-
热固性树脂浸渍纸高压装饰层积板(high-pressure decorative laminates made from thermosetting resins impregnated sheets, HPL)是由不同树脂浸渍的表层纸、装饰纸和多层牛皮纸层积后在高压下热压而成的一种装饰材料[1]。HPL的层压复合结构赋予其优异的耐热、耐磨、耐化学等表面性能,当前HPL广泛应用于实验室、医院和商业场所等[2]。但是由于三聚氰胺甲醛(MF)树脂具有硬而脆、稳定性差的特点[3],使得HPL的韧性较差。在 HPL芯层加入纳米纤维或使用化学药剂改性浸渍树脂可有效改善HPL的脆性问题,同时赋予HPL机械强度、水解稳定性、耐火性等功能[4−5]。JI等[6]以牛皮纸作为HPL的底层材料,在2层牛皮纸中间加入无纺布醋酸纤维素(CA)纳米纤维垫,提升HPL的弯曲性能。当加入5层CA纳米纤维垫时,HPL的断裂伸长率为 27.9%,屈服强度为40.8 MPa,分别比原始HPL提高了4.4和5.9倍。但是使用静电纺丝法制备 CA 纳米纤维存在耗时长和成本高等问题。
HPL的外观和质感主要由表层装饰纸决定,近年来,数码打印和同步对纹技术可以使 HPL呈现不同的纹理、图案和颜色[7],但仍缺乏木质材料特有的自然纹理和亲和触感。重组装饰薄木是利用普通速生材生产的一种饰面材料,不仅具有天然木材的纹理和质感,而且原材料来源广泛[8]。以重组装饰薄木为基本单元,借鉴 HPL的层压复合结构,有望制备出一种性能优异的木质复合装饰板材,在轨道交通、室内装修、公共场所等领域具有广阔的应用前景。
胶黏剂和胶接技术在木质材料复合中发挥着重要作用,除了保证胶合质量外,环保性能、胶接效率和生产能耗均是工业界和学术界关注的重点。近年来,聚乙烯(PE)薄膜以其环境友好性、良好的柔韧性、耐水性和加工性等优势,成为传统的“三醛胶”木质复合材料的有效替代产品,广泛用于木质材料的胶接[9−10]。 PE薄膜具有受热软化、冷却固化的特性[11],其对木质材料的胶合是在木材表面熔融软化、流展、渗透和冷却固化的过程[12−13]。适宜的工艺条件下,熔融的热塑性树脂大分子在木材多孔性结构中的填充及其对损坏细胞的修复作用[14],能够赋予热塑性树脂复合材料优良的力学强度和耐水性能[15−16]。为了制备一种无醛、性能优异的装饰板,本研究提出使用PE薄膜对重组装饰薄木进行胶合以制备薄木-PE复合层积装饰板(wooden decorative laminates-sheets made from polyethylene film, WDL)。通过响应面方法分析热压温度、热压时间、热压压力对装饰板浸渍剥离性能和顺纹抗拉强度的影响,模拟优化出WDL的最佳制备条件,为推进其应用提供参考依据。
-
重组装饰薄木:椴木科技木,购于德清洛舍佳朋木皮厂,规格为200 mm×200 mm,厚度为0.2 mm,含水率为6%~12%;PE薄膜:购于沭阳登农商贸有限公司,厚度为0.1 mm,密度为0.91 g·cm−3。
-
采取顺纹的方式将重组装饰薄木和 PE 薄膜进行组坯并热压复合,制备5层结构的薄木-PE复合层积装饰板(图1)。
-
以热压温度、热压时间、热压压力3个因素为自变量,以浸渍剥离长度(Y1)和顺纹抗拉强度(Y2)为响应值,选用3因素3水平进行响应面试验设计(表1)。应用Design Expert 13,建立数学回归模型,优化WDL的热压工艺。为了避免冷却过程中PE薄膜收缩产生的内应力,热压结束后对WDL进行二次冷压定型处理,定型时间为4 min,定型压力为1 MPa。
表 1 试验因素和水平
Table 1. Level of experimental factors
水平 因素 热压温度(A)/℃ 热压时间(B)/s 热压压力(C)/MPa $ - $1 130 30 0.50 0 155 90 1.25 $ + $1 180 150 2.00 -
根据响应面试验结果,得出最优的热压工艺参数,对最优工艺条件下的WDL进行浸渍剥离性能和顺纹抗拉强度的测试,选取测试的数据与响应面模型计算的预测值对比,以验证其可靠性。本研究利用Design Expert 13 进行数据分析和模型模拟,利用Origin 2021绘图。
-
浸渍剥离性能:根据国家标准GB/T 17657—2022《人造板及饰面人造板理化性能试验方法》中浸渍剥离性能测试要求,取尺寸为75 mm×75 mm的试件,将其放在(63±3) ℃热水中浸渍3 h,然后放置于(63±3) ℃的恒温干燥箱中干燥3 h。观察并测量试件每个胶层各边剥离的长度,结果精确至1 mm。测试结果为6个试件的平均值。
顺纹抗拉强度:根据国家标准GB/T 1040.2—2022《塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》进行制样,在万能力学试验机上对薄木和 WDL 试样进行载荷-位移和强度的测试,试验速度为1 mm·min−1。测试结果为6个试件的平均值。
PE薄膜拉伸强度:根据国家标准GB/T 1040.3—2006《塑料 拉伸性能的测定 第3部分:薄膜和薄片的试验条件》中5型试样的形状和尺寸进行制样,在万能力学试验机上进行测试,试验速度为5 mm·min−1。测试结果为6个试件的平均值。
胶接界面形貌:将试样制备成尺寸为 7 mm×3 mm×1 mm (L×W×T)的样块,把样块导管侧黏附在铜片上,进行喷金处理后,使用环境扫描电子显微镜(FEI Quanta 200)观察重组装饰薄木和 PE 薄膜的胶接界面形貌。
-
以浸渍剥离长度和顺纹抗拉强度为指标,利用响应面法Box-Behnken模型试验考察热压温度、热压时间和热压压力对 WDL 性能的影响。响应面试验方案及结果见表2。
表 2 响应面试验设计及结果
Table 2. Design and results of response surface test
编号 热压温度
(A)/℃热压时间
(B)/s热压压力
(C)/MPa浸渍剥离长度
(Y1)/mm顺纹抗拉强度
(Y2)/MPa编号 热压温度
(A)/℃热压时间
(B)/s热压压力
(C)/MPa浸渍剥离长度
(Y1)/mm顺纹抗拉强度
(Y2)/MPa1 −1 −1 0 33 34.5 10 0 1 −1 0 43.0 2 1 −1 0 1 36.9 11 0 −1 1 8 43.3 3 −1 1 0 11 41.7 12 0 1 1 8 40.5 4 1 1 0 0 33.6 13 0 0 0 3 40.4 5 −1 0 −1 26 38.4 14 0 0 0 2 44.0 6 1 0 −1 0 37.7 15 0 0 0 6 44.2 7 −1 0 1 25 40.8 16 0 0 0 3 42.0 8 1 0 1 0 33.2 17 0 0 0 1 39.5 9 0 −1 −1 25 40.7 以表2的结果进行响应面回归模型的方差分析,结果见表3。浸渍剥离长度的拟合模型极显著(P<0.000 1),决定系数(R2)=98.45%,校正决定系数($R_{\mathrm{Adj}}^2 $)=96.45%,与R2接近,说明响应面分析方法对浸渍剥离性能的评估是有效的。顺纹抗拉强度的拟合模型显著(P<0.05),且失拟项不显著(P>0.05)。分析结果中R2=88.98%>85%,说明该模型对WDL的顺纹抗拉强度预测结果可信。因此本研究设计方法及模型可较好地反映热压温度、热压时间、热压压力与WDL浸渍剥离长度之间的关系。
表 3 浸渍剥离性能和顺纹抗拉强度方差分析
Table 3. Variance analysis of impregnation peel performance and endwise tensile strength
方差
