-
云锦杜鹃Rhododendron fortunei为杜鹃花科Ericaceae常绿小乔木或灌木,主要分布于中国长江流域,生长在海拔600 m以上的沟谷阔叶林或山顶灌草丛中,为中国丘陵山地较高海拔地区常见的观赏价值较高的木本花卉[1],以“苍干如松柏,花姿若牡丹”著称。
近年来,中国关于云锦杜鹃的研究较多。不同地区的云锦杜鹃群落物种组成差异较大。陈艳华等[2]对湖南阳明山云锦杜鹃纯林和混交林的比较发现:无论是纯林还是混交林,物种组成均不丰富,群落垂直结构单一。邓贤兰等[3]对江西井冈山、袁丛军等[4]对贵州雷公山调查发现:不同海拔的云锦杜鹃样地物种多样性较高。在种群结构方面,赵丽娟等[5]对湖南平江幕阜山、黄川腾等[6]对广东天井山、付剑等[7]对湖北大别山的云锦杜鹃种群调查均发现:云锦杜鹃种群结构稳定,但幼苗较少,从而导致其种群更新不良。管康林等[8]分析了浙江华顶山云锦杜鹃林衰退的原因,认为可能系上层树种黄山松Pinus taiwanensis和柳杉Cryptomeria fortunei不断扩大和低灌层箬竹Indocalamus tessellatus的入侵蔓延所致。
边才苗等[9]研究发现:云锦杜鹃的种子不适合在过于湿润的土壤环境中萌发,但其种子对干旱胁迫比较敏感。杨华等[10]测定了2种光照条件下低海拔引种的云锦杜鹃的光合作用日变化,发现栽培的云锦杜鹃喜光特性并不会因为气温高而改变。此外,研究还涉及云锦杜鹃的扦插繁育[11]、花期的挥发物质成分分析[12]、转录组分析[13]及分子标记开发[14]等。
尽管云锦杜鹃群落特征、种群结构、种子萌发特性、光合生理等已有研究报道,但针对其种群及群落动态变化的研究仍显不足。此外,当前针对云锦杜鹃的研究方法通常是选取有限的小型样地进行静态分析,这种方法虽然有助于了解特定时间点的物种丰富度和群落组成,但未能充分反映种群动态变化的复杂性,而样地面积大小影响群落物种多样性及种群结构的分析结果。本研究基于浙江大盘山国家级自然保护区1 hm2固定监测样地的长期监测和调查资料,分析该区云锦杜鹃群落的基本特征、种群结构的动态变化,为资源保护、管理和利用等提供理论依据,同时也为大盘山国家级自然保护区较高海拔的地带性植被恢复与林相改造提出参考建议。
-
浙江大盘山国家级自然保护区位于浙江省金华市磐安县内,是浙江省钱塘江、灵江、瓯江三大水系主要支流的发源地,28°57′05″~29°01′58″N,120°28′05″~120°33′40″E。该区地貌属于中山山地,为典型的亚热带季风气候区,年均降水量为1 427.8 mm,年均气温为15.0 ℃,年均日照时数为1 827.6 h。地形复杂,气候优越,植物种类丰富。目前构成大盘山植被的主要类型为人工杉木Cunninghamia lanceolata林、竹林、马尾松Pinus massoniana林和常绿阔叶林,另有针阔混交林植被等[15]。
-
参照美国史密森热带研究所热带森林研究中心(Center for Tropical Forest Science,CTFS)的技术规范[16],2018年在大盘山国家级自然保护区内选择云锦杜鹃集中分布且生长状态较好的林地,建立1 hm2 (100 m×100 m)的固定监测样地,地理位置为28°58′33.24″N,120°31′36.12″E。样地最高点海拔为1 224 m,最低点海拔为1 148 m。样地地形较复杂,南北方向有1条纵沟,北部平均海拔高(图1)。用全站仪将整个样地划分为25个20 m×20 m的样方,每个样方再划分为16个5 m×5 m的小样方。对样地内胸径(DBH)≥1.0 cm的木本植株主干及其分支挂牌编号,以便永久监测,记录其胸径、冠幅、树高、小样方内坐标、生长状况等。2023年对该样地内所有挂牌木本植株进行复查,对新增树木(DBH≥1.0 cm)挂牌编号,记录死亡个体。
-
参照《浙江植物志(新编)》 [1]鉴定样地植物。参照仲磊等[17]、丁炳扬等[18]的方法,按生长型划分样地木本植物的径级。乔木:1.0 cm≤DBH<5.0 cm (小树)、5.0 cm≤DBH <10.0 cm (中树)、10.0 cm≤DBH<25.0 cm (大树)、DBH≥25.0 cm (老树)。小乔木:1.0 cm≤DBH<3.0 cm (小树)、3.0 cm≤DBH<5.0 cm (中树)、5.0 cm≤DBH<15.0 cm (大树)、DBH≥15.0 cm (老树)。灌木:1.0 cm≤DBH <2.0 cm (小树)、2.0 cm≤DBH<3.0 cm (中树)、3.0 cm≤DBH<10.0 cm (大树)、DBH≥10.0 cm (老树)。稀有种:1 hm2仅为1株的物种。偶见种:样地内个体数大于1株且小于10株的物种。常见种:样地内个体数大于等于10株的物种[19]。
物种重要值=(相对多度+相对频度+相对显著度)/3,其中相对多度和相对频度仅计算独立个体,相对显著度计算包括了分枝的胸高截面积[20]。死亡率$ M=\dfrac{(\mathrm{l}\mathrm{n}{N}_{0}-\mathrm{l}\mathrm{n}{S}_{t})}{{T}} $;补员率$ R=\dfrac{(\mathrm{l}\mathrm{n}{N}_{t}-\mathrm{l}\mathrm{n}{S}_{t})}{{T}} $。其中:N0和Nt分别为第1、2次调查的个体数,St是该物种在第1、2次调查时都存在的活个体数,T为2次调查时间间隔。种群大小变化率(λ)用补员率和死亡率的差值表示。
参照文献[18],采用径级结构代替年龄结构的方法,将该种群径级结构划分为7个等级:Ⅰ级 (1.0 cm≤DBH<2.5 cm),Ⅱ级 (2.5 cm≤DBH<5.0 cm),Ⅲ级 (5.0 cm≤DBH<8.0 cm),Ⅳ级 (8.0 cm≤DBH<11.0 cm),Ⅴ级 (11.0 cm≤DBH<15.0 cm),Ⅵ级 (15.0 cm≤DBH<20.0 cm),Ⅶ级(DBH≥20.0 cm)。根据7个径级的个体数编制云锦杜鹃静态生命表[21]。生命表最关键的原始数据为ax,lx=ax/a0×
1000 ;dx=lx−lx+1;qx=dx/lx;Lx=(lx+lx+1)/2;$ {{T}}_{{x}}{=}\displaystyle \sum_{{x}}^{{\infty }}{{L}}_{{x}} $;ex=Tx/lx;Kx=lnlx−lnlx+1。其中:x为龄级;ax为匀滑后x龄级存活数;a0为最大个体数;lx为x龄级初始状态标准化存活个体数;dx为x到x+1龄级区间内标准化死亡数;qx为x到x+1龄级间隔期死亡率;Lx为从x到x+1龄级间隔期还存活的个体数;Tx为从x龄级到超过x龄级的个体总数;ex为进入x龄级的平均寿命;Kx为各龄级致死力(消失率)。根据静态生命表数据,绘制存活曲线(lnlx)、死亡率曲线(qx)。数据分析作图使用SPSS 27.0.1、R 4.3.2和Origin 2022等。
-
云锦杜鹃群落1 hm2固定监测样地于2018年调查并记录4 773株DBH≥1.0 cm的木本植物,分属于35科55属90种。其中,常绿树种只有16种,但个体数占调查总数的67%。样地中,云锦杜鹃的重要值最高,其次为黄山松(表1),因此该样地为常绿针阔混交林。从乔木层科的组成来看,含属数最多的为壳斗科Fagaceae (4属)、蝶形花科Fabaceae (4属)等。从属的组成来看,含有种数最多的为山胡椒属Lindera (4种)、槭属Acer (4种)和李属Prunus (4种)等。样地内常见种33种,其中个体数≥1 000株的仅有云锦杜鹃1种,个体数≥100株的常见种有黄山松、水马桑Weigela japonica var. sinica、红果钓樟Lindera erythrocarpa等6种;偶见种共35种,包括茅栗Castanea seguinii、盐肤木Rhus chinensis等;稀有种22种。2023年复查记录了5 018株DBH≥1.0 cm的木本植物,共计35科53属87种。间隔5 a后,有3种稀有种植物在样地消失,分别是接骨木Sambucus williamsii、圆叶鼠李Rhamnus globosa和隔药柃Eurya muricata。此外,样地中DBH≥1.0 cm的个体年死亡率为1.38%,年补员率为2.38%,种群大小变化率为1.00%。
表 1 大盘山1 hm2固定监测样地重要值排名前10位的树种
Table 1. Top ten species with the highest importance values in the 1 hm2 forest dynamics plot in Mount Dapanshan
树种 个体数/株 重要值/% 生活型 2018年 2023年 2018年 2023年 云锦杜鹃Rhododendron fortunei 2 341 2 380 36.21 36.43 常绿小乔木 黄山松Pinus taiwanensis 359 336 15.61 13.71 常绿乔木 红果钓樟Lindera erythrocarpa 228 254 5.30 5.53 落叶灌/小乔木 水马桑Weigela japonica var. sinica 243 197 4.72 3.86 落叶灌木 朝鲜白檀Symplocos coreana 208 289 4.59 5.41 落叶乔木 杉木Cunninghamia lanceolata 112 101 4.11 3.87 常绿乔木 尖连蕊茶Camellia cuspidata 219 312 3.44 4.56 常绿灌木 灯台树Bothrocaryum controversum 98 97 2.77 2.63 落叶乔木 短柄榛Corylus heterophylla var. brevipes 90 103 1.88 1.95 落叶灌/小乔木 合轴荚蒾Viburnum sympodiale 93 134 1.84 2.51 落叶灌木 样地内群落的垂直结构分层明显。根据高度和生长型划分群落的垂直结构,树高(H)≥15.0 m的林冠层包括黄山松、杉木、灯台树等;H≥5.0 m的亚乔木层主要有云锦杜鹃、红果钓樟等;H<5.0 m的灌木层主要有尖连蕊茶、合轴荚蒾等。样地中优势度明显,重要值前10位的物种个体数占总个体数的80.45%,这10个物种的相对多度总和为83.62%,相对显著度总和为89.09%。2023年复查结果显示:样地内重要值前10位的物种未发生变化,但黄山松的重要值降幅最大,尖连蕊茶的重要值增幅最大。
