, 2015, 32(1): 33-39. doi: 10.11833/j.issn.2095-0756.2015.01.005
    [10] 杜明利, 高群英, 高岩, 张汝民.  外来物种大花金鸡菊不同器官成分的气质联用(GC-MS)分析 . 浙江农林大学学报, 2012, 29(2): 313-318. doi: 10.11833/j.issn.2095-0756.2012.02.024
    [11] 田敏, 龚茂江, 徐小雁, 王彩霞.  兰科植物花发育的基因调控研究进展 . 浙江农林大学学报, 2011, 28(3): 494-499. doi: 10.11833/j.issn.2095-0756.2011.03.023
    [12] 裴海燕, 方伟, 林新春, 桂仁意, 黄丽春.  花叶花秆绿竹的试管快繁研究 . 浙江农林大学学报, 2010, 27(1): 149-154. doi: 10.11833/j.issn.2095-0756.2010.01.024
    [13] 李玉发, 房伟民, 陈发棣, 石常磊.  日光温室多头切花菊品质模拟 . 浙江农林大学学报, 2010, 27(3): 404-409. doi: 10.11833/j.issn.2095-0756.2010.03.014
    [14] 曾燕如, 黎章矩.  油茶花期气候对花后坐果的影响 . 浙江农林大学学报, 2010, 27(3): 323-328. doi: 10.11833/j.issn.2095-0756.2010.03.001
    [15] 黄有军, 周丽, 陈芳芳, 周秦, 黄坚钦, 黄敏仁, 王明庥.  山核桃成花过程基因表达的cDNA-AFLP分析 . 浙江农林大学学报, 2009, 26(3): 297-301.
    [16] 陈懿涵, 桂仁意, 林新春, 杨海芸, 黄丽春.  花秆绿竹试管快速繁殖 . 浙江农林大学学报, 2008, 25(3): 397-400.
    [17] 姜贝贝, 房伟民, 陈发棣, 顾俊杰.  氮磷钾配比对切花菊‘神马’生长发育的影响 . 浙江农林大学学报, 2008, 25(6): 692-697.
    [18] 周媛, 姚崇怀, 王彩云.  桂花切花品种筛选 . 浙江农林大学学报, 2006, 23(6): 660-663.
    [19] 金则新, 李钧敏.  七子花总黄酮含量及成分分析 . 浙江农林大学学报, 2003, 20(4): 357-359.
    [20] 管康林, 严逸伦, 郑钢.  杉木发育生理研究 . 浙江农林大学学报, 1994, 11(2): 105-115.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220217

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/38

图(5) / 表(1)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  160
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-09-23
  • 录用日期:  2022-10-10
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-01-17

龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响

doi: 10.11833/j.issn.2095-0756.20220217
    基金项目:  宁夏回族自治区重点研发计划重大项目(2019BFG02011)
    作者简介:

    周佳圆(ORCID: 0000-0001-9291-4659),从事花器官发育研究。E-mail: 357611773@qq.com

    通信作者: 朴春兰(ORCID: 0000-0001-9593-8023),助理研究员,从事生物技术和分子育种研究。E-mail: chunlan_piao@zafu.edu.cn
  • 中图分类号: Q75;S641

摘要:   目的  UNUSUAL FLORAL ORGANS (UFO)基因属于F-box基因家族,是重要的花器官特征基因。UFO基因N端能与Skp1类基因结合形成Skp1-Cullin1-F-box (SCF)复合体,参与泛素化过程并降解C端结合的靶蛋白。为了探究C端序列对龙葵Solanum nigrum花发育的影响,本研究克隆了一个C末端缺失的SnUFO2*基因并构建其表达载体转入龙葵植株中,观察转基因龙葵植株花器官变化,从而深入探讨UFO基因完整的C末端序列在龙葵花发育中的重要作用。  方法  利用生物信息学分析软件对SnUFO2*和全长的SnUFO2比较分析,采用实时荧光定量PCR(RT-qPCR)对SnUFO2*基因在野生型龙葵植株根、茎、叶、花苞中进行表达分析;通过超表达载体的构建、转基因植株表型的观察及石蜡切片技术验证SnUFO2基因的功能。  结果  SnUFO2*基因ORF长度为1302 bp,编码433个氨基酸,与龙葵中完整的SnUFO2基因相比,其C末端缺失了23个氨基酸。RT-qPCR结果显示:SnUFO2*基因在野生型植株的花苞中特异性表达。对转基因植株的表型观察发现:35S:: SnUFO2*转基因龙葵植株的花瓣向萼片转化。石蜡切片分析发现:转基因龙葵植株雄蕊缺失,雌蕊处有不确定的分生组织产生。  结论  35S:: SnUFO2*转基因龙葵植株花瓣、雄蕊和心皮发育异常。C端结构缺失可能降低了SnUFO2蛋白特异性识别靶蛋白的能力,说明该基因完整的C末端对龙葵花器官发育至关重要。图5表1参23