来源浸渍剥离长度(Y1)/mm 顺纹抗拉强度(Y2)/MPa 平方和 均方 F P 平方和 均方 F P 模型 1 934.44 214.94 49.33 <0.000 1** 173.76 19.31 6.28 0.012 1* A 1 104.50 1 104.50 253.49 <0.000 1** 24.50 24.50 7.97 0.025 7* B 288.00 288.00 66.10 <0.000 1** 1.45 1.45 0.47 0.515 0 C 12.50 12.50 2.87 0.134 1 0.50 0.50 0.16 0.698 8 AB 110.25 110.25 25.30 0.001 5** 27.56 27.56 8.97 0.020 1* AC 0.25 0.25 0.06 0.817 6 11.90 11.90 3.87 0.089 8 BC 156.25 156.25 35.86 0.000 5** 6.50 6.50 2.12 0.189 2 A2 121.64 121.64 27.92 0.001 1** 98.94 98.94 32.19 0.000 8** B2 34.80 34.80 7.99 0.025 5* 1.04 1.04 0.40 0.5787 C2 80.59 80.59 18.50 0.003 6** 0.52 0.52 0.17 0.692 3 残差 30.50 4.36 21.52 3.07 失拟项 16.50 5.50 1.57 0.328 1 3.87 1.29 0.29 0.829 9 纯差 14.00 3.50 17.65 4.41 总离差 1 964.94 195.28 R2 0.984 5 0.889 8 RAdj 2 0.964 5 0.748 1 说明:**. 极显著(P<0.01);*. 显著(P<0.05)。$ R^2 $. 决定系数;$ R_{ {\mathrm{Adj} }}^2 $. 校正决定系数。 -
根据表3可知:热压温度和热压时间对WDL的浸渍剥离性能影响极显著(PA<0.000 1,PB<0.000 1)。不同热压温度和热压时间下WDL的浸渍剥离长度见图2,当热压时间固定,升高热压温度可显著降低试件的浸渍剥离长度,温度升高到180 ℃时,试件在Ⅱ类浸渍剥离试验(63 ℃水煮处理)中几乎观察不到胶层开裂的现象。一方面是由于高温可使熔融 PE均匀渗透到重组装饰薄木中,形成胶钉结构;另一方面是薄木在高温条件下进行了短时的热处理,表面极性基团降低,两者界面相容性增强。当热压温度不变,延长热压时间同样可以达到增强试件浸渍剥离性能的目的。当在130 ℃热压温度条件下,热压时间延长至150 s时WDL试件浸渍剥离长度降低到了11 mm,满足Ⅱ类浸渍剥离性能测试要求(≤25 mm)。这是因为低温条件下PE自身的熔融黏度高,流动性差,需要充足的时间才能在重组装饰薄木表面润湿和渗透。由图3A可以看出:热压温度和热压时间的3D响应曲面呈现为向下凹状,倾斜度较高,说明两者存在交互作用且极显著(PAB=0.001 5),因此在实际生产中可以根据实际条件选择合适的热压温度和时间范围。
图 2 不同热压温度和热压时间下WDL的浸渍剥离性能
Figure 2. Impregnation peeling performance of WDL under different hot-pressing temperature and time
热压压力可以促进木材与胶黏剂之间的结合,适当施加压力有助于良好胶合界面的形成。从图3B可以看出:当热压温度一定时,WDL 试件的浸渍剥离长度随热压压力的增加呈先下降后上升的趋势,且两者的响应面等高线图接近圆形,表明两者之间交互作用不显著(PAC>0.05)。这是由于压力的持续增大导致熔融PE分子间的作用力增加使树脂整体黏度增大,从而对WDL的浸渍剥离性能产生不利影响。热压温度在180 ℃时,不同压力条件下试件的浸渍剥离长度均趋近于0 mm,由此可见压力增大PE的黏度与温度降低其熔融黏度是一个相互抵冲的作用。当热压温度较适宜时,热压压力对PE黏度的增大占主导作用;但热压温度足够高时,这种反作用会逐步减弱,此时温度减小PE熔融黏度的作用大于压力的增稠作用。
由图3C可知:热压时间和热压压力交互作用的响应面图呈凹陷状,表明浸渍剥离长度在热压时间为90~120 s,热压压力为0.6~1.2 MPa时趋于0 mm。热压时间和热压压力的增加有利于熔融PE的渗透,从而有效提高WDL的耐水性,因此热压时间和热压压力对WDL浸渍剥离性能呈显著交互作用(PBC<0.01)。
-
根据顺纹抗拉强度方差分析结果可知,热压温度对 WDL的顺纹抗拉强度有显著影响(PA<0.05),且热压温度和热压时间对其顺纹抗拉强度有显著交互作用(PAB<0.05)。从图4可以看出:相同热压时间条件下,热压温度为155 ℃时WDL的顺纹抗拉强度最大。这是因为130 ℃时制备的WDL未充分结合重组装饰薄木和PE薄膜2种材料的强度优势,导致顺纹抗拉强度较低;而在180 ℃时,由于热压温度的升高和时间的延长,渗入薄木中的熔融PE量增大,导致胶层黏结线变薄。
图 4 不同热压温度下WDL的顺纹抗拉强度
Figure 4. Tensile strength along the grain of WDL under different hot-pressing temperatures
从图5A可以看出:PE受载荷后塑性变形较大,其拉伸强度为10 MPa (图6)。重组装饰薄木的顺纹抗拉载荷-位移曲线如图5B,其断裂伸长率较小,到达最大点时薄木受到最大承载力后发生突然断裂,原始顺纹抗拉强度达30.6 MPa (图6)。WDL的整体断裂趋势与重组装饰薄木相近(图5C),这是因为 PE的添加量较少,对WDL的断裂没有显著影响。层压复合之后的顺纹抗拉强度增加到了39.7 MPa (图6),这说明两者复合以后,重组装饰薄木起着承受载荷的主要作用,而 PE 既是胶黏材料,又可作为增强材料。
图 5 不同材料的顺纹抗拉载荷-位移曲线
Figure 5. Load-displacement curves for tensile strength along the grain of different materials
根据响应面试验结果可知:WDL的顺纹抗拉强度为33~46 MPa,能满足普通室内装修和家具贴面的要求,为了能够应用到轨道运输内饰领域,后续还需增强其强度。
-
根据 Design Expert 13对方差分析的结果得到 WDL 的浸渍剥离长度(Y1)、顺纹抗拉强度(Y2)为响应值的二次回归方程,分别如式(1)与式(2):
$$ \begin{split} {Y}_{1}=&379.20-3.47A-0.96B-35.68C+3.5\times {10}^{-3}AB+\\ &1.33\times {10}^{-2}AC+1.39\times {10}^{-2}BC+8.6\times\\ & {10}^{-3}{A}^{2}+7.99\times {10}^{-4}{B}^{2}+7.78{C}^{2} \text{;}\\[-1pt] \end{split} $$ (1) $$ \begin{split} {Y}_{2}=&-179.25+2.61A+0.34B+14.91C-1.75\times {10}^{-3}AB-9.2\times {10}^{-2}AC-2.83\times {10}^{-2}BC-7.76\times {10}^{-3}{A}^{2}-\\ &1.38\times {10}^{-4}{B}^{2}+0.63{C}^{2} 。 \end{split} $$ (2) 通过软件Design Expert 13对模型回归方程Y1、Y2 进行计算,并综合考虑WDL的性能,得到该模型最佳热压工艺参数为:热压温度160.19 ℃、热压时间109.11 s、热压压力0.96 MPa。该工艺参数条件下 WDL 的浸渍剥离长度理论值为−0.51 mm,顺纹抗拉强度理论值为41.8 MPa。结合实际生产应用,最终确定制备 WDL 最优工艺参数为:热压温度160 ℃、热压时间109 s、热压压力1 MPa。为了进一步验证回归模型的准确性,验证试验得到试件的浸渍剥离长度为0 mm,满足GB/T 17657—2022中Ⅱ类浸渍剥离测试的要求。顺纹抗拉强度实际值为38.2 MPa,达到了预测值的91.39%,实际值与理论预测值拟合度高。本研究数据结果与响应面模型拟合效果好,说明响应面优化的结果可靠。
-
由于木材与 PE胶接时没有化学反应,主要依靠机械互锁进行结合,重组装饰薄木的多孔结构为其胶合提供了有利条件(图7)。PE受热熔融后受到压力和时间的作用渗透到重组装饰薄木的孔隙结构中,形成连续的胶层和机械啮合结构,但WDL是由5层重组装饰薄木组成的,不同热压工艺条件下PE的渗透程度差异明显。如图8A1,在低温短时条件下(130 ℃)热压复合时,几乎每层PE薄膜与重组装饰薄木之间都存在较大的胶接间隙,极大地影响了WDL的力学性能和耐水性能;即使延长热压时间到 90 s(图8A2),仍存在明显的胶合缺陷。而升高温度到155 ℃时(图8B1),两者的胶合质量得到明显改善。上述分析说明热压温度和热压时间对WDL的界面胶接有显著交互作用,且界面胶接的好坏对其整体性能有直接影响,这与前面分析一致。