-
样地内所有木本植物(DBH≥1.0 cm)的径级分布呈现倒“J”型(图2)。2018年所有木本植物的平均径级为7.5 cm,其中1.0 cm≤DBH <5.0 cm的个体有1 655株,占总个体数的34.67%;5.0 cm≤DBH <20.0 cm的个体有2 928株,占总个体数的61.36%;DBH≥20.0 cm的个体有190株,占总个体数的3.98%。2023年所有木本植物的平均径级为8.3 cm,5 a间该样地平均径级增长了0.8 cm,径级分布依然为倒“J”型,其中1.0 cm≤DBH <5.0 cm的个体减少了169株;5.0 cm≤DBH <20.0 cm的个体增加了358株,DBH≥20.0 cm的个体增加了56株。样地重要值排名前9位的径级结构如图3。云锦杜鹃的径级分布表现为金字塔型,2018年小树和老树个体数较少,中树个体数占总个体数的21.66%,大树个体数占总个体数的72.32%;2023年大树的比例有所增加。黄山松小树和中树的储备较少,大树和老树的数量较多,2023年老树的比例上升。红果钓樟、朝鲜白檀、尖连蕊茶的径级分布总体呈现“L”型。杉木集中在大径级个体,并且径级分布不连续,有多个不同的峰;水马桑、灯台树和合轴荚蒾在样地内的种群数量少,且集中在小径级范围内。
-
样地沿南北方向存在1条纵向沟谷,且北部的平均海拔高于南部,整体坡度为10°~30°。优势种云锦杜鹃(图4A)在样地内的分布与地形表现出明显的相关性,集中分布在山沟的两侧,山沟处有极少数分布。黄山松(图4B)在样地内分布较分散,且老树和大树的比例偏高。红果钓樟(图4C)和朝鲜白檀(图4D)在整个样地内均有分布。灌木树种尖连蕊茶(图4E)主要聚集在样地南部海拔相对较低的位置,大树占比为73%。杉木(图4F)聚集于样地西北角,位于海拔较高的地方,其中大树73株,占比为70%,老树19株,占比为20%,这意味着杉木以大树为主。灌木树种水马桑(图4G)多见于样地北部,南部稀疏分布。灯台树(图4H)在样地内共有97株,表现为零星分布。灌木树种合轴荚蒾(图4I)聚集分布在样地南部海拔较低的地方,北部零星分布,且以大树为主,占比为80%。
-
2018年云锦杜鹃个体数为2 341株,占样地内总个体数的49.00%;2023年为2 380株,占比为47.43%。云锦杜鹃的年龄结构总体表现为金字塔结构(图5),即集中在Ⅱ、Ⅲ、Ⅳ龄级,Ⅰ、Ⅵ、Ⅶ龄级的个体数很少。2023年Ⅳ、Ⅴ、Ⅵ龄级的个体数相比2018年明显增多,说明其5 a间对自然环境变化适应较好,龄级生长发育良好。根据云锦杜鹃种群存活曲线判断,2018、2023年均为Ⅰ型(凸型)(图6),表现为绝大多数个体都能活到生理年龄,早期死亡率极低,但是达到一定生理年龄时,短期内几乎全部死亡。云锦杜鹃死亡率在2018、2023年都表现出随着龄级逐渐增加,存活数逐渐减少,说明幼龄个体数较多(表2)。2018年调查时显示:Ⅰ~Ⅳ龄级个体死亡率较低,Ⅴ、Ⅵ龄级个体死亡率较高,分别为0.9和0.8;2023年死亡率随着龄级的增加而逐渐增大,Ⅵ龄级的个体死亡率最高,为0.9 (表2)。2018和2023年的个体平均寿命随着龄级的增加而降低,在Ⅰ龄级最高,说明该阶段种群生存能力强。
表 2 云锦杜鹃种群静态生命表
Table 2. Static life table of R. fortunei population
调查年份 龄级 Ax ax lx lnlx dx qx Lx Tx ex Kx 2018 Ⅰ 43 888 1 000.0 6.9 208.3 0.2 895.8 2 554.1 2.6 0.2 Ⅱ 572 703 791.7 6.7 209.5 0.3 686.9 1 658.2 2.1 0.3 Ⅲ 854 517 582.2 6.4 208.3 0.4 478.0 968.5 1.7 0.4 Ⅳ 600 332 373.9 5.9 104.7 0.3 321.5 493.2 1.3 0.3 Ⅴ 239 239 269.1 5.6 237.6 0.9 150.3 171.7 0.6 2.1 Ⅵ 28 28 31.5 3.5 25.9 0.8 18.6 21.4 0.7 1.7 Ⅶ 5 5 5.6 1.7 - - 2.8 2.8 0.5 - 2023 Ⅰ 14 665 1 000.0 6.9 159.4 0.2 920.3 3 079.0 3.1 0.2 Ⅱ 422 559 840.6 6.7 157.9 0.2 761.7 2 158.7 2.6 0.2 Ⅲ 739 454 682.7 6.5 159.4 0.2 603.0 1 397.0 2.1 0.3 Ⅳ 658 348 523.3 6.3 157.9 0.3 444.4 787.2 1.5 0.4 Ⅴ 436 243 365.4 5.9 212.0 0.6 259.4 349.6 1.0 0.9 Ⅵ 102 102 153.4 5.0 139.9 0.9 83.5 90.2 0.6 2.4 Ⅶ 9 9 13.5 2.6 - - 6.8 6.8 0.5 - 说明:Ax表示龄级内现有存活数。由于缺少下一龄级数据,dx、qx和Kx无法计算,用-表示。 -
物种组成是决定群落性质的重要因素,也是了解生态系统维持机制的重要途径[22]。大盘山的云锦杜鹃群落物种组成丰富,5 a间样地排前10位的优势物种组成无变化,说明样地内的优势种总体上自我更新较好[23],与同样以云锦杜鹃为优势种的湖南阳明山群落10 a间乔木层的物种组成研究结果一致[2],即样地内优势种稳中有变,更新状态良好。样地常绿树种个体占比高达67%,整体上可反映亚热带较高海拔的森林群落特征。5 a间样地林冠层常绿树种云锦杜鹃重要值增长0.22%,尖连蕊茶增幅最大,相比5 a前增加了1.12%,而针叶树种黄山松和杉木的重要值则分别降低了1.90%和0.24%。该结果与地理位置和植被类型较为接近的浙江东白山1 hm2次生针阔混交林样地[24]的研究结果相似,即喜光的先锋树种黄山松等针叶树种的优势地位在未来可能会丧失。该样地随着时间推移将可能逐渐演替为以云锦杜鹃等为优势种的常绿阔叶林。大盘山群落的物种多样性较高,而同样以云锦杜鹃为优势种的江西井冈山样地[3]的群落多样性也同样丰富。这2个样地均位于中国东部较高海拔地区,且都处于亚热带温暖湿润气候区。这种气候特征为植物种群多样化生长提供了良好的环境。此外,较高海拔的地形和微气候的多样性进一步丰富了物种的生态位,推动了物种间的相互作用和竞争,有助于维持和增强物种多样性[25]。样地内偶见种和稀有种数较多,复查时死亡的3个物种全部为稀有种,可能由于其适合度较低,在样地中竞争力较弱,因而更容易被竞争排除[26]。
-
径级结构可以表示在该群落内各物种的不同胸径大小的个体数量分布情况,而径级结构的动态则反映种群内不同年龄个体的生长和发展趋势[27]。2018—2023年,大盘山云锦杜鹃群落1 hm2样地内径级结构呈现倒“J”型分布,说明群落总体上幼龄植株数量多,更新良好。5 a间样地内所有物种的径级结构无显著变化,小径级个体数下降,中径级个体增加,说明外界条件适宜,样地内物种稳定增长。优势种云锦杜鹃呈现金字塔型,以4.0 cm≤DBH<6.0 cm的个体为主,更新良好,但1.0 cm≤DBH<2.0 cm的幼树个体储备不足,应确保幼苗库的补给,否则长时间演替可能出现“青黄不接”的情况。群落内黄山松和杉木主要为10.0 cm≤DBH<25.0 cm的大树。这表明个体从小径级发育为大径级的过程中,为了获取更多的水分、光照、营养和空间,同种个体的自疏作用导致相邻个体的死亡,综合竞争力较强的植株生长较为稳定,最终得以长成大树[28−29]。红果钓樟、朝鲜白檀、尖连蕊茶的径级分布均呈现“L”型,表明其更新状况良好,种群数量会保持稳定增长。此外,一些数量较少的树种,如水马桑等多以小径级个体为主,种群更新较快,有利于群落结构的稳定[30−31]。
-
种群在空间上的分布反映了外界环境因子对个体生存的影响,是分析种内和种间竞争、种子扩散和干扰等生态过程的基础[32]。该样地的优势物种空间分布具有生境偏好,且不同物种之间的生境偏好存在差异。对浙江古田山样地[33]的研究表明:物种在同一生态系统中能够通过时间、空间或资源使用上的差异,避免直接竞争,从而实现更有效的资源利用,即生态位分化机制在样地森林群落的生物多样性维持中有重要的作用。优势种云锦杜鹃种群在样地内均有分布,但山沟底部分布稀少,可能是由于其环境较为潮湿。有研究表明:云锦杜鹃的种子不适宜在过于湿润的土壤环境中萌发[9]。乔木亚层树种小径级较多,如云锦杜鹃、红果钓樟和尖连蕊茶等出现聚集分布,有利于改善群落微环境,增强种群抵御不良环境的能力[34]。LIU等[35]研究发现:竞争是构建群落和驱动树木空间分布模式的主要机制,在小范围聚集,且聚集程度随着距离增加而降低与种子扩散能力有关。乔木亚层植株高度有限,种子落在母株附近的概率更大,新生个体更容易聚集在母株周围。树种从小径级到大径级的空间分布特征一般由聚集分布到随机分布,最终为规则分布[36]。在样地中,黄山松、杉木等高大乔木由于个体生长发育对空间资源的竞争加强,逐渐过渡为随机分布。
-
云锦杜鹃种群的年龄结构呈金字塔,为增长型,种群数量随着龄级的增加呈先升后降的趋势,但5 a间Ⅰ龄级个体更新少。在复查过程中发现:灌木层云锦杜鹃幼苗的出现概率很低,推测可能是由于种子发育为幼苗的过程存在障碍。广东天井山、湖北大别山的云锦杜鹃种群均报道有幼苗不足的情况。也有研究表明:杜鹃花属Rhododendron植物种子自然更新对生境条件要求严格[37]。边才苗等[11]研究发现:云锦杜鹃结实率和结籽率很低。另外,样地内黄山松大树的冠幅较大,郁闭度高也会使幼苗生长光照不够,还可能与区域地形复杂有关,如坡度较大、林下的凋落物层较厚,飘落的种子难以直接在枯枝落叶层上萌发。种群内Ⅵ、Ⅶ龄级数量稀少,说明云锦杜鹃老树对环境的适应能力减弱。本研究中云锦杜鹃种群的个体平均寿命总体呈现下降的趋势,在Ⅰ龄级最大,说明此时种群生存能力较强,对环境具有较强的适应力。存活曲线属于Deevey-I型,说明种群稳定增长,自然环境适宜大多数个体存活到生理寿命。结合年龄结构和存活曲线,5 a间种群更新较好,但Ⅰ龄级数量少将难以保障其种群向中龄级植株和大龄级植株生长的需求,在演替的过程中遭受环境波动和气候变化等自然灾害易造成种群年龄结构的变动[38]。为实现云锦杜鹃种群结构的稳定和种群数量的增长,建议保护现有幼龄植株,并通过人为辅助措施提高幼苗的存活率,加大就地保护力度。