English Abstract

周佳圆, 钟玉, 努尔阿斯娅·伊马木, 等. 龙葵UNUSUAL FLORAL ORGANS类SnUFO2基因C端序列的保守性对花发育的影响[J]. 浙江农林大学学报, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217
引用本文: 周佳圆, 钟玉, 努尔阿斯娅·伊马木, 等. 龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响[J]. 浙江农林大学学报, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217
ZHAO Chenyan, YAO Lijian, YANG Zidong, et al. Automatic navigation of production platform in greenhouse based on wireless positioning[J]. Journal of Zhejiang A&F University, 2020, 37(3): 578-586. DOI: 10.11833/j.issn.2095-0756.20190364
Citation: ZHOU Jiayuan, ZHONG Yu, Nurasiya Imam, et al. Effect of conservation of C-terminal sequence of Solanum nigrum UNUSUAL FLORAL ORGANS family SnUFO2 on flower development[J]. Journal of Zhejiang A&F University, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217
  • 花发育是植物完成生命周期的关键过程。植物从营养生长到生殖生长的转变是对环境因素和遗传因素的双重响应,为了确保子代的正常繁殖,高等植物必须在最适的环境条件下开花[1]。花发育分为成花诱导、成花启动及花器官发育共3个阶段[1]。植物通过外界环境和内源激素变化感受到开花信号,刺激茎顶端分生组织(shoot apical meristem,SAM)转变为花序分生组织 (inflorescence meristem,IM),随后花序分生组织在花分生组织特征基因(floral meristem identity gene)和花器官特征基因 (floral organ identity gene)的作用下形成一朵完整的花[2]。F-box蛋白是植物中最大的蛋白质超家族之一,N端存在F-box结构域,该结构域由40~60个氨基酸残基组成,能和Skp1、Cullinl (CUL1)/Cdc53和Rbxl/Rocl/Hrtl结合形成Skp1-Cullin1-F-box (SCF)复合体参与泛素化过程;C端为底物结合区域,存在不同的结构域,包括Kelch、LRR、FBD结构域等,F-box蛋白的C端决定了底物识别的特异性,根据结合底物的不同,F-box蛋白发挥不同的作用[3-5]。可见,F-box蛋白形成的SCF复合体能参与植物生命周期的各个方面,如种子萌发、花发育、自交不亲和性、生物胁迫和非生物胁迫以及光形态建成等[3, 6]

    UNUSUAL FLORAL ORGANS (UFO)基因是与花发育相关的F-box基因,是重要的花分生组织特征基因和花器官特征基因,依赖于LEAFY (LFY)基因发挥作用,并与LFY基因共同促进ABC模型中B类基因的表达,从而调控花瓣和雄蕊的发育[7-12]。除了LFY基因,UFO还能与ASK1结合形成 SCFUFO复合体对花瓣和雄蕊发育造成影响,ufoask1突变体都表现为花瓣和雄蕊发育不良[11]。在拟南芥Arabidopsis thalianaUFO基因C末端区域是花瓣发育所必需的,而在百脉根Lotus japonicus和豌豆Pisum sativum中,UFO同源基因PROLIFERATING FLORAL ORGANS (PFO)和STAMINA PISTILLOIDA(STP)基因C端序列的缺失不仅对花瓣发育有影响,还对花分生组织确定性造成影响,形成次生花序[13-15]

    龙葵Solanum nigrum是茄科Solanaceae茄属Solanum的1年生草本植物,花序结构为聚伞花序[16]。目前对茄科的研究集中在番茄S. lycopersicum等经济作物上,在其他茄科植物中关于花发育的研究较为欠缺。龙葵生长周期短、植株矮小、遗传转化效率高且便于实验室栽培,是理想的研究材料。通过对龙葵花发育的研究可以丰富茄科植物花发育的研究内容,探讨UFO基因在不同物种的调控机制,为UFO基因在茄科花发育的调控方面提供理论支持。