图 7 重组装饰薄木导管侧微观形貌
Figure 7. Microscopic morphology of the side of reconstituted decorative veneer conduit
图 8 不同热压条件下WDL的胶接界面微观形貌
Figure 8. Microscopic morphologies of WDL’s adhesive interface under different hot-pressing conditions
由最优工艺条件下制备的 WDL 微观形貌图(图8C)可知:该条件下重组装饰薄木和 PE界面结合更加紧密,此时两者已经达到了良好的胶接状态,且有部分熔融PE渗透到薄木导管纹孔中形成更为稳定的胶钉结构,从而提高了WDL的耐水性,其浸渍剥离性能与响应面优化结果相吻合。此时顺纹抗拉强度实际值与预测值接近程度为91.39%,表明模型准确可信。因此该回归模型能够较好地预测和分析热压条件与WDL物理力学性能的关系。
从图8B和8C可以看出:在适宜的温度条件下热压复合时,PE薄膜与重组装饰薄木之间仍存在胶接间隙,这是因为木材与胶黏剂之间由于表面性质不同造成两者复合时难以形成完善的界面胶接层。因此在后续过程中,需对薄木进行改性处理以降低界面胶合缺陷对WDL性能的影响。
-
本研究使用PE薄膜与重组装饰薄木制备无醛复合装饰板,研究热压因子对薄木-PE复合层积装饰板性能的影响,并阐释了热压温度、热压时间和热压压力对PE薄膜与重组装饰薄木的胶合作用机制。
响应面试验结果表明,对WDL浸渍剥离性能影响最大的因素是热压温度和热压时间,而热压压力对其性能影响不显著。这是因为PE薄膜与重组装饰薄木的胶合主要依靠机械啮合结构,热压温度和热压时间的增加降低了PE薄膜的熔融黏度,使其在薄木多孔隙结构中具有更大的渗透性[17]。两者胶接间隙的减小使得水分子难以进入和储存在WDL内部,从而提高其耐水性[18]。WDL的顺纹抗拉强度主要取决于重组装饰薄木本身的强度和厚度,但在热压过程中热压温度也会对WDL的顺纹抗拉强度产生影响。这是因为低温条件下重组装饰薄木和PE薄膜胶接界面的缺陷导致力学性能比较差[19];温度过高则会导致薄木中最热敏的半纤维素发生降解[20−21],从而降低WDL的力学性能。结合响应面试验结果并综合考虑实际生产情况,热压温度为160 ℃、热压时间为109 s、热压压力为1 MPa的工艺条件制备装饰板,实际验证顺纹抗拉强度可达38.2 MPa,与回归方程模型预测值较为接近,其浸渍剥离性能可达Ⅱ类试验要求,耐水性好,且不含甲醛,加之制备工艺简单,具有广阔的发展潜力。
从微观角度看,紧密的机械互锁结构可以增强WDL的耐水性,但是导热不良体的薄木影响芯层的升温速率[22−23],从而不利于熔融PE的渗透,且极性木材与非极性薄膜界面相容性差的问题会导致界面胶接层不完善[24−25]。因此在后续过程中,需对重组装饰薄木进行扎孔或化学改性处理[26],改善两者之间的界面相容性以降低界面胶合缺陷对WDL性能的影响[27]。
-
本研究采用重组装饰薄木和PE薄膜制备的新型无醛薄木-PE复合层积装饰板,后期饰面过程中无需额外涂布胶黏剂,可作为替代 HPL 在室内装修、轨道运输等领域的材料选择。然而所制备的WDL抗拉强度低于轨道运输内饰的要求(≥68.8 MPa),且木质材料遇火易燃,后续需对其强度和阻燃性进行改进和增强。
Preparation and properties optimization of veneer-PE laminated decorative panels
-
摘要:
目的 以热固性树脂浸渍纸高压装饰层积板(HPL)的层压复合结构为基础,开展薄木-聚乙烯(PE)薄膜复合层积装饰板(WDL)制备工艺的研究,为制备性能优异的无醛复合装饰板提供理论依据。 方法 以 PE 和重组装饰薄木为原材料,采取顺纹组坯的方式热压复合,制备5层结构的薄木-PE复合层积装饰板,并采用响应面法Box-Behnken模型优化装饰板的热压工艺参数。 结果 热压温度、热压时间对层积装饰板的浸渍剥离性能有显著影响,而热压压力对其浸渍剥离性能没有显著影响。随着热压温度和热压时间的增加,浸渍剥离长度逐渐减小。热压温度和时间、热压时间和压力对装饰板的浸渍剥离性能有显著交互作用。薄木-PE复合层积装饰板的顺纹抗拉强度主要由重组装饰薄木自身的强度和厚度决定,但在热压过程中热压温度也会影响薄木-PE复合层积装饰板的顺纹抗拉强度。结合实际生产,热压温度为160 ℃、热压时间为109 s、热压压力为1 MPa时,得到的浸渍剥离长度实际值达到 0 mm,顺纹抗拉强度达38.2 MPa。 结论 本研究制备了新型薄木-PE复合层积装饰板,无游离甲醛释放,其耐水性达到了GB/T 17657—2022《人造板及饰面人造板理化性能试验方法》中Ⅱ类浸渍剥离性能测试要求,可满足普通室内装修领域的需求,且后期饰面过程中无需再次添加胶黏剂,是HPL 的升级产品。图8表3参 27 Abstract:Objective This study aims to prepare wooden decorative laminates-sheets made from polyethylene film (WDL) based on the laminated composite structure of high-pressure decorative laminates made from thermosetting resins impregnated sheets (HPL), which provides a theoretical basis for the preparation of aldehyde-free composite decorative panels with excellent performance. Method Polyethylene film and reconstituted decorative veneer were used as raw materials, and the five-layer structural WDL were prepared by hot pressing in the way of smooth-grain grouping. Box-Behnken Response Surface Analysis was used to study the impact of hot-pressing factors on the impregnation peeling performance and tensile strength of the smooth grain and to optimize the process parameters for the preparation of decorative panels. Result The impregnation peeling performance of WDL was affected greatly by hot-pressing temperature and hot-pressing time, while hot-pressing pressure had no significant effect on the impregnation peeling performance. The peeling length gradually decreased with the increase of hot-pressing temperature and hot-pressing time. Hot-pressing temperature and time, hot-pressing time and pressure also had significant interaction effects on the impregnation peeling performance of WDL. The tensile strength along the grain of WDL was mainly determined by the strength and thickness of the reconstituted decorative veneer, and the hot-pressing