-
浙江大盘山国家级自然保护区王盼、金京华,浙江农林大学段雨豪、王冠舜、解江涛、张坤、张秀娟、何淑冉,杭州师范大学蔡鑫、耿新、何芳参加了野外样地调查;鲁益飞在数据分析过程中提供了帮助;温州大学刘金亮对论文初稿提出宝贵修改意见。谨致谢意!
Community structure and dominant population dynamics of Rhododendron fortunei in Mount Dapanshan, Zhejiang Province
-
摘要:
目的 研究浙江大盘山国家级自然保护区较高海拔区域针阔混交林群落结构及群落中云锦杜鹃Rhododendron fortunei种群动态,预测未来的演替趋势。 方法 2018年7月建立1 hm2固定监测样地,对样地内胸径(DBH)≥1.0 cm的木本植物挂牌、鉴定并测量胸径,每5 a复查1次。根据样地内物种的重要值和优势种等,分析群落物种组成和优势种径级结构。利用云锦杜鹃种群年龄结构图和种群生命表等分析云锦杜鹃种群动态。 结果 2018年共记录木本植物4 773株,分属于35科55属90种;2023年有3个物种在样地内消失,个体死亡率为1.38%,补员率为2.38%。样地林层结构清晰,其中亚乔木层云锦杜鹃数量占主要优势。2018、2023年所有乔木树种的总体径级结构皆为倒“J”型,且2023年乔木树种中5.0 cm≤DBH≤20.0 cm的个体数量明显增多。云锦杜鹃种群径级结构为金字塔型,集中在Ⅱ、Ⅲ、Ⅳ龄级,Ⅰ、Ⅵ、Ⅶ龄级个体数量很少。从存活曲线看,种群内大多数个体能够存活到生理寿命,呈现出稳定增长的动态特征。 结论 云锦杜鹃群落物种丰富,5 a间物种组成和结构比较稳定,低龄级个体比例高,更新较好。云锦杜鹃种群为增长型,但Ⅰ龄级植株数量储备不足。图6表2参38 Abstract:Objective The objective is to study the community structure and dominant population dynamics of Rhododendron fortunei in the high-altitude coniferous and broad-leaved mixed forest in Dapanshan National Nature Reserve in Zhejiang Province, and predict its future successional trends. Method A 1 hm2 fixed monitoring plot was established in July 2018, and woody plants with a diameter at breast height (DBH) ≥ 1.0 cm were tagged, identified, and measured for DBH, and re-examined every 5 years. Based on species importance and dominance, the composition of community species and DBH structure of dominant species were analyzed. The population dynamics of R. fortunei were analyzed using age structure diagrams and population life tables. Result In 2018, a total of 4 773 woody plants were recorded, belonging to 90 species in 55 genera of 35 families. In 2023, three species disappeared from the plot, with an individual mortality rate of 1.38% and a recruitment rate of 2.38%. The forest layer structure of the plot was clear, with the sub-canopy dominated by R. fortunei species. The overall diameter class structure of all tree species in 2018 and 2023 exhibited a reversed “J” pattern, and the number of individuals with 5.0 cm ≤ DBH ≤ 20.0 cm in tree species significantly increased in 2023. The population structure of R. fortunei was pyramid-shaped, mainly concentrated in age classes Ⅱ, Ⅲ, and Ⅳ, with very few individuals in age classes Ⅰ, Ⅵ, and Ⅶ. The survival curve showed that most individuals within the population could survive to their physiological lifespan, exhibiting a dynamic characteristic of stable growth. Conclusion The R. fortunei community has a richness of species, with a relatively stable species composition and structure in the past 5 years, characterized by a high proportion of young individuals and good regeneration. The population of R. fortunei is growing, but there is insufficient reserve of individuals in age class Ⅰ. [Ch, 6 fig. 2 tab. 38 ref.] -
黄河流域作为具有复杂内部结构的整体系统,兼有黄土高原、青藏高原等生态屏障的综合优势,发挥着水土保持、涵养水源等功能[1]。但黄土高原生态环境脆弱,水土流失严重[2],是黄河流域需要解决的重要问题之一。晋西黄土区因其水土流失、植被恢复困难,成为了黄土高原水土保持与植被建设工程的重点区域。为恢复和改善生态环境、控制水土流失,晋西黄土区营造了大量以刺槐Robinia pseudoacacia、油松Pinus tabulaeformis纯林为主的人工林[3−4],在改善林下灌草植物多样性方面发挥关键作用。但是由于造林密度或树种选择不合理,造成树木生长缓慢和林下植被匮乏等问题[5−6],进而影响植被稳定以及林地灌草植物多样性。
林下灌草作为森林生态系统的重要组成部分,在提高生物多样性、改善立地环境、提升水土保持功能、维持森林生态系统功能稳定等方面发挥着至关重要的作用[7−8]。林分密度是林分结构的重要指标之一,影响着林内光照、湿度以及土壤等条件,进而对林下植物种类与多样性产生影响[9]。林分密度可操作性较强[10],合理的林分密度对改善林下灌草植物多样性、提高林地水土保持功能具有重要作用,因此,已有较多关于林分密度对云杉Picea[11]、杉木Cunninghamia lanceolata [12]、马尾松Pinus massoniana[13]、油松[14]等人工纯林林下植物多样性影响方面的研究,并探寻合理的造林密度。当林分密度相同,林分类型不同,同样会对植物多样性产生影响。闫玮明等[15]对亚热带地区深山含笑Michelia maudiae、乐昌含笑M. chapensis、红锥Castanopsis hystrix等人工林和天然次生林植物多样性进行研究,得出科红锥与含笑人工林林下灌木Shannon-Wiener 指数低于天然次生林,其林下草本Shannon-Wiener 指数高于天然次生林的结论;宋霞等[16]对广东化州3种不同林龄人工林植物多样性的研究表明:营造人工混交林对提高林下植物多样性更加有利;赵耀等[17]、张桐等[18]在晋西黄土区对人工林、天然林的灌草植物多样性也进行了相关研究。然而以上研究是基于相同的密度条件,并未考虑各林分类型在不同林分密度条件下灌草植物多样性特点,缺乏关于晋西黄土区不同林分类型在不同密度下林下灌草组成和植物多样性的深入研究。本研究以晋西黄土区刺槐林人工林、油松林人工林、刺槐-油松人工混交林以及山杨Populus davidiana-栎类Quercus spp.天然次生林为研究对象,研究4种林分在低密度(800~1 200株·hm−2)、中密度(1 200~1 600株·hm−2)以及高密度(1 600~2 000株·hm−2)条件下灌草组成和植物多样性特征,以期为晋西黄土区植被建设和水土保持功能提升提供理论基础。
1. 材料与方法
1.1 研究区概况
研究区位于山西省吉县蔡家川流域(36°14′27″~36°18′23″N,110°39′45″~110°47′45″E),面积约40.15 km2,海拔为897~1 515 m。属于温带大陆性季风气候,该流域年均降水量约579.2 mm,且降水集中在6—9月,约占全年降水的80.6%。具有典型黄土残塬沟壑地貌,水土流失严重,主要土壤类型为褐土,黄土母质,呈弱碱性。该地区乔木以刺槐、油松、侧柏Platycladus orientalis等人工林和山杨-辽东栎Quercus wutaishansea等天然次生林为主。灌木以黄刺玫Rosa xanthine、杠柳Periploca sepium和丁香Syringa oblata等为主。草本主要有薹草Carex spp.、茜草Rubia cordifolia等。
1.2 样地选择与调查方法