    • 以野生型植株及其转基因植株为材料,在室温25 ℃及光周期16 h/8 h的条件下栽培,备用。

    • 根据龙葵转录组数据筛选出SnUFO2基因序列,设计上下游引物并利用在线网站NEBcutter (http://tools.neb.com/NEBcutter/index.php3)添加酶切位点BamHⅠ和SacⅠ以及保护碱基(表1)。引物序列送杭州有康生物科技有限公司合成。

      表 1  基因克隆及RT-qPCR引物列表

      Table 1.  Gene cloning and RT-qPCR primer list

      引物名称上游引物(5′→3′)下游引物(5′→3′)
      SnUFO2 AAGGATCCATGGAAGCTTTTCATCATCCC AAGAGCTCTCAGTTGAAAGACTGAAAGGG
      qSnUFO2 GCTGTGGCTGGTGATAACTTG CGGCATACGGGCAATTTCTT
      SnAPRT GAGATGCATGTAGGTGCTGTGCAA GGCCCTTCAATTCTGGCAACTCAA
        说明:下划线处为酶切位点,分别为BamHⅠ和Sac

      利用RNA提取试剂盒(普洛麦格生物产品有限公司,上海)提取盛花期野生型龙葵植株相同生长时期花苞的RNA,使用EasyScript®First-Strand cDNA Synthesis SuperMix反转录试剂盒(全式金生物技术有限公司,北京)获得cDNA,以其为模板克隆SnUFO2基因。PCR反应程序:97 ℃预变性3 min;95 ℃变性40 s,60 ℃退火40 s,72 ℃延伸1 min,35个循环;72 ℃总延伸10 min。PCR产物进行琼脂糖凝胶电泳检测片段大小,并纯化回收目的片段。目的片段连接到pEASY Blunt simple (全式金生物技术有限公司,北京)载体后,转入大肠埃希菌Escherichia coli DH5α 感受态中(唯地生物技术有限公司,上海)。通过菌落PCR筛选阳性单菌落,摇菌送杭州擎科生物有限公司测序。测序返回数据拼接后与转录组测序序列进行比对,获得2条目的基因序列。

    • 通过在线网站Pfam (http://pfam.xfam.org/)蛋白质家族数据库进行结构域分析。将克隆得到的2条SnUFO2序列在美国国家生物信息中心(NCBI)上通过Blastx进行同源基因检索。利用MEGA7[17]进行氨基酸序列比对和系统进化树构建。进化树构建采用邻接法,Bootstrap检验1 000次。将筛选到的不同物种中UFO基因和龙葵中2条SnUFO2序列输入在线网站MEME Suite (https://meme-suite.org/meme/),选择合适的Motif数量后导出结果,并用TBtools[18]软件美化。

    • 于野生型龙葵植株盛花期取样,分别采集植株不同部位,包括根、茎、叶和花苞并提取RNA,以反转录后的cDNA为模板,进行实时荧光定量PCR反应。内参基因为龙葵的APRT基因,SnAPRTSnUFO2*定量引物如表1所示。根据RT-qPCR试剂盒TransStart® Tip Green qPCR SuperMix(全式金生物技术有限公司,北京)说明书设置反应体系:cDNA 1 μL ,上下游引物(10 μmol·L−1)各0.2 μL,2×TransStart® Tip Green qPCR SuperMix 5 μL,双蒸水补足至10 μL。反应条件:95 ℃预变性30 s;95 ℃变性5 s,60 ℃退火15 s,72 ℃延伸10 s,共反应45个循环。数据计算方法采用$2^{ - \Delta \Delta C_t}$法计算相对表达量。

    • 利用BamHⅠ和SacⅠ(赛默飞世尔科技公司,上海)将目的片段和pBI121载体进行双酶切,纯化回收后在16 ℃下过夜连接,并转入大肠埃希菌感受态。菌落经PCR验证后,提取阳性重组质粒,通过单双酶切验证超表达载体。

    • SDS法提取转化苗基因组DNA,以野生型龙葵为对照,通过PCR检测阳性转基因植株。通过尼康相机(COOLPIX P7100)拍照记录转基因植株和花序表型变化,Leica体视显微镜(M165FC)拍照记录转基因植株花表型变化。