temperature also affected the tensile strength of WDL. Low temperature could result in inadequate cementation of the reconstituted decorative veneer and PE, and high temperature could lead to degradation of the hemicellulose in the veneer, all of which adversely affect the tensile strength along the grain of WDL. When the hot-pressing temperature was 160 ℃, the hot-pressing time was 109 s, and the hot-pressing pressure was 1 MPa, the impregnation peeling length of the decorative boards under these conditions reached 0 mm, and the tensile strength of the smooth grain reached 38.2 MPa, which was close to the prediction results of the optimization model. Conclusion A new type of veneer-PE laminated decorative panels is prepared, which has no formaldehyde release, and its water resistance meets the requirements of the TypeⅡ immersion peel test according to GB/T 17657−2022. It can meet the needs of general interior decoration field, and there is no need to add adhesive again in the post-finishing process, which is an upgraded product of HPL. [Ch, 8 fig. 3 tab. 27 ref.] -
自然界中,种群是物种存在、物种进化和种间关系的基本单元,是连接生物个体、群落和生态系统的纽带[1]。开展植物种群生物学与生态学研究对了解其发展动态、生活史适应对策、种间相互作用与协同进化等极其重要[2-3]。由于全球气候变化及人类长期对草地的干扰(如放牧、乱开滥垦等),草地退化日趋严重。狼毒Stellera chamaejasme是瑞香科Thymelaeaceae多年生草本植物,是天然草地主要的毒草之一[4],以狼毒为代表的毒杂草植物在天然草地中迅速扩散和蔓延,危害草地面积已达3.33×107 hm2[5],造成中国优质草地资源和产草量急剧下降,对草地畜牧业发展[6]和草原生态系统平衡造成严重威胁。开展狼毒种群生态与繁殖生物学研究,了解其繁殖机制和种群动态,揭示该物种入侵、发展、扩张的生态学机制,对于狼毒型退化草地的控制、修复以及保护天然草地具有重要意义。近几年,狼毒因其“毒草”的特殊身份和生态重要性吸引了不少植物生态学者的关注,并在其种子散布特征[7]、种群空间分布格局和种群动态[8-10]以及繁殖特性[11-13]等方面开展了深入研究。但是,至今未见有关狼毒种群生态与繁殖生物学方面的综述性报道。对狼毒种群空间分布格局、繁殖生物学特征、化感作用及其生态功能等方面进行了综述,可为全面理解狼毒的种群繁殖、更新和扩张等生态学过程,进一步开展该物种生态学相关研究提供参考。
1. 狼毒的生物学基本特性
狼毒俗称瑞香狼毒、馒头花、断肠草等,是瑞香科狼毒属Stellera唯一物种[14]。狼毒为多年生草本植物,丛生,茎直立,多分枝,叶互生(图1)。该植物具有由管状花(小花)组成的头状花序,花有白色、黄色、红色和紫色,具有香味;花萼筒细长,顶端具5裂片;雄蕊共10个,上下各5个2轮排列,花药微伸出。子房椭圆形,果为卵形坚果,由花被管基部所包围。花期4−6月,果期7−9月[4]。狼毒生长于海拔2 600~4 200 m的亚洲温带地区,分布广泛。其中,国内主要分布在中国东北、西北、华北、西南各省的高山、亚高山草地及灌丛[4],国外主要分布于俄罗斯、蒙古和尼泊尔境内。
2. 狼毒的种群空间分布格局
种群空间分布格局是种群对环境选择长期适应的结果[15-16]。植物种群空间分布格局不仅随物种的不同而异,而且受种间种内互作、种子散布方式和生境异质性[17]以及干扰[18-19]等因素的影响,呈现出不同的分布类型。陆地非克隆植物因固着生长而不能主动选择环境,在整个生活史中仅与邻近植物产生相互作用[20-21],其分布格局随邻近植物的不同发生变化[22]。植物种群空间分布格局受其统计特征的影响,常表现出聚集分布、随机分布和均匀分布3种类型[17]。当种群内个体间竞争较为强烈[23]或内部表现出负向(相互排斥)关系时,呈现出均匀分布;当种群环境异质性较高,其个体存活与斑块联系紧密[24]或个体间存在正向(相互有利)关系时,呈现出聚集分布;当种群内个体间无明确关系时,呈现出随机分布[25]。狼毒属典型的非克隆植物,其繁衍完全依靠种子进行[8]。研究显示:狼毒种群空间分布格局受海拔和草地退化等的影响,也表现出聚集、随机和均匀分布[10]。
高福元等[10]研究发现:在不同海拔,狼毒种群内(即小尺度上)不同株级的个体分布格局表现不同。在低海拔种群中,狼毒小株级个体数量总体多于大株丛,且小株级个体倾向于聚集分布,大株丛表现出随机分布;在高海拔种群中,大株级株丛多于小株级个体,表现为随机分布,而小株级个体亦呈现明显的聚集分布[26]。小株级个体聚集分布一方面是由狼毒有限的种子散布能力(近母株种子散布特征)所决定[27];另一方面,小株级个体适应环境的能力差,聚集分布有利于其互助成长[9]。相反,大株级株丛能独自适应不良环境,故呈现出随机分布。此外,在狼毒种群内,小株级个体常聚集分布于大株丛周围,这可能是因为大株级株丛能为小株级个体提供庇护[7,28],或大株级株丛微生境(如掉落的枯枝落叶)能给小株丛提供生长所需的营养条件[29]。
除了受海拔影响,狼毒种群空间分布格局还与草地退化程度密切相关,并随草地退化加剧表现出聚集分布向非聚集分布过渡的趋势[30]。未退化草地中,狼毒尚未成为群落优势种,其个体幼小,缺乏对资源和空间的竞争优势,且抵御种间竞争压力、风沙灾害和放牧干扰的能力相对较弱[31],因此,群落内狼毒的竞争主要以种间竞争为主,种内个体间的竞争较弱,为提高存活机会狼毒个体间呈现出聚集分布,有利于其相互依存。随草地退化程度加剧,草地群落中狼毒种群的规模逐渐扩大,其个体的年龄和体积也不断增大,独立抵御各种干扰的能力明显增强,导致个体间相互庇护的依赖性降低[9,32];与此同时,大株丛彼此间对资源和空间的竞争加剧,导致种群内部发生自疏效应。在这种密度制约作用下,狼毒种群数量逐渐趋于稳定,其空间分布格局由聚集分布向随机分布或均匀分布转变[8,27,31-32]。
3. 狼毒种群的扩散与定植
扩散指植物通过散布器官(克隆体或种子)被动或主动的从原生地向另一个地点运动或繁殖后代的过程[33-34]。种子扩散是种子脱离母株后发生移动或运输的过程,它不仅加快了植物种群更新与基因流动,还影响着种群大小、种群分化、生物多样性和群落演替[35]。研究发现:植物因固着生长而迁移能力有限,其种子扩散必须借助于各种散布载体(如动物、风和水等)[36]。在此过程中,种子形态与散布载体形成了各种特殊的对应关系[37-38],如风媒传播种子具有的“翅”和“羽状”结构,动物体表传播种子具有的“钩”和“倒刺”等[39]。植物这种与特定传播机制相关的种子(或果实)形态特征及其物候特点的综合表现,称为“散布综合征”[40-41]。狼毒种群扩散完全依靠种子进行,其种子为卵圆形小坚果,成熟时果实顶部宿存疏松、膜质的花冠筒组织,被认为具有“翼”的作用,能促进种子借助风力进行扩散[7]。但是,邢福[8]研究发现:狼毒种子具有“近母株散布”的特性,种子成熟后通常掉落在母株周围,形成种子斑块,其散布距离为0~50 cm;随后,土壤表层斑块中的种子随时间在外力作用下发生位移,被逐渐疏散或均匀化[7-8]。因此认为,狼毒种群不具有远距离扩散能力。