于2020年7—8月在山西省吉县蔡家川流域进行全面的野外调查,以不同林分类型和林分密度为依据,选择具有典型性和代表性的刺槐人工林、油松人工林、刺槐-油松人工混交林、山杨-栎类天然次生林。4种林分均为22~25年生的中幼龄林,将每种林分划分为低密度(800~1 200株·hm−2)、中密度(1 200~1 600株·hm−2)、高密度(1 600~2 000株·hm−2)等3种密度,每种密度设置3块20 m × 20 m的样地,共计36块(表1)。每个样地四角及中心设置5个灌木样方(5 m × 5 m)和5个草本样方(1 m × 1 m),调查每个样方内植物种类、株数、盖度等,将藤本植物及树高<2 m的乔木幼苗记录在灌木层。
表 1 样地基本情况Table 1 Basic information of the sample plot林分类型 海拔/m 坡度/(°) 胸径/cm 树高/m 郁闭度 林分密度/(株·hm−2) 林分密度 样地1 样地2 样地3 刺槐人工林 1 210 24 9.85±2.68 7.79±1.86 0.38 975 1 000 1 125 低密度 1 150 25 9.98±3.45 7.49±2.34 0.56 1 500 1 550 1 600 中密度 1 150 30 8.15±3.93 7.67±2.86 0.35 1 775 1 850 2 000 高密度 油松人工林 1 130 29 13.04±2.91 6.96±0.85 0.57 900 950 1 050 低密度 1 140 37 13.82±2.38 8.25±0.75 0.62 1 500 1 550 1 550 中密度 1 120 14 10.11±3.63 8.93±2.08 0.43 1 750 1 800 1 875 高密度 刺槐-油松人工混交林 1 120 27 10.36±3.45 7.42±1.25 0.54 1 050 1 150 1 200 低密度 1 140 15 9.93±4.04 9.10±1.89 0.52 1 550 1 550 1 600 中密度 1 140 18 9.61±4.33 7.40±1.72 0.62 1 800 1 850 2 000 高密度 山杨-栎类天然次生林 1 040 20 11.24±4.12 9.46±2.42 0.38 950 1 050 1 150 低密度 1 070 22 10.20±3.77 9.68±2.37 0.41 1 550 1 600 1 600 中密度 1 060 24 10.42±3.14 9.64±2.34 0.68 1 825 1 875 1 950 高密度 说明:胸径和树高数值为平均值±标准误。 1.3 植物多样性分析方法
采用丰富度指数[Patrick丰富度指数(S′)]、多样性指数[Simpson指数(D)、Shannon-Wiener指数(H′)]以及均匀度指数[Pielou均匀度指数(JSW)]表征各林分类型林下灌草的植物多样性[19]。
1.4 数据处理与分析
采用Excel 2019统计数据,采用SPSS 25.0中的单因素方差分析(one-way ANOVA)和最小显著性差异法(LSD)对不同林分类型在不同密度条件下灌草植物多样性进行显著性检验(P<0.05),采用双因素方差分析(two-way ANOVA)分析林分类型、林分密度及其交互作用下的林下灌草植物多样性特征。利用Origin 2021软件绘图。
2. 结果与分析
2.1 不同林分类型和密度条件下林下灌草植物组成及优势种
经调查,4种林分中共有灌草植物87种,隶属36科69属,其中灌木层植物46种,隶属22科36属(图1A),草本层植物41种,隶属17科33属(图1B)。从整体上看,山杨-栎类天然次生林中灌木层和草本层植物种数最多,油松人工林最少,且刺槐-油松人工混交林的灌木层植物种数处于较高水平,刺槐人工林草本层植物种数较刺槐-油松人工混交林丰富。不同林分类型林下灌草组成随密度变化呈现一定规律,均在中密度时植物种数最多。综合来看,4种林分灌草植物组成表现为山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时较为丰富。
4种林分灌木层主要优势种具有相似性,但也存在一定差别。由表2可知:在灌木层中,黄刺玫在3种人工林中均占较大优势,连翘Forsythia suspensa在山杨-栎类天然次生林中优势较大。可以看出:刺槐人工林在低密度时,杠柳Periploca sepium、沙棘Hippophae rhamnoides占有较大优势;在中密度时,山莓Rubus corchorifolius、杠柳优势较大;在高密度时,茅莓R. parvifolius、乌头叶蛇葡萄Ampelopsis aconitifolia比中密度林占有较大优势。油松人工林在低密度时,黄刺玫占有绝对优势,重要值达到71.87,且杠柳优势较大;在中密度时,沙棘Hippophae rhamnoides、杠柳占有较大优势,有暴马丁香Syringa reticulata var. amurensis零星分布;在高密度时,暴马丁香已占有较大优势。刺槐-油松人工混交林在低密度时,茅莓、杠柳的优势较大;在中密度时茅莓、山莓占有较大优势,此时乌头叶蛇葡萄稍占优势;高密度时,乌头叶蛇葡萄、茅莓成为主要优势种。山杨-栎类天然次生林在低密度时,榆叶梅Amygdalus triloba和黄栌Cotinus coggygria占有较大优势,有辽东栎零星分布;在中密度时,六道木Abelia biflora和鼠李Rhamnus davurica占有较大优势;在高密度时,出现了胡颓子Elaeagnus pungens等耐阴性植物。可见,不同林分类型在不同密度条件下灌木层植物呈现阳生—中生—阴生的变化规律。
表 2 主要灌草植物重要值Table 2 Important values of main shrub and grass plants林分类型 林分密度 植物种数/种 主要植物及重要值 灌木层 草本层 灌木层 草本层 刺槐人工林 低密度 9 15 黄刺玫(42.96)、杠柳(19.64)、沙棘(14.07)、 丁香(4.09) 铁杆蒿(19.88)、马唐(19.20)、风毛菊 (10.77)、益母草(0.39) 中密度 12 13 黄刺玫(34.89)、山莓(24.85)、杠柳(15.05)、 茅莓(9.45)、乌头叶蛇葡萄(4.33) 虉草(27.52)、沿阶草(13.88)、铁杆蒿 (12.34)、薹草(9.21) 高密度 7 7 黄刺玫(30.95)、茅莓(20.87)、乌头叶蛇葡 萄(16.20)、杠柳(13.97)、沙棘(7.04) 沿阶草(34.99)、虉草(30.03)、薹草 (14.43)、茜草(1.75) 油松人工林 低密度 6 7 黄刺玫(71.87)、杠柳(14.12)、沙棘(2.72) 败酱(33.78)、麻花头(29.94)、白莲蒿 (18.82)、薹草(6.68) 中密度 7 8 黄刺玫(39.83)、沙棘(15.36)、杠柳(14.37)、 暴马丁香(12.45) 败酱(34.49)、薹草(18.91)、白莲蒿 (14.23)、茜草(1.48) 高密度 3 5 暴马丁香(58.78)、黄刺玫(29.17)、沙棘 (12.05) 薹草(45.38)、败酱(31.33)、沿阶草(14.23)、 艾蒿(6.64) 刺槐-油松人工混交林 低密度 13 16 黄刺玫(34.54)、茅莓(18.96)、杠柳(17.93)、 乌头叶蛇葡萄(3.83)、丁香(0.44) 白莲蒿 (26.95)、风毛菊(14.34)、麻花头 (10.02)、黑麦草(9.91) 中密度 15 14 黄刺玫(33.10)、茅莓(17.03)、山莓(12.24)、 乌头叶蛇葡萄(11.24) 败酱(27.84)、马唐(19.40)、沿阶草(15.95)、 薹草(15.15) 高密度 11 8 乌头叶蛇葡萄(26.60)、黄刺玫(25.41)、茅 莓(13.39)、连翘(5.31)、酸枣(0.51) 败酱(35.95)、沿阶草(28.71)、薹草(14.30)、 铁杆蒿(4.00) 山杨-栎类天然次生林 低密度 19 13 连翘(30.90)、榆叶梅(14.95)、黄栌(13.09)、 辽东栎(1.70) 薹草(33.68)、天名精(15.13)、龙芽草 (14.25)、山罗花(7.86) 中密度 20 14 连翘(20.80)、六道木(10.16)、鼠李(9.57)、 乌头叶蛇葡萄(5.51) 薹草(39.47)、山罗花(15.20)、假地豆 (9.80)、泥胡菜(6.35) 高密度 12 11 连翘(38.12)、榆叶梅(17.06)、六道木(8.60)、 胡颓子(3.55) 薹草(30.91)、茜草(16.66)、蜻蜓兰(11.35)、 龙芽草(7.01)、川续断(2.12) 说明:括号中数值为重要值。灌木层酸枣Ziziphus jujuba var. spinosa。草本层艾蒿Artemisia argyi,黑麦草Lolium perenne、泥胡菜Hemisteptia lyrata、益母草Leonurus japonicus。 4种林分草本层主要优势种具有一定规律并存在一定差异。由表2可知:在草本层中,刺槐人工林在低密度时,以铁杆蒿Artemisia gmelinii、马唐Digitaria sanguinalis和风毛菊Saussurea japonica为主;中密度时,铁杆蒿较低密度林的优势有所减小,虉草Phalaris arundinacea、沿阶草Ophiopogon bodinieri占有较大优势;高密度时,沿阶草、虉草所占优势增大,薹草成为优势种之一。油松人工林在低、中、高密度时,败酱Patrinia scabiosifolia均占有较大优势,且随密度增大出现了薹草、沿阶草等优势种;刺槐-油松混交林在低密度时,以白莲蒿Artemisia stechmanniana、风毛菊和麻花头Aristolochia debilis为主;中密度时,败酱、马唐、沿阶草所占优势较大;高密度时,败酱、沿阶草较中密度林时重要值增大,且薹草也占较大优势。山杨-栎类天然次生林在不同密度时,薹草均占有较大优势。低密度山杨-栎类天然次生林中天名精Carpesium abrotanoides和龙芽草Agrimonia pilosa优势较大;中密度时,山罗花Melampyrum roseum和假地豆Desmodium heterocarpon占有较大优势;高密度时,蜻蜓兰Tulotis fuscescens成为主要优势种之一,且零星分布川续断Dipsacus asper、龙芽草等喜湿耐阴性植物。可见,不同林分类型在低密度时草本层主要优势种以阳生植物为主,中密度和高密度时,草本层主要优势种以对生长环境没有较高要求、耐阴及喜湿的植物为主。