    • 采用海氏铁矾-苏木精染色法[19],在野生型与转基因植株盛花期取2.5 mm左右的花苞置于FAA固定液中固定,依次经50%、60%、70%、80%、90%、95%、100%体积分数的乙醇脱水,再依次经体积梯度比1∶2、1∶1、2∶1的二甲苯无水乙醇混合液和纯二甲苯透明后,浸蜡3 d,使石蜡缓慢进入材料中,将材料包埋至蜡块中。使用Leica转轮式切片机(RM2235)切片,用苏木精染色后封片。

    • 以野生型龙葵盛花期花苞的cDNA为模板,克隆得到2条SnUFO2序列,都含有F-box结构域。一条序列与转录组测序结果一致,为龙葵中SnUFO2基因,编码456个氨基酸;另一条序列为短截版的SnUFO2基因,该基因在1 294~1 295 bp处有1个碱基G的插入,导致翻译提前终止,编码433个氨基酸,记为SnUFO2*。将SnUFO2*基因、全长SnUFO2基因和不同物种中UFO的同源基因构建系统进化树。SnUFO2*、SnUFO2基因和番茄、辣椒Capsicum annuum和矮牵牛Petunia × hybrida中的UFO基因在同一进化分支,同源关系较近,而与水稻Oryza sativa,拟南芥中的UFO基因同源关系较远(图1A)。

      图  1  SnUFO2*系统发育树分析及Motif分析

      Figure 1.  SnUFO2* phylogenetic tree analysis and Motif analysis

      利用MEME软件对SnUFO2*和SnUFO2蛋白进行Motif预测发现,这些蛋白相似性极高,预测到高度相似的Motif可能行使UFO蛋白最保守的功能(图1B)。SnUFO2*与其他UFO蛋白相比,Motif 8的缺失可能导致该基因的功能与其他物种中UFO基因的功能存在差异。通过氨基酸序列比对发现:SnUFO2*C末端比SnUFO2基因少了23个氨基酸,这段序列在茄科物种中高度保守,可能影响龙葵正常的花发育进程(图2)。

      图  2  龙葵SnUFO2*氨基酸序列比对

      Figure 2.  Amino acid sequence alignment of S. nigrum SnUFO2*

    • UFO基因是重要的花器官特征基因,在花发育初期发挥作用。为了探究SnUFO2*基因在龙葵营养器官及生殖器官中的表达水平,提取盛花期的根、茎、叶和花苞进行RT-qPCR分析。以龙葵APRT为内参基因,RT-qPCR结果表明:SnUFO2*在根、茎、叶中的表达量低,在花苞中相对表达量较高,推测SnUFO2*基因可能主要参与花器官发育(图3)。

      图  3  野生型龙葵中SnUFO2*不同组织部位表达量分析

      Figure 3.  Expression analysis of SnUFO2* in different tissues of wild-type S. nigrum

    • 为探究龙葵C末端缺失的SnUFO2*基因对龙葵花发育的影响,构建了SnUFO2*的表达载体,将其转入龙葵植株中,经含有卡那霉素抗性的培养基筛选后,获得40个T0代独立抗性株系,经PCR鉴定共获得31个转基因阳性株系。选择表型明显的不同株系转基因植株进行分析,转基因植株的根、茎和叶等未观察到明显变化(图4A),而花器官发育异常:野生型龙葵花盛开后,花瓣呈白色,花瓣基部相连,雄蕊紧靠雌蕊生长于花中心(图4C);弱表型转基因SnUFO2-30株系的花部分花瓣中部形成绿色条纹状组织,偶尔形成萼片状花瓣,花瓣基部裂口变大,雄蕊花药未紧靠雌蕊,杂乱分布于四周(图4B和C);强表型SnUFO2-10株系的花瓣完全萼片化,这类花最终不能形成正常的果实和种子(图4A~C)。

      图  4  35S::SnUFO2* 转基因植株表型图

      Figure 4.  Phenotypic map of 35S::SnUFO2* transgenic plants

    • 为了进一步确定转基因植株花内部结构及其细胞变化,通过对野生型和SnUFO2-10转基因植株的花苞进行石蜡切片表明:野生型株系的花苞由外到内依次存在萼片、花瓣、雄蕊和雌蕊;SnUFO2-10株系花苞生成萼片状花瓣,雄蕊缺失,心皮发育异常,没有花柱和柱头产生,偶尔在发育中的心皮两侧观察到胚珠的产生(图5)。