植物繁殖体扩散到新生境后,经过一定时间对本地气候和环境的适应,开始萌发、生长和繁殖的过程,被称为定植[42-43]。调查发现:自然生境中狼毒种苗的定植成活率较低,其原因主要表现在2个方面。首先,狼毒种子受自身种皮限制和休眠的影响,导致其萌发率较低[8];其次,狼毒种子萌发后,幼株对不良环境抵抗能力差而易于死亡,因此,定植成活率低[44]。研究表明:母株的庇护作用能促进狼毒种苗定植成功。一方面,大株丛个体能减弱风速、降低土壤水分蒸发和减少牲畜践踏等,有利于其周围种子的萌发以及幼苗的存活生长[7];另一方面,狼毒母株能通过阻滞枯枝落叶,增加株丛周围土壤表层的有机质含量和微生物数量,从而改善狼毒种子萌发和生长所需的微生境条件[29]。另外,有调查发现:狼毒种子掉落土壤后,并不是每年都萌发,而是多年间会出现1次集中的大暴发[8],以补充和更新种群,表现出“机会主义”萌发策略[45]。但是,目前对于驱动狼毒种苗集中暴发的生态学机制,如微生境变化[46]、种内和种间竞争关系的改变[47]以及其他生物因素干扰(如草食动物)[48-49]等尚缺乏深入研究。
4. 狼毒的繁殖生物学特征
4.1 狼毒的繁育系统
植物繁育系统(breeding system)代表着影响其后代遗传组成的所有有性特征的总和,主要包括花形态特征、花展示与花布置[50]、花各器官寿命、传粉者类型以及交配系统等。其中,交配系统是繁育系统的核心,是指生物有机体通过有性繁殖将基因从一代传递到下一代的模式,包括控制配子结合形成合子的所有属性[51],也就是指谁与谁交配以及它们的交配方式与频率特征[52]。狼毒具有近似球形的头状花序,花辐射对称[53]。花萼筒中分布有上下2轮雄蕊,花药显著高于柱头。狼毒花雌雄同熟,花粉活力和柱头可授性较强,自交不亲和指数(index of self-incompatibility, ISI)为0.02[54]。依据ZAPATA等[55]通过ISI值对植物交配系统类型的判断标准,狼毒属典型的异交植物。
植物交配系统不仅影响种群的进化潜力[56],还决定着开花植物的入侵和扩散能力[57]。异交植物能避免自交或近交衰退[58],提高植物后代适合度,保持遗传多样性[52,59],因此,异交被认为是开花植物最为有利的交配系统类型[60]。狼毒作为典型的异交植物,其丰富的遗传多样性是该物种能适应多变环境的关键[4],也是该物种能在草地群落尤其是干扰强度较大的退化草地中得以生存、繁衍[61]和不断进化[62]的基础。但是,作为种子繁殖植物,狼毒专性异交的交配系统特征,容易导致其繁殖成功受环境胁迫、传粉者和花粉限制等影响[63],在多变的环境中不利于其种群的更新、入侵和扩散。因此,在退化草地群落中,狼毒种群种苗更新可能因传粉环境变化会表现出年度间较大的波动。另外,调查发现,随草地退化加剧,狼毒通常由伴生种发展成为优势种[64-65],但是促使其大面积扩散的繁殖生态学机制仍知之甚少。
4.2 狼毒的传粉综合征及传粉
植物因为具有不同组合的花部特征,吸引着不同的传粉者类群,称之为传粉综合特征或传粉综合征(pollination syndrome)[66-67]。传粉综合征常被用来解释花多样性,即植物的花通过对不同类型传粉者的趋化适应[68]产生多样性,或在未直接观察的情况下根据花多样性推测其传粉者类群[69-70]。狼毒花具有紧密花序头,其花萼筒细长,冠口微孔状,表现出典型的蛾或蝶类传粉综合特征[71];狼毒自然种群的主要访花昆虫为长喙的蛾子或蝴蝶[54]。
狼毒花除了表现出蛾类、蝶类传粉综合征,另一个显著特征是其冠口被上排花药封堵,形成封闭的花萼筒。MOOG等[72]认为:封闭、紧密的花序或花形态特征除了能保护花器官、筛选非合法传粉者,也能为传粉昆虫提供避难和繁殖场所。HAGERUP等[73]认为:这类花通常表现出“蓟马(Thirps)传粉综合征”,包括花序紧密、球形或瓮形,花结构封闭,花色白色到黄色,并具有甜香味等特征;例如大戟科 Euphorbiaceae植物Macaranga hullettii[72]、桑科Moraceae植物Maclura ochimhinensis、棕榈科Palmae植物Linospadiw monostachyw、菝葜科Smilacaceae植物Smilar glyczphyll、紫金牛科Myrsinaceae植物Rapanea howittiana以及杯轴花科Monimiaceae植物Mollinedm gottsberger[74]等。我们通过野外观察发现:狼毒种群内有大量的蓟马Thripidae活动。结合其花结构特征,我们推测狼毒也可能通过蓟马进行传粉,其传粉效率以及对狼毒繁殖成功的相对贡献亟待进一步深入研究。
4.3 狼毒的繁殖分配策略
繁殖分配策略是指植物总资源分配给繁殖器官的比例[75-76],是植物繁殖策略的核心内容。研究发现:植物可通过资源分配调节其生活周期中繁殖频次、繁育期、生育期长短(或繁殖年龄)、性器官布置、胚和配子成熟期以及种子产量等繁殖特性[77],以达到资源利用的最佳配置。生活史理论预测,处于逆境中的植物相对于优良环境中的同类植物会表现出株高变矮、繁殖分配(即资源分配给繁殖体占营养体的比例)增高[78]等特征。狼毒多生于海拔2 600~4 200 m的高山及亚高山草地[54],属典型的高山植物。研究发现:海拔高度对狼毒的繁殖分配能产生显著影响。随海拔上升,狼毒种群表现出株高下降,叶面积减小、叶数量增加以及花变大和花数量减小的趋势。高海拔狼毒种群其资源分配的这种变化可能与恶劣环境,如风力大、辐射强、访花昆虫少[79]等密切相关。在高海拔生境,狼毒种群营养体的减少能有效降低其蒸发速率;花变大能有效提高对传粉者的吸引力,有利于狼毒的繁殖成功[13,80]。这与FABBRO等[81]和HAUTIER等[82]对其他高山植物的研究相似,例如菊科Compositae小花风毛菊Saussurea parviflora[83]、蓼科Polygonaceae中华山蓼Oxyria sinensis[84]以及芹亚科Apioideae drude中亚阿魏Ferula jaeschkeana[85]等。另外,索南措等[86]对青藏高原长毛风毛菊Saussurea hieracioides繁殖分配研究表明:花变大和花数量的减少总体上能提高种子百粒重,即提高单个种子质量。同样,高海拔狼毒种群,其单个小花变大、花数量减少也可能提高种子质量,有利于种苗定植成功和种群更新。
此外,狼毒的繁殖分配策略与其生境如坡向和坡度密切相关。研究发现:随坡向和坡度的改变,狼毒种群的资源分配也呈现出规律性变化。例如,在阳坡或陡坡生境中,狼毒种群表现出株高变矮,叶面积、叶片数和分枝数减小等特征。同样,狼毒资源分配的变化可能与其阳坡(或陡坡)的特殊环境(如光照强、温度高、辐射强、蓄水能力差、风力大等)有关。狼毒矮小化及其营养器官的减小能有效降低水分的散失,同时能避免风的伤害[11-12]。另外,狼毒营养体的减小节约了大量资源[87],并投入其有性繁殖。然而,狼毒的资源分配策略,尤其是地上和地下的资源分配及其对繁殖的影响,以及该物种在生活史不同阶段(如年龄)的分配策略仍缺乏深入研究。
5. 狼毒的化感作用
化感作用(allelopathy)也称作异株克生,通常指一种植物通过向体外分泌代谢过程中的化学物质,对其他植物产生直接或间接的影响[88]。狼毒的化感作用主要通过根分泌和残体腐解释放化感物质而发生,且不同器官产生化感作用的强度以及对不同类植物的化感作用不尽相同。总体上,狼毒株级越大化感作用越强[89],其根的化感(抑制)作用强于茎叶[90],对豆科Leguminosae植物的抑制性强于禾本科Gramineae植物。研究发现:狼毒对禾本科、豆科和毛茛科Ranunculaceae植物均具有一定的化感作用[91],其根浸提液不仅影响这些植物的种子萌发,还抑制根系与幼苗的生长[89]。周淑清等[92]以苜蓿Medicago sativa为材料,研究了狼毒根和茎叶粉碎物在土壤腐解过程中对苜蓿幼苗的影响,发现狼毒根对其幼苗干质量、株高和叶面积以及叶绿素相对含量的抑制作用显著强于茎叶,且随狼毒根用量的增加抑制作用增强。王慧等[93]发现:狼毒根对新麦草Psathyrostachys juncea和无芒雀麦Bromus inermis的幼苗生长均产生抑制作用,其茎叶对无芒雀麦具有抑制作用,但对新麦草的幼苗生长却表现出促进作用。富瑶[94]研究发现:狼毒根提取液能使蓬子菜Galium verum和荩草Arthraxon hispidus的种子在萌发过程中脯氨酸含量升高,可溶性蛋白质和可溶性糖含量降低。另外,狼毒根提取液处理能通过干扰苜蓿内源激素的正常代谢,损害其幼苗生长,例如,降低紫花苜蓿的赤霉素和玉米素核苷含量,增强脱落酸合成关键酶基因NCED4表达,提高脱落酸含量等[95]。狼毒的花粉对周围同花期其他植物的有性繁殖也可能存在化感抑制,并影响它们的花粉萌发与种子结实[96],但这些化感影响仍缺乏直接的实验证据支持。