2.2 不同林分类型和密度条件下林下灌草植物多样性特征
对不同林分类型和不同密度条件下的林下灌草植物多样性进行双因素方差分析,在林分类型和密度的单一因素作用下,林下灌木层和草本层的S′、D、H′有极显著差异(P<0.01),灌木层 Jsw在林分类型作用下有显著差异(P<0.05),在林分密度作用下差异极显著(P<0.01)。在林分类型与密度条件的交互作用下,林下灌草的D、H′有极显著差异(P<0.01),灌木层的S′有极显著差异(P<0.01),该指数在草本层有显著差异(P<0.05)。草本层Jsw在林分类型、林分密度及其交互作用下均不显著(表3)。
表 3 不同林分类型和密度条件下林下灌草植物多样性的双因素方差分析Table 3 Two-factor variance analysis of stand type and stand density on understory shrub and grass plant diversity变异来源 S′ D H′ Jsw 自由度 F P 自由度 F P 自由度 F P 自由度 F P 灌木层 林分类型 3 232.838 <0.01 3 89.562 <0.01 3 128.906 <0.01 3 3.362 <0.05 林分密度 2 48.091 <0.01 2 18.603 <0.01 2 20.530 <0.01 2 27.792 <0.01 林分类型×林分密度 6 14.232 <0.01 6 6.181 <0.01 6 5.370 <0.01 6 11.824 <0.01 草本层 林分类型 3 71.152 <0.01 3 25.589 <0.01 3 42.011 <0.01 3 0.370 0.775 林分密度 2 45.818 <0.01 2 20.084 <0.01 2 32.356 <0.01 2 0.428 0.657 林分类型×林分密度 6 2.970 <0.05 6 6.613 <0.01 6 4.382 <0.01 6 2.477 0.052 不同林分类型在相同密度条件下的S′、D、H′以及 Jsw表现出相似的变化规律,但也有所不同(表4)。不同林分类型灌木层S′、H′从大到小依次为山杨-栎类天然次生林、刺槐-油松人工混交林、刺槐人工林、油松人工林,且山杨-栎类天然次生林与人工纯林均存在显著差异(P<0.05),不同林分类型草本层S′、H′最高的均为山杨-栎类天然次生林,最低的均为油松人工林。不同林分类型灌木层和草本层的D、Jsw不存在明显规律,且3种人工林草本层的Jsw差异均不显著。不同林分类型灌木层与草本层多样性指数具有明显差异,人工纯林灌木层多样性指数低于草本层,而山杨-栎类天然次生林灌木层多样性指数高于草本层。
表 4 典型林分类型灌草植物多样性Table 4 Bush-grass plant diversity index of typical stand types林分类型 密度类型 灌木层 草本层 S′ D H′ Jsw S′ D H′ Jsw 刺槐人工林 低密度 5.67±0.33 BCb 0.69±0.04 Ba 1.38±0.10 Ba 0.79±0.04 Ab 9.67±0.33 Aa 0.81±0.03 Aa 1.91±0.10 Aa 0.84±0.03 Aab 中密度 9.00±0.33 Ba 0.76±0.01 Ba 1.68±0.04 Ba 0.75±0.01 Bb 8.00±0.58 BCa 0.82±0.01 ABa 1.84±0.08 ABa 0.89±0.01 Aa 高密度 5.00±0.58 Bb 0.74±0.04 Aa 1.45±0.15 Ba 0.91±0.03 ABa 6.67±0.33 Bb 0.74±0.01 ABb 1.56±0.04 Bb 0.82±0.00 Ac 油松人工林 低密度 4.00±0.00 Ca 0.45±0.02 Cb 0.88±0.03 Cb 0.63±0.02 Bb 5.00±0.00 Cb 0.71±0.01 Ba 1.38±0.03 Bb 0.86±0.02 Aa 中密度 4.33±0.33 Ca 0.69±0.04 Ca 1.29±0.11 Ca 0.88±0.03 Aa 6.67±0.33 Ca 0.77±0.01 Ba 1.64±0.05 Ba 0.87±0.01 Aa 高密度 2.00±0.00 Cb 0.48±0.01 Bb 0.67±0.01 Cb 0.96±0.02 Aa 3.00±0.00 Cc 0.56±0.03 Cb 0.89±0.07 Cc 0.81±0.07 Aa 刺槐-油松人工混交林 低密度 7.67±0.33 Ba 0.74±0.02 Ba 1.54±0.08 Ba 0.76±0.03 Aa 7.67±0.88 Ba 0.77±0.03 ABab 1.63±0.12 Bab 0.81±0.05 Aa 中密度 9.33±0.58 Aa 0.80±0.02 Aa 1.81±0.11 Aa 0.82±0.03 Ca 9.00±0.00 Ba 0.84±0.01 Aa 1.97±0.03 Aa 0.90±0.01 Aa 高密度 9.21±0.00 Ba 0.77±0.03 Ba 1.71±0.08 Ba 0.78±0.04 Ba 6.00±0.58 Ba 0.75±0.00 Bc 1.48±0.04 Bc 0.84±0.03 Aa 山杨-栎类天然次生林 低密度 16.33±1.33 Aa 0.85±0.01 Ab 2.30±0.08 Ab 0.83±0.01 Ab 9.67±0.33 Ab 0.81±0.00 Aa 1.91±0.03 Aa 0.84±0.00 Aa 中密度 18.67±0.67 Aa 0.90±0.00 Aa 2.58±0.03 Aa 0.88±0.01 Aa 12.33±0.67 Aa 0.78±0.02 ABa 1.93±0.10 Aa 0.77±0.03 Bb 高密度 10.00±0.58 Ab 0.80±0.01 Ac 1.92±0.04 Ac 0.83±0.01 BCb 8.33±0.33 Ab 0.81±0.02 Aa 1.86±0.08 Aa 0.88±0.02 Aa 说明:大写字母代表相同密度下不同林分类型间差异显著(P<0.05);小写字母代表同一林分类型不同林分密度间差异显著(P<0.05)。 同一林分类型不同密度条件下,随着密度增大,4种林分林下灌木层和草本层植物多样性指数大多呈现先增大后减小的趋势。其中刺槐人工林灌木层D、H′在中密度最大,其次为高密度、低密度,其Jsw在高密度时最大;而刺槐人工林草本层各指数随密度的增大不存在明显规律,但D、Jsw在中密度时最大。油松人工林灌木层D、H′与刺槐人工林表现规律一致,且Jsw在高密度时最大;油松人工林草本层S′、H′从大到小依次为中密度、低密度、高密度,且在不同密度间差异显著(P<0.05)。刺槐-油松人工混交林灌木层S′、D、H′从大到小依次为中密度、高密度、低密度,且在中密度时均匀度指数
$ {J}_{{\rm{SW}}} $ 最大;草本层多样性指数从大到小依次为中密度、低密度、高密度,在中密度时均匀度最好。山杨-栎类天然次生林灌木层和草本层D、H′均表现为中密度最大,低密度次之,高密度最小。综上所述,山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时的植物多样性较好。3. 讨论
3.1 林分类型对其林下灌草植物组成、结构及多样性的影响
植物组成和结构是植物群落的基本特征,并反映灌木层及草本层的植物种类和分布情况。不同林分类型林下植物组成存在一定规律。本研究中,4种林分灌木层植物种数在不同密度下整体表现为山杨-栎类天然次生林多于人工林,刺槐-油松人工混交林较人工纯林丰富。可能与山杨-栎类天然次生林及刺槐-油松人工混交林的生态位较宽有关,其林内环境复杂,具有较高的空间异质性,更适于不同需求植物的生长。这与赵耀等[17]对晋西黄土区不同林地植物多样性的研究结果近似。本研究中,草本层植物数量表现为山杨-栎类天然次生林处于较高水平,油松人工林草本植物种数最少,说明天然林较人工纯林更有利于草本植物的发育。这与张桐等[18]得出的人工纯林的植物种数高于天然林的研究结果有所差别,可能与立地条件、气候等因素有关。可见,山杨-栎类天然次生林、刺槐-油松人工混交林在各密度下植物组成和结构较好,灌木和草本植物种数量充足。在因地制宜的原则下,可通过相应的林草措施,提升林地植被稳定性[20],对控制水土流失具有较好的效果。
植物多样性可以通过植物丰富度与植物分布均匀度进行体现,在维持生态系统稳定方面发挥基础性作用[21]。本研究中不同林分类型灌木层的S′、H′在不同密度条件下从大到小均依次为山杨-栎类天然次生林、刺槐-油松人工混交林、刺槐人工林、油松人工林,究其原因是天然次生林是自然封育生长,灌木层受外界条件影响较小。刺槐-油松人工混交林植物组成较人工纯林丰富,与武文娟等[22]的研究结果一致。油松人工林不仅在各密度下灌木层多样性指数最低,在草本层也是如此,可能是油松人工林下难以分解的油性枯枝落叶较多,降低了土壤结构稳定性,造成林下植物多样性较小,不利于发挥水土保持功能[23]。综合来看,在造林时,刺槐-油松人工混交林较人工纯林更具优势。
3.2 林分密度对其林下灌草植物组成、结构及多样性的影响
本研究结果表明:4种林分的灌草植物随林分密度增大呈现由阳生向中生、阴生植物过渡的变化规律,且山杨-栎类天然次生林与人工林的植物种类差别较大。黄刺玫在3种人工林不同密度条件下均有分布,并且是主要优势种,表明黄刺玫是研究区林分灌草的主要适生种,对干旱少雨、土壤瘠薄的环境适应性较强。连翘在山杨-栎类天然次生林不同密度条件下均占有较大优势,不仅喜光,同时具有耐阴性,能更好地适应天然次生林的林下环境,由于低密度时有辽东栎零星分布,说明该林分可能存在自然更新的现象。薹草、沿阶草在各林分中均有分布,说明它们对不同林分类型生态环境适应性较强,是研究区的重要组成植物。山杨-栎类天然次生林在高密度时的优势种出现了蜻蜓兰,该植物对生长环境要求非常严格[18],说明山杨-栎类天然次生林的生长环境优良。因此,今后的植被建设应当加强对天然林的保护,充分发挥其水土保持功能。
