留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转座子沉默与DNA甲基化

鲁亚萍 周明兵

鲁亚萍, 周明兵. 转座子沉默与DNA甲基化[J]. 浙江农林大学学报, 2021, 38(3): 634-643. doi: 10.11833/j.issn.2095-0756.20200338
引用本文: 鲁亚萍, 周明兵. 转座子沉默与DNA甲基化[J]. 浙江农林大学学报, 2021, 38(3): 634-643. doi: 10.11833/j.issn.2095-0756.20200338
LU Yaping, ZHOU Mingbing. On transposon silencing and DNA methylation[J]. Journal of Zhejiang A&F University, 2021, 38(3): 634-643. doi: 10.11833/j.issn.2095-0756.20200338
Citation: LU Yaping, ZHOU Mingbing. On transposon silencing and DNA methylation[J]. Journal of Zhejiang A&F University, 2021, 38(3): 634-643. doi: 10.11833/j.issn.2095-0756.20200338

转座子沉默与DNA甲基化

doi: 10.11833/j.issn.2095-0756.20200338
基金项目: 浙江自然科学基金重点资助项目(LZ19C160001);国家自然科学基金资助项目(31870656,31470615)
详细信息
    作者简介: 鲁亚萍(ORCID: 0000-0002-3657-0094),从事竹类植物基因组进化研究。E-mail: 2584467856@qq.com
    通信作者: 周明兵(ORCID: 0000-0001-5674-4410),教授,博士,从事竹类植物基因组进化研究。E-mail: zhoumingbing@zafu.edu.cn
  • 中图分类号: S718.3

On transposon silencing and DNA methylation

  • 摘要: 转座子(transposable elements,TEs)在生物体基因组可以通过转座或逆转座移动,它拷贝数的大规模增加是基因组不稳定的重要因素,因此,维持TEs沉默是宿主进化的方向。DNA甲基化被认为是沉默TEs的可遗传表观遗传修饰方式,同时也在维持基因组稳定、基因印迹、调节基因表达中发挥作用。本研究综述了TEs对生物基因组进化和基因表达的影响,重点总结了以DNA甲基化为主的转座子沉默机制的最新研究进展,归纳了环境因素通过DNA去甲基化调控转座子跳跃的机理。图4参82
  • 图  1  TEs沉默的途径

    A. 玉米基因组mCHH甲基化岛丧失同时导致CG、CHG甲基化丧失,TEs增加拷贝数[34];B. HUSH复合物由MPP8(MPHOSPH8)、TASOR、PPHLN(PERIPHILIN)组成,MPP8和TASOR亚基以及MORC2蛋白与LINE-1结合,组蛋白甲基化沉默TEs[36];C. TEs介导产生dsRNA,然后siRNA介导的甲基化沉默TEs[38];D. 染色质重塑复合物依赖ATP介导核小体发生改变,从而导致TEs沉默[41]

    Figure  1  Mechanisms of TEs silence

    图  2  番茄中TEs沉默的4个阶段[45]

    A. DCL2/4切割RDR6合成的双链RNA产生21~22 nt sRNA;B. RdDM维持的LTR反转座子甲基化;C. MET1、VIM维持的CG甲基化与CMT3、SUVH维持的CHG甲基化;D. RdDM再次增加LTR反转座子甲基化水平[45]

    Figure  2  Four stages of TEs silence in tomato[45]

    图  3  DNA甲基化与转座子作用机制

    A. 水稻OsCMT3a发生突变,DNA甲基化的丧失导致Tos17、Tos19、mPing、Dasheng、Osr4、Osr13、DaiZ、LINE1-6_OS上调;OsMET1-2突变,DNA甲基化的丧失导致Tos17、Osr7、Ping/Pong、mPing上调[51-52]。B. RdDM途径沉默转座子MITEsOsMIR156dOsMIR156j基因失去活性,调控水稻表型变化[49]。C. KRAB-ZFPs通路涉及SETDB1、HP1元件,形成压制性染色质结构沉默TEs,TEs也能被DNMT1、DNMT3A/B维持的CG甲基化沉默,丧失CG甲基化后只有少部分TEs上调[53]。D. 去甲基化上调TEs,核酸内切酶Dicer切割dsRNA产生的小RNA与AGO2蛋白结合沉默TEs[56]