狼毒的化感物质复杂多样,主要有萜类、香豆素类、木脂素类和黄酮类等化合物[97]。其中,萜类化合物包括尼地吗啉、胡拉毒素、萨布毒素A、单纯杆菌素和匹米立因子P2,以及化合物异虎耳草素A和B、新瑞香素、化合物I和瑞香狼毒任[98];据推测,这类化合物可能是狼毒对动物产生毒性的主要物质[99]。香豆素类化合物成分较多,有虎耳草素、异虎耳草素、异佛手柑内酯、6-甲氧基白芷素、伞形花内酯和瑞香苷等[100]。狼毒通过调节这些化感物质的种类、数量以及释放途径来抑制其他植物和调节土壤微生物群落,从而适应不同的生态环境[89]。这些香豆素类化合物中,伞形花内酯可能是狼毒主要的化感物质,它的降解与否在狼毒与其他植物的竞争中扮演着重要角色[101]。木脂素类化感物质有4种成分,分别是松树脂醇二甲醚、北美鹅掌楸脂素B、松脂素和罗汉松树脂酚[102];黄酮类化感物质成分包括狼毒素、异狼毒素、新狼毒素A和B(neochamaejasmin A和B)、7-甲氧基狼毒素、狼毒色原酮、表枇杷素、芫花醇乙、优狼毒A以及狼毒素的甲基衍生物(chamaejasmin A,B和C)等[14]。这类物质的存在一方面能保护狼毒免遭昆虫或植食性动物的侵害,另一方面能助其对抗病菌和与之竞争的其他植物,有利于狼毒在退化草地的成功入侵和蔓延[103]。如上所述,有关狼毒的化感物质及其化感作用的研究已有不少,但是对其化感作用机制及其发生的生态学过程和条件仍知之甚少。
6. 狼毒种群生态功能
狼毒作为主要的毒草类型之一,近年来在天然草地群落大量扩散、繁殖,常由伴生种逐渐演变成优势种,被认为是草地退化的指示植物[64]。研究表明:狼毒是造成草地群落结构改变的主要因素之一,在草地群落中扮演正面或负面2种角色[104];其生态功能随群落环境变化不尽相同。SUN等[29]通过研究青藏高原高寒草甸有无狼毒存在的土壤理化性质的差异,发现有狼毒的群落里可产生更多凋落物,因其氮含量较高,木质素含量低,能增加土壤表层(0~15 cm)的有机质含量。CHENG等[105]通过对青藏高原高寒草甸狼毒型退化草地群落生物多样性的研究发现:狼毒的存在能阻止邻近植物被牲畜采食,并为其提供了“避难所”,以此能维持群落的物种多样性。在狼毒为优势种的草地群落中,植物物种数、地上生物量、群落生物多样性指数和有性繁殖的物种数量均显著高于非狼毒型草地群落。此外,在青藏高原“黑土滩”退化草甸中,狼毒凭借其强的种苗更新和扩散能力,能显著减少退化草地的裸露面积[106]。有学者提出,草地退化后被大量有毒植物入侵,可能是由于生态系统受到外界压力胁迫后做出的自我调节,以保持一定的自然恢复力[105]。
7. 结语
多年来,狼毒一直以毒杂草、草地退化指示植物的身份存在。总体上,其种群生态与繁殖生物学研究比较零散且缺乏系统性。本文着重从狼毒种群空间分布格局、繁殖生物学特征、化感作用及生态功能等方面进行了综述。种群空间分布格局作为狼毒对特定生境的适应,长期以来其形成的原因只局限于从种群统计和种内相关关系方面进行探究,却忽略了其形成的内在生态学机制以及在大尺度上对其分布格局的深入探讨。生活史对策的综合分析表明,狼毒种群的入侵、定居和扩散能力与其生活史特征密切相关,但是关于其种子散布机制、种苗集中暴发与土壤和气候等因子之间的关系、种群入侵扩散的群落生境选择及其生活史对策知之甚少。繁育系统特征作为影响狼毒种群繁衍的关键因素,目前对狼毒繁殖生态学方面的研究甚少,从群落水平研究狼毒与传粉者的相互作用(泛化或特化关系)更是寥寥无几。另外,作为草地退化的指示物种,狼毒在退化草地中常发展成为优势种,而在未退化或轻度退化草地中为偶见种,但是关于狼毒种群的发展与草地退化之间的关系,即狼毒种群扩张是草地退化的驱动者还是副产品,目前尚不清楚。针对上述问题,将来有关狼毒种群生态与繁殖生物学的研究应着重从以下几个方面开展:①不同尺度上,狼毒种群空间分布格局形成的生态学机制,如狼毒种群本身的生物学特性、种间和种内互作以及生境异质性等因素对其分布格局形成的影响。②狼毒的生活史对策研究,包括种子散布机制、种苗定植的生理生态条件以及狼毒在群落水平的繁殖生态学研究等。③狼毒种群生态功能,例如狼毒在草地生物多样性丧失或维持过程中所起的作用及其种群的入侵和扩散与草地退化的关系等。
-
表 1 试验因素和水平
Table 1. Level of experimental factors
水平 因素 热压温度(A)/℃ 热压时间(B)/s 热压压力(C)/MPa $ - $1 130 30 0.50 0 155 90 1.25 $ + $1 180 150 2.00 表 2 响应面试验设计及结果
Table 2. Design and results of response surface test
编号 热压温度
(A)/℃热压时间
(B)/s热压压力
(C)/MPa浸渍剥离长度
(Y1)/mm顺纹抗拉强度
(Y2)/MPa编号 热压温度
(A)/℃热压时间
(B)/s热压压力
(C)/MPa浸渍剥离长度
(Y1)/mm顺纹抗拉强度
(Y2)/MPa1 −1 −1 0 33 34.5 10 0 1 −1 0 43.0 2 1 −1 0 1 36.9 11 0 −1 1 8 43.3 3 −1 1 0 11 41.7 12 0 1 1 8 40.5 4 1 1 0 0 33.6 13 0 0 0 3 40.4 5 −1 0 −1 26 38.4 14 0 0 0 2 44.0 6 1 0 −1 0 37.7 15 0 0 0 6 44.2 7 −1 0 1 25 40.8 16 0 0 0 3 42.0 8 1 0 1 0 33.2 17 0 0 0 1 39.5 9 0 −1 −1 25 40.7 表 3 浸渍剥离性能和顺纹抗拉强度方差分析
Table 3. Variance analysis of impregnation peel performance and endwise tensile strength
方差
来源浸渍剥离长度(Y1)/mm 顺纹抗拉强度(Y2)/MPa 平方和 均方 F P 平方和 均方 F P 模型 1 934.44 214.94 49.33 <0.000 1** 173.76 19.31 6.28 0.012 1* A 1 104.50 1 104.50 253.49 <0.000 1** 24.50 24.50 7.97 0.025 7* B 288.00 288.00 66.10 <0.000 1** 1.45 1.45 0.47 0.515 0 C 12.50 12.50 2.87 0.134 1 0.50 0.50 0.16 0.698 8 AB 110.25 110.25 25.30 0.001 5** 27.56 27.56 8.97 0.020 1* AC 0.25 0.25 0.06 0.817 6 11.90 11.90 3.87 0.089 8 BC 156.25 156.25 35.86 0.000 5** 6.50 6.50 2.12 0.189 2 A2 121.64 121.64 27.92 0.001 1** 98.94 98.94 32.19 0.000 8** B2 34.80 34.80 7.99 0.025 5* 1.04 1.04 0.40 0.5787 C2 80.59 80.59 18.50 0.003 6** 0.52 0.52 0.17 0.692 3 残差 30.50 4.36 21.52 3.07 失拟项 16.50 5.50 1.57 0.328 1 3.87 1.29 0.29 0.829 9 纯差 14.00 3.50 17.65 4.41 总离差 1 964.94 195.28 R2 0.984 5 0.889 8 RAdj 2 0.964 5 0.748 1 说明:**. 极显著(P<0.01);*. 显著(P<0.05)。$ R^2 $. 决定系数;$ R_{ {\mathrm{Adj} }}^2 $. 校正决定系数。 -