本研究中不同林分类型灌木层和草本层在不同密度条件下存在差异性和规律性,由低密度到中密度时S′及H′增大,而由中密度到高密度时丰富度指数和多样性指数变小。可见,中密度林分的林下灌草种类更加丰富,多样性更高,并且分布较为均匀。这与丁继伟等[24]的研究结果近似。原因可能是林分密度过低或者过高可能都会对林下灌草的植物多样性产生抑制作用。当林分密度较低时,若光照充足,对阳生、耐旱植物的萌发有促进作用,但是阳光照射至土地上导致土壤内水分蒸发限制了林下其他类型植物的生长,导致植物多样性水平较低;随着密度的增加,中生和阴生植物逐渐增多,丰富了林下灌草组成,植物多样性处于较高水平;但密度达到一定峰值,林木直接竞争愈发激烈,且郁闭度随之也会增加,从而破坏了林下植被的生长条件,造成植物多样性降低[25]。这可能是导致刺槐人工林和油松人工林灌木层在高密度时均匀度指数最高,其丰富度指数与多样性指数处于较低水平的原因。不同林分类型灌木层与草本层多样性指数也具有明显差异。王芸等[26]研究表明:人工林和天然次生林林下植物多样性从大到小均为灌木层、草本层,但是本研究得出在人工纯林中林下植物多样性从小到大为灌木层、草本层,而山杨-栎类天然次生林中植物多样性从大到小为灌木层、草本层,与赵耀等[17]的研究结果一致。这可能与海拔、坡向、林分类型、林分密度等因素有关。综合来看,中等密度的刺槐-油松人工混交林林下植物种类较为丰富,植物多样性更高且分布较为均匀,有利于改善土壤质地,控制水土流失,可以将刺槐人工林、油松人工林向混交模式改进,扩大中等密度刺槐-油松人工混交林的造林面积。然而,人工造林与土壤条件、立地条件、混交比例等关系密切,因此有必要研究不同林分类型在不同密度下植物多样性的影响因子,制定合理的刺槐-油松混交林造林方式,以充分发挥林地的水土保持功能。
4. 结论
①不同林分类型中灌草植物组成存在一定差异。4种林分灌草植物共87种,隶属36科69属,其中灌木植物46种,隶属22科36属,草本植物41种,隶属17科33属。4种林分灌草植物组成表现为中密度山杨-栎类天然次生林和刺槐-油松人工混交林较为丰富。②4种林分灌草植物随密度增大呈现由阳生向中生、阴生植物过渡的变化规律。人工林、山杨-栎类天然次生林灌木层主要优势种分别为黄刺玫、连翘,草本层主要优势种是薹草、沿阶草等植物。③不同林分类型灌木层和草本层植物多样性指数存在一定差异。山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时的植物多样性优于人工纯林,且随林分密度的增加,灌木层和草本层植物多样性指数大多呈现先增大后减小的变化趋势。研究区中密度林分更有利于林下植物多样性的维持和改善。
建议通过人工抚育调整林分密度,并向中密度刺槐-油松人工混交林或近自然林进行改造,为黄刺玫、连翘等灌木植物及薹草、沿阶草等草本植物建立良好生长条件,同时保护研究区的山杨-栎类天然次生林,以促进植被恢复建设和强化其水土保持功能。
-
表 1 大盘山1 hm2固定监测样地重要值排名前10位的树种
Table 1. Top ten species with the highest importance values in the 1 hm2 forest dynamics plot in Mount Dapanshan
树种 个体数/株 重要值/% 生活型 2018年 2023年 2018年 2023年 云锦杜鹃Rhododendron fortunei 2 341 2 380 36.21 36.43 常绿小乔木 黄山松Pinus taiwanensis 359 336 15.61 13.71 常绿乔木 红果钓樟Lindera erythrocarpa 228 254 5.30 5.53 落叶灌/小乔木 水马桑Weigela japonica var. sinica 243 197 4.72 3.86 落叶灌木 朝鲜白檀Symplocos coreana 208 289 4.59 5.41 落叶乔木 杉木Cunninghamia lanceolata 112 101 4.11 3.87 常绿乔木 尖连蕊茶Camellia cuspidata 219 312 3.44 4.56 常绿灌木 灯台树Bothrocaryum controversum 98 97 2.77 2.63 落叶乔木 短柄榛Corylus heterophylla var. brevipes 90 103 1.88 1.95 落叶灌/小乔木 合轴荚蒾Viburnum sympodiale 93 134 1.84 2.51 落叶灌木 表 2 云锦杜鹃种群静态生命表
Table 2. Static life table of R. fortunei population
调查年份 龄级 Ax ax lx lnlx dx qx Lx Tx ex Kx 2018 Ⅰ 43 888 1 000.0 6.9 208.3 0.2 895.8 2 554.1 2.6 0.2 Ⅱ 572 703 791.7 6.7 209.5 0.3 686.9 1 658.2 2.1 0.3 Ⅲ 854 517 582.2 6.4 208.3 0.4 478.0 968.5 1.7 0.4 Ⅳ 600 332 373.9 5.9 104.7 0.3 321.5 493.2 1.3 0.3 Ⅴ 239 239 269.1 5.6 237.6 0.9 150.3 171.7 0.6 2.1 Ⅵ 28 28 31.5 3.5 25.9 0.8 18.6 21.4 0.7 1.7 Ⅶ 5 5 5.6 1.7 - - 2.8 2.8 0.5 - 2023 Ⅰ 14 665 1 000.0 6.9 159.4 0.2 920.3 3 079.0 3.1 0.2 Ⅱ 422 559 840.6 6.7 157.9 0.2 761.7 2 158.7 2.6 0.2 Ⅲ 739 454 682.7 6.5 159.4 0.2 603.0 1 397.0 2.1 0.3 Ⅳ 658 348 523.3 6.3 157.9 0.3 444.4 787.2 1.5 0.4 Ⅴ 436 243 365.4 5.9 212.0 0.6 259.4 349.6 1.0 0.9 Ⅵ 102 102 153.4 5.0 139.9 0.9 83.5 90.2 0.6 2.4 Ⅶ 9 9 13.5 2.6 - - 6.8 6.8 0.5 - 说明:Ax表示龄级内现有存活数。由于缺少下一龄级数据,dx、qx和Kx无法计算,用-表示。 -
[1] 《浙江植物志(新编) 》编辑委员会. 浙江植物志(新编) [M]. 杭州: 浙江科学技术出版社, 2021. Editorial Board of Flora of Zhejiang (New Edition). Flora of Zhejiang (New Edition) [M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2021. [2] 陈艳华, 彭重华, 陈建荣. 湖南阳明山云锦杜鹃的群落学研究[J]. 中国园艺文摘, 2009, 25(12): 60−62. CHEN Yanhua, PENG Zhonghua, CHEN Jianrong. Community ecology study of the Rhododendron fortunei in Yangming Mountains, Hunan Province, China [J]. Chinese Horticulture Abstracts, 2009, 25(12): 60−62. [3] 邓贤兰, 刘鹏, 吴杨, 等. 井冈山云锦杜鹃群落特征研究[J]. 亚热带植物科学, 2011, 40(4): 20−25. DENG Xianlan, LIU Peng, WU Yang, et al. Studies on the community characteristics of Rhododendron fortunei in Jinggang Mountain [J]. Subtropical Plant Science, 2011, 40(4): 20−25. [4] 袁丛军, 陈光丽, 戴晓勇, 等. 雷公山保护区云锦杜鹃群落结构及其多样性特征[J]. 贵州农业科学, 2021, 49(11): 125−133. YUAN Congjun, CHEN Guangli, DAI Xiaoyong, et al. Structure and diversity characteristics of Rhododendron fortunei community in Leigong Mountain Nature Reserve [J]. Guizhou Agricultural Sciences, 2021, 49(11): 125−133. [5] 赵丽娟, 李家湘, 邓家兴. 湖南平江幕阜山云锦杜鹃群落特征的分析[J]. 中南林学院学报, 2005, 25(2): 81−84. ZHAO Lijuan, LI Jiaxiang, DENG Jiaxing. Primary studies of Rhododendron fortunei community of Mufu Forest Park, Pingjiang, Hunan [J]. Journal of Central South Forestry University, 2005, 25(2): 81−84. [6] 黄川腾, 唐光大, 刘乐, 等. 广东天井山云锦杜鹃种群及其所处群落特征[J]. 西南林学院学报, 2010, 30(6): 15−19. HUANG Chuanteng, TANG Guangda, LIU Le, et al. Population and community characteristics of Rhododendron fortunei at Mount Tianjing of Guangdong Province [J]. Journal of Southwest Forestry University, 2010, 30(6): 15−19. [7] 付剑, 詹先银, 漆俊, 等. 湖北大别山国家级自然保护区云锦杜鹃种群生态学研究[J]. 