    Figure  3  DNA methylation and transposon mechanism

    图  4  转座子抵抗DNA甲基化介导的沉默

    Figure  4  Transposons resist DNA methylation-mediated silencing

  • [1] MITA P, BOEKE J D. How retrotransposons shape genome regulation [J]. Curr Opin Genet Dev, 2016, 37: 90 − 100.
    [2] FINNEGAN D J. Eukaryotic transposable elements and genome evolution [J]. Trends Genet, 1989, 5(4): 103 − 107.
    [3] WICKER T, SABOT F, HUA-VAN A, et al. A unified classification system for eukaryotic transposable elements [J]. Nat Rev Genet, 2007, 8(12): 973 − 982.
    [4] SCHULMAN A H. Retrotransposon replication in plants [J]. Curr Opin Virol, 2013, 3(6): 604 − 614.
    [5] OROZCO-ARIAS S, ISAZA G, GUYOT R. Retrotransposons in plant genomes: structure, identification, and classification through bioinformatics and machine learning [J]. Int J Mol Sci, 2019, 20(15): 3837. doi: 10.3390/ijms20153837.
    [6] GONZALEZ J, PETROV D A. Evolution of genome content: population dynamics of transposable elements in flies and humans[C]//ANISIMOVA M. Evolutionary Genomics. Methods in Molecular Biology (Methods and Protocols), vol 855. Totowa: Humana Press, 2012: 361 − 383.
    [7] de KONING A P J, GU Wanjun, CASTOE T A, et al. Repetitive elements may comprise over two-thirds of the human genome[J]. PLoS Genet, 2011, 7(12): e1002384. doi: 10.1371/journal.pgen.1002384.
    [8] SAVAGE A L, SCHUMANN G G, BREEN G, et al. Retrotransposons in the development and progression of amyotrophic lateral sclerosis [J]. J Neurol Neurosurg Psychiatry, 2019, 90(3): 284 − 293.
    [9] LANDER E S, LINTON L M, BIRREN B, et al. Initial sequencing and analysis of the human genome [J]. Nature, 2001, 409(6822): 860 − 921.
    [10] YANG Fang, WANG P J. Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline [J]. Semin Cell Dev Biol, 2016, 59: 118 − 125.
    [11] CHOULET F, WICKER T, RUSTENHOLZ C, et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces [J]. Plant Cell, 2010, 22(6): 1686 − 1701.
    [12] SONG Xianwei, CAO Xiaofeng. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice [J]. Curr Opin Plant Biol, 2017, 36: 111 − 118.
    [13] SASAKI T. The map-based sequence of the rice genome [J]. Nature, 2005, 436(7052): 793 − 800.
    [14] JIAO Yinping, PELUSO P, SHI Jinghua, et al. Improved maize reference genome with single-molecule technologies [J]. Nature, 2017, 546(7659): 524 − 527.
    [15] SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome: complexity, diversity, and dynamics [J]. Science, 2009, 326(5956): 1112 − 1115.
    [16] ENNOS R A, CLEGG M T. Flower color variation in the morning glory, Ipomoea purpurea [J]. J Hered, 1983, 74(4): 247 − 250.
    [17] BUTELLI E, LICCIARDELLO C, ZHANG Yang, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges [J]. Plant Cell, 2012, 24(3): 1242 − 1255.
    [18] LISCH D. How important are transposons for plant evolution? [J]. Nat Rev Genet, 2013, 14(1): 49 − 61.
    [19] BENOIT M, DROST H G, CATONI M, et al. Environmental and epigenetic regulation of Rider retrotransposons in tomato[J]. PLoS Genet, 2019, 15(9): e1008370. doi: 10.1371/journal.pgen.1008370.
    [20] SANCHEZ D H, GAUBERT H, YANG Weibing. Evidence of developmental escape from transcriptional gene silencing in MESSI retrotransposons [J]. New Phytol, 2019, 223(2): 950 − 964.
    [21] KUBOTA S, ISHIKAWA T, KAWATA K, et al. Retrotransposons manipulating mammalian skeletal development in chondrocytes[J]. Int J Mol Sci, 2020, 21(5): 1564. doi: 10.3390/ijms21051564.
    [22] BUNDO M, TOYOSHIMA M, OKADA Y, et al. Increased l1 retrotransposition in the neuronal genome in schizophrenia [J]. Neuron, 2014, 81(2): 306 − 313.
    [23] 陈文充, 贾宁, 董昂, 等. 山核桃甲基化敏感扩增多态体系的建立与甲基化初步分析[J]. 浙江农林大学学报, 2019, 36(3): 468 − 478.

    CHEN Wenchong, JIA Ning, DONG Ang, et al. A protocol for methylation-sensitive amplified polymorphism markers and its application to a methylation analysis in Carya cathayensis [J]. J Zhejiang A&F Univ, 2019, 36(3): 468 − 478.
    [24] HANCKS D C, KAZAZIAN H H. Roles for retrotransposon insertions in human disease[J]. Mob DNA, 2