[1] 全国人造板标准化技术委员会(SAC/TC 198). 热固性树脂浸渍纸高压装饰层积板(HPL): GB/T 7911—2024 [S]. 北京: 中国标准出版社, 2024. National Technical Committee 198 on Wood-based Panels Standardization of China. High-pressure Decorative Laminates Made from Thermosetting Resins Impregnated Sheets, (HPL): GB/T 7911−2024 [S]. Beijing: Standards Press of China, 2024. [2] 唐召群, 伍艳梅, 徐明华, 等. 我国高压装饰板生产现状及高质量发展建议[J]. 世界林业研究, 2019, 32(4): 69−74. TANG Zhaoqun, WU Yanmei, XU Minghua, et al. HPL production in China and the suggestions to its high-quality development [J]. World Forestry Research, 2019, 32(4): 69−74. [3] 刘金明, 张一甫, 甘卫星, 等. 糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展[J]. 材料导报, 2023, 37(17): 276−282. LlU Jinming, ZHANG Yifu, GAN Weixing, et al. Research progress on sugar-based melamine formaldehyde resin as wood adhesives [J]. Materials Reports, 2023, 37(17): 276−282. [4] TAVERNA M E, TASSARA O, MORAN J I, et al. Effect of kraft lignin from hardwood on viscoelastic, thermal, mechanical and aging performance of high pressure laminates [J]. Waste and Biomass Valorization, 2019, 10(3): 585−597. [5] CHEN Xiaoyan, AFREEN S, YU Xiao, et al. Modified melamine-formaldehyde resins improve tensile strength along with antifouling and flame retardancy in impregnation of cellulose paper [J]. RSC Advances, 2019, 9(63): 36788−36795. [6] JI Yujie, XIA Qi, CUI Juqing, et al. High pressure laminates reinforced with electrospun cellulose acetate nanofibers [J/OL]. Carbohydrate Polymers, 2021, 254 : 117461[2024-04-13]. DOI: 10.1016/j.carbpol.2020.117461. [7] 彭晓瑞, 吕斌, 王超, 等. 木制品表面装饰新产品和新技术[J]. 木材科学与技术, 2021, 35(2): 6−11. PENG Xiaorui, LÜ Bin, WANG Chao, et al. New products and technologies of decorative surfaces for wood products [J]. Chinese Journal of Wood Science and Technology, 2021, 35(2): 6−11. [8] 王蕊, 徐德良, 杨勇, 等. 重组装饰单板工业化浸渍及饰面应用[J]. 林业工程学报, 2020, 5(6): 43−48. WANG Rui, XU Deliang, YANG Yong, et al. Industrial resin-impregnation and overlaying application of reconstituted decorative veneers [J]. Journal of Forestry Engineering, 2020, 5(6): 43−48. [9] YE Haoran, ZHENG Guiyang, ZUO Shida, et al. Lightweight, bacteriostatic and thermally conductive wood plastic composite prepared by chitosan modified biointerfaces [J/OL]. Applied Surface Science, 2023, 615 : 156313[2024-04-13]. DOI: 10.1016/j.apsusc.2022.156313. [10] WANG Yang, YE Haoran, XIA Changlei, et al. High-performance poplar-polyethylene laminates based on microwave-assisted acetic acid pretreatment process with potential application in construction [J/OL]. Journal of Building Engineering, 2023, 72 : 106731[2024-04-13]. DOI: 10.1016/j.jobe.2023.106731. [11] 陈晋南, 何吉宇. 聚合物流变学及其应用[M]. 北京: 中国轻工业出版社, 2018: 144−145. CHEN Jinnan, HE Jiyu. Ploymer Rheology and It ’s Applications [M]. Beijing: China Light Industry Press, 2018: 144−145. [12] ARYA S, KUMAR R, CHAUHAN S, et al. Development of natural fiber reinforced thermoplastic bonded hybrid wood veneer composite [J/OL]. Construction and Building Materials, 2023, 368 : 130459[2024-04-13]. DOI: 10.1016/j.conbuildmat.2023.130459. [13] ZHOU Xiaoyan, CAO Yizhong, YANG Kai, et al. Clean plasma modification for recycling waste plastic bags: from improving interfacial adhesion with wood towards fabricating formaldehyde-free plywood [J/OL]. Journal of Cleaner Production, 2020, 269 : 122196[2024-04-13]. DOI: 10.1016/j.jclepro.2020.122196. [14] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J/OL]. 材料导报, 2024, 38 (13): 23030072[2024-04-13]. DOI: 0.11896/cldb. 23030072. LlU Xiaohan, YANG Pei, ZHOU Xiaoyan, et al. Research progress in plasma modification to enhance interfacial compatilbility of agro-forestry biomass composites [J/OL]. Materials Reports: 2024, 38 (13): 23030072[2024-04-13]. DOI: 0.11896/cldb.23030072. [15] 于培静, 张伟, 陈敏智, 等. 