湖北林业科技, 2020, 49(4): 19−21. FU Jian, ZHAN Xianyin, QI Jun, et al. Study on the population ecology of Rhododendron fortunei in Dabie Mountains National Nature Preserve, Hubei Province [J]. Hubei Forestry Science and Technology, 2020, 49(4): 19−21. [8] 管康林, 吴家森, 范义荣, 等. 华顶山云锦杜鹃林衰退原因及对策[J]. 浙江林学院学报, 2001, 18(2): 195−197. GUAN Kanglin, WU Jiasen, FAN Yirong, et al. Cause and countermeasure of deterioration of Rhododendron fortunei forest in Mount Huading [J]. Journal of Zhejiang Forestry College, 2001, 18(2): 195−197. [9] 边才苗, 金则新, 张俊会, 等. 云锦杜鹃种子萌发及对干旱胁迫的响应[J]. 植物研究, 2006, 36(20): 718−721. BIAN Caimiao, JIN Zexin, ZHANG Junhui, et al. Response of seed germination of Rhododendron fortunei to drought stress [J]. Bulletin of Botanical Research, 2006, 36(20): 718−721. [10] 杨华, 宋绪忠, 王秀云, 等. 2种光照下低海拔引种云锦杜鹃的光合作用日变化[J]. 林业与环境科学, 2021, 37(1): 43−47. YANG Hua, SONG Xuzhong, WANG Xiuyun, et al. Diurnal variation of photosynthesis of Rhododendron fortunei in two kinds of illumination intensity under low altitude [J]. Forestry and Environmental Science, 2021, 37(1): 43−47. [11] 边才苗, 金则新. 天台山云锦杜鹃的开花与结实特性[J]. 园艺学报, 2006, 33(1): 101−104. BIAN Caimiao, JIN Zexin. The flowering and fruit set features of Rhododendron fortunei in Tiantai Mountains [J]. Acta Horticulturae Sinica, 2006, 33(1): 101−104. [12] 章辰飞, 谢晓鸿, 汪庆昊, 等. 云锦杜鹃不同花期挥发性成分的 HS-SPME-GC-MS 检测与主成分分析[J]. 广西植物, 2020, 40(7): 1033−1045. ZHANG Chenfei, XIE Xiaohong, WANG Qinghao, et al. Analysis of volatile components of Rhododendron fortunei at different flowering stages by HS-SPME-GC-MS and PCA [J]. Guihaia, 2020, 40(7): 1033−1045. [13] 许蔷薇, 楼雄珍, 杨彬, 等. 云锦杜鹃转录组分析[J]. 浙江农林大学学报, 2019, 36(6): 1190−1198. XU Qiangwei, LOU Xiongzhen, YANG Bin, et al. Transcriptome sequencing and analysis of Rhododendron fortunei [J]. Journal of Zhejiang A&F University, 2019, 36(6): 1190−1198. [14] 杨彬, 许蔷薇, 牛明月, 等. 云锦杜鹃转录组SSR分析及其分子标记开发[J]. 核农学报, 2018, 32(12): 2335−2345. YANG Bin, XU Qiangwei, NIU Mingyue, et al. Analysis of SSR information in transcriptome and development of SSR molecular markers in Rhododendron fortunei [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(12): 2335−2345. [15] 陈远志. 浙江大盘山国家级自然保护区自然资源考察与研究[M]. 杭州: 浙江大学出版社, 2011: 1−272. CHEN Yuanzhi. Investigations and Researches on the Naatural Resources of Zhejiang Dapanshan National Nature Reserve [M]. Hangzhou: Zhejiang University Press, 2011: 1−272. [16] CONDIT R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots [M]. Berlin: Springer, 1998. [17] 仲磊, 雷祖培, 刘西, 等. 浙江乌岩岭森林动态样地: 树种及其分布格局[M]. 北京: 清华大学出版社, 2023: 19. ZHONG Lei, LEI Zupei, LIU Xi, et al. Zhejiang Wuyanling Forest Dynamics Plots: Tree Species and Their Distribution Patterns [M]. Beijing: Tsinghua University Press, 2023: 19. [18] 丁炳扬, 陈德良, 骆争荣, 等. 浙江百山祖森林动态样地: 树种及其分布格局[M]. 北京: 中国林业出版社, 2013: 112. DING Bingyang, CHEN Deliang, LUO Zhengrong, et al. Zhejiang Bashanzu Forest Dynamics Plot: Tree Species and Their Distribution Patterns [M]. Beijing: China Forestry Publishing House, 2013: 112. [19] HE Fangliang, LEGENDRE P, LAFRANKIE J V. Distribution patterns of tree species in a Malaysian tropical rain forest [J]. Journal of Vegetation Science, 1997, 8(1): 105−114. [20] LINARES-PALOMINO R, ALVAREZ S I P. Tree community patterns in seasonally dry tropical forests in the Cerros de Amotape Cordillera, Tumbes, Peru [J]. Forest Ecology and Management, 2005, 209(3): 261−272. [21] 吴承祯, 洪伟, 谢金寿, 等. 珍稀濒危植物长苞铁杉种群生命表分析[J]. 应用生态学报, 2000, 11(3): 333−336. WU Chengzhen, HONG Wei, XIE Jinshou, et al. Life table analysis of Tsuga longibracteata population [J]. Chinese Journal of Applied Ecology, 2000, 11(3): 333−336. [22] GAMFELDT L, SNÄLL T, BAGCHI R, et al. Higher levels of multiple ecosystem services are found in forests with more tree species [J/OL]. Nature Communications, 2013, 4 : 1340[2024-07-03]. DOI: 10.1038/ncomms2328. [23] LIU Libin, NI Jian, ZHONG Qiaolian, et al. High mortality and low net change in live woody biomass of karst evergreen and deciduous broad-leaved mixed forest in southwestern China [J/OL]. Forests, 2018, 9 (5): 263[2024-07-03]. DOI: 10.3390/f9050263. [24] 李桥, 范清平, 唐战胜, 等. 浙江东白山次生针阔混交林群落组成及结构动态[J]. 广西植物, 2022, 42(6): 1067−1076. LI Qiao, FAN Qingping, TANG Zhansheng, et al. Community composition and structure dynamics of secondary coniferous and broad-leaved mixed forest in Dongbaishan, Zhejiang Province [J]. Guihaia, 2022, 42(6): 1067−1076. [25] 何远政, 黄文达, 赵昕, 等. 气候变化对植物多样性的影响研究综述[J]. 