      图  5  野生型及35S::SnUFO2*转基因株系花苞石蜡切片

      Figure 5.  Paraffin sections of flower buds of wild-type and 35S::SnUFO2 * transgenic lines

    • 本研究克隆了1条短截版的SnUFO2基因,探究C端序列的完整性对龙葵花发育的影响。生物信息学分析发现:SnUFO2*基因属于F-box基因家族,且C末端缺失的序列可能具有保守的功能。F-box蛋白家族通常以SCF复合体的形式参与植物各项生命活动。过往研究认为F-box蛋白的N端与SKP1类基因结合,形成SCF复合体,而C端与靶蛋白结合,通过泛素链引导至26S蛋白酶体从而降解结合蛋白[3]。基于C端序列在F-box基因中的重要作用推测,SnUFO2* C末端23个保守的氨基酸缺失可能会影响泛素化过程。

      UFO及其同源基因已被证明在植物花发育过程中发挥作用[7-15]。通过RT-qPCR分析发现:SnUFO2*基因在龙葵的根、茎和叶中表达水平较低,而在花苞中表达量较高,推测该基因和其他UFO基因一样在花发育过程中发挥作用。于是构建SnUFO2*超表达载体并将其转入龙葵中。在矮牵牛中过表达DOUBLE TOP(DOT)基因会导致植株矮化,形成一朵单花[20]。然而形态学观察发现:35S::SnUFO2*转基因植株未出现矮化表型,根、茎和叶也无明显变化,但是花器官发生明显变化,萼片内侧的花瓣、雄蕊和雌蕊都被萼片状的器官代替。这与C末端缺失的UFO基因突变体表型相似,在拟南芥ufo-2突变体中,UFO基因翻译提前终止,编码262个氨基酸,产生了强烈的表型变化:生成萼片状花瓣、花丝及心皮状结构[21]。在豌豆突变体,stp-4中,STP基因只编码了252个氨基酸,导致豌豆花缺少花瓣和雄蕊,且有次生花产生[15]。黄瓜Cucumis sativus ufo突变体中,其花瓣的位置产生了叶状器官,雄蕊发育不正常[22]。以上研究表明:UFO基因的C末端对该基因的功能具有重要作用,虽然不同C末端缺失突变体表型不完全相同,但这可能与该基因短截的位点不同有关,也可能与物种特性有关。

      花发育是一个受多基因调控的复杂生理过程,需要相关花分生组织特征基因和花器官特征基因的共同作用。SnUFO2-10花苞的石蜡切片结果显示:在4轮花器官形成过程中,除最外轮萼片部分形成正常外,花瓣萼片化,花分生组织不确定导致内轮不断产生增殖的萼片状器官。缺少C末端的 ufo突变体的共同特征为花瓣和雄蕊的缺失或是畸形发育,例如拟南芥ufo-2花瓣萼片化及雄蕊数量减少,豌豆stp突变体表现为花瓣向萼片转化[15, 21]。其次是心皮发育异常或花分生组织的不确定性,例如金鱼草fimbriata620 (fim620)突变体产生的侧生花及花的萼片数目不确定和百脉根 pfo突变体产生的不断增殖的萼片状器官[14, 23]。这些表型的出现与花器官特征基因中的B类和C类基因有关,因此推测UFO基因C端序列的缺失对该基因的功能造成影响,从而直接或间接影响B类和C类基因的正常表达。过往研究表明:SCFUFO可能促进LFY基因的转录活性,且UFO基因能与LFY共同促进B、C类基因的表达[11-12, 20-21]。我们认为:SnUFO2*可能通过SCF复合体的形式,影响LFY基因的表达进而促进相关花同源异型基因的表达,然而SnUFO2*基因C末端序列的缺失影响了SCF复合体的功能,从而影响4轮花器官的正常发育。转基因植株形成的萼片状花与lfy突变体表型相似,间接证明了这种猜想[11]

      综上所述,不仅是UFO基因的F-box结构域对其功能具有重要作用,C端序列的完整性对基因功能也极其重要。之后的研究中,观察全长SnUFO2转基因植株表型的变化,尤其是花器官发育变化,对深入探究UFO基因的功能是必要的。

参考文献 (23)

目录

/

返回文章
返回