等离子体改性热塑性树脂薄膜制备环保胶合板试验[J]. 林业工程学报, 2020, 5(1): 41−47. YU Peijing, ZHANG Wei, CHEN Minzhi, et al. Plasma-treated thermoplastic resin film as adhesive for preparing environmentally-friendly plywood [J]. Journal of Forestry Engineering, 2020, 5(1): 41−47. [16] 李亚荣, 廖洪强, 高宏宇, 等. 热压成型工艺对PE-LLD/CFBFA复合材料性能影响[J]. 工程塑料应用, 2022, 50(1): 86−91 LI Yarong, LIAO Hongqiang, GAO Hongyu, et al. Effect of hot pressing process on properties of PE-LLD/CFBFA composites [J]. Engineering Plastics Application, 2022, 50(1): 86−91. [17] BIANCHE J J, CARNEIR A D C O, VITAL B R, et al. Improving the understanding of wood bonding: behavior of different adhesives on the surface of eucalyptus and pine wood [J/OL]. International Journal of Adhesion and Adhesives, 2022, 112 : 102987[2024-04-13]. DOI:10.1016/j.ijadhadh.2021.102987. [18] RAO Fei, JI Yaohui, HUANG Yuxiang, et al. Influence of resin molecular weight on bonding interface, water resistance, and mechanical properties of bamboo scrimber composite [J/OL]. Construction and Building Materials, 2021, 292 : 123458[2024-04-13]. DOI: 10.1016/j.conbuildmat.2021.123458. [19] 查瑶, 饶俊, 关莹, 等. 竹叶/HDPE复合材料的制备及性能[J]. 浙江农林大学学报, 2020, 37(2): 343−349. ZHA Yao, RAO Jun, GUAN Ying, et al. Preparation and properties of bamboo leaf/HDPE composites [J]. Journal of Zhejiang A&F University, 2020, 37(2): 343−349. [20] ZHENG Siqi, CHEN Muyang, WU Jiabiao, et al. Effect of heat treatment on properties and interfacial compatibility of poplar veneer/polyethylene film composite plywood [J/OL]. Polymer Testing, 2023, 122 : 108006[2024-04-13]. DOI: 10.1016/j.polymertesting.2023.108006. [21] 徐斌, 王恒旭, 陆杰, 等. 重组竹/玻纤/PET泡沫复合多层结构保温板制备及性能评价[J]. 浙江农林大学学报, 2021, 38(2): 396−402 XU Bin, WANG Hengxu, LU Jie, et al. Preparation and performance evaluation of bamboo scrimber/glass fiber/PET foam multilayer structural insulated panel [J]. Journal of Zhejiang A&F University, 2021, 38(2): 396−402. [22] 陶鑫, 梁善庆, 傅峰. 木质导热复合材料的传热增强机理及制备研究进展[J]. 功能材料, 2022, 53(2): 2057−2065. TAO Xin, LIANG Shanqing, FU Feng. Heat transfer enhancement mechanism and preparation technology of wood-based thermal conductive composite [J]. Journal of Functional Materials, 2022, 53(2): 2057−2065. [23] CHEN Meiling, SEMPLE K, HU Yu’an, et al. Fundamentals of bamboo scrimber hot pressing: mat compaction and heat transfer process [J/OL]. Construction and Building Materials, 2024, 412 : 134843[2024-04-13]. DOI: 10.1016/j.conbuildmat.2023.134843. [24] 秦楠. 加工因素对HDPE基木塑复合材料静曲强度的影响[J]. 塑料, 2024, 53(2): 89−93, 107. QIN Nan. Influence of processing factors on static bending strength of HDPE-based wood-plastic composite [J]. Plastics, 2024, 53(2): 89−93, 107. [25] 杨元强, 张凤波, 张振莉, 等. 聚烯烃木塑复合材料研究进展[J]. 化工新型材料, 2023, 51(增刊1): 23−28, 32. YANG Yuanqiang, ZHANG Fengbo, ZHANG Zhenli, et al. Research progress of polyolefin wood-plastic composites [J]. New Chemical Materials, 2023, 51(suppl 1): 23−28, 32. [26] WANG Zhangheng, YU Minggong, SUN Zhenyu, et al. Enhanced interfacial bonding strength of superhydrophobic wood through chemical etching and silane coupling agent treatment [J/OL]. Construction and Building Materials, 2024, 411 : 134825[2024-04-13]. DOI: 10.1016/j.conbuildmat.2023.134825. [27] 陈文礼, 欧荣贤, 郭雨佳, 等. 多元共挤出木塑复合材料界面结合性能[J]. 复合材料学报, 2025, 42(1): 465−475. CHEN Wenli, OU Rongxian, GUO Yujia, et al. Interfacial bonding properties of multi-phase co-extruded wood-plastic composites [J]. Acta Materiae Compositae Sinica, 2025, 42(1): 465−475. 期刊类型引用(0)
其他类型引用(11)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240345