中国沙漠, 2021, 41(1): 59−66. HE Yuanzheng, HUANG Wenda, ZHAO Xin, et al. Review on the impact of climate change on plant diversity [J]. Journal of Desert Research, 2021, 41(1): 59−66. [26] WANG Yunquan, CADOTTE M W, CHEN Jianhua, et al. Neighborhood interactions on seedling survival were greatly altered following an extreme winter storm [J/OL]. Forest Ecology and Management, 2020, 461 : 117940[2024-07-03]. DOI: 10.1016/j.foreco.2020.117940. [27] 葛结林, 熊高明, 邓龙强, 等. 湖北神农架山地米心水青冈-多脉青冈混交林的群落动态[J]. 生物多样性, 2012, 20(6): 643−653. GE Jielin, XIONG Gaoming, DENG Longqiang, et al. Community dynamics of a montane Fagus engleriana-Cyclobalanopsis multiervis mixed forest in Shennongjia, Hubei, China [J]. Biodiversity Science, 2012, 20(6): 643−653. [28] 刘贵峰, 丁易, 臧润国, 等. 天山云杉种群分布格局[J]. 应用生态学报, 2011, 22(1): 9−13. LIU Guifeng, DING Yi, ZANG Runguo, et al. Distribution patterns of Picea schrenkiana var. tianschanica population in Tianshan Mountains [J]. Chinese Journal of Applied Ecology, 2011, 22(1): 9−13. [29] SMITH K T, SHORTLE W C. Radial growth of hardwoods following the 1998 ice storm in New Hampshire and Maine [J]. Canadian Journal of Forest Research, 2003, 33(2): 325−329. [30] 陈德良, 顾莎莎, 丁炳扬, 等. 百山祖木荷的种群结构与分布格局[J]. 浙江林业科技, 2015, 35(1): 1−7. CHEN Deliang, GU Shasha, DING Bingyang, et al. Population structure and distribution pattern of Schima superba in Baishanzu [J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(1): 1−7. [31] 刘啸林, 吴友贵, 张敏华, 等. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 1−11. LIU Xiaolin, WU Yougui, ZHANG Minhua, et al. Community composition and structure of a 25-ha forest dynamics plot of subtropical forest in Baishanzu, Zhejiang Province [J]. Biodiversity Science, 2024, 32(2): 1−11. [32] 刘艳会, 刘金福, 何中声, 等. 基于戴云山固定样地黄山松群落物种组成与结构研究[J]. 广西植物, 2017, 37 (7): 881−890. LIU Yanhui, LIU Jinfu, HE Zhongsheng, et al. Pinus taiwanensis community composition and structure based on fixed sample Daiyun Mountain [J]. Guihaia, 2017, 37 (7): 881−890. [33] 祝燕, 赵谷风, 张俪文, 等. 古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构[J]. 植物生态学报, 2008, 32(2): 262−273. ZHU Yan, ZHAO Gufeng ZHANG Liwen, et al. Community composition and structure of Gutianshan forest dynamic plot in a mid-subtropical evergreen broad-leaved forest, east China [J]. Chinese Journal of Plant Ecology, 2008, 32(2): 262−273. [34] 康佳鹏, 马盈盈, 马淑琴, 等. 荒漠绿洲过渡带柽柳种群结构与空间格局动态[J]. 生态学报, 2019, 39(1): 265−276. KANG Jiapeng, MA Yingying, MA Shuqin, et al. Dynamic changes of spatial pattern and structure of the Tamarix ramosissima population at the desert-oasis ecotone of the Tarim Basin [J]. Acta Ecologica Sinica, 2019, 39(1): 265−276. [35] LIU Pengcheng, WANG Wendong, BAI Zhiqiang, et al. Competition and facilitation co-regulate the spatial patterns of boreal tree species in Kanas of Xinjiang, northwest China [J/OL]. Forest Ecology and Management, 2020, 467 : 118167[2024-07-03]. DOI: 10.1016/j.foreco.2020.118167. [36] GAVRIKOV V, STOYAN D. The use of marked point processes in ecological and environmental forest studies [J]. Environmental and Ecological Statistics, 1995, 2(4): 331−344. [37] 杨慧琴, 刘圆缓, 刘芳黎, 等. 西南特有濒危植物大王杜鹃种群结构及动态特征[J]. 西北植物学报, 2020, 40(12): 2148−2156. YANG Huiqin, LIU Yuanyuan, LIU Fangli, et al. Population structure and dynamic characteristics of an endangeredand endemic species Rhododendron rex subsp. rex in southwest, China [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(12): 2148−2156. [38] 余潇, 代嫚婷, 普甜, 等. 珍稀濒危植物蒜头果种群结构及动态特征研究[J]. 西部林业科学, 2023, 52(3): 8−16. YU Xiao, DAI Manting, PU Tian, et al. Population structure and dynamics analysis of rare and endangered plant Malania oleifera [J]. Journal of West China Forestry Science, 2023, 52(3): 8−16. 期刊类型引用(10)
1. 宫正. 黄土高原森林林下植被物种多样性及其影响因素. 东北林业大学学报. 2025(02): 66-74 . 百度学术
2. 郭艳杰,毕华兴,赵丹阳,刘泽晖,林丹丹,韩金丹,黄浩博. 不同密度油松林地土壤水碳分布特征及其耦合关系. 应用生态学报. 2025(01): 50-58 . 百度学术
3. 王宇,王冬梅,王彦辉,云慧雅,张梦棋,张莹莹. 黄土高原退耕刺槐中龄林密度和空间结构对灌草多样性的影响. 生态学报. 2025(02): 822-836 . 百度学术
4. 张犇,赵廷宁,张海强,杨建英,贾亚倢,赵炯昌,胡亚伟,李阳. 晋西黄土区不同坡向刺槐林下植物种间关联及群落稳定性. 东北林业大学学报. 2024(05): 19-27 . 百度学术
5. 李志鑫. 陇东黄土高原刺槐林分特征和林下灌草多样性对林分密度的响应. 甘肃林业科技. 2024(03): 45-50+83 . 百度学术
6. 杨扬,彭祚登,刘伟韬,王鑫喆,王书婷,王少明. 不同经营世代刺槐人工林多功能经营的密度管理图研建. 北京林业大学学报. 2024(10): 11-21 . 百度学术
7. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 . 本站查看
8. 王思淇,张建军,张彦勤,赵炯昌,胡亚伟,李阳,唐鹏,卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性. 干旱区研究. 2023(07): 1141-1151 . 百度学术
9. 李转桃,徐先英,赵鹏,罗永忠. 海拔对祁连山东段青海云杉林林下灌草多样性的影响. 植物资源与环境学报. 2023(06): 59-66 . 百度学术
10. 刘春梅,韩东苗,陈水莲,谭瑞坤,赵苗菲,龚昕怡. 林下套种草珊瑚栽培技术. 安徽农学通报. 2023(21): 51-54 . 百度学术
其他类型引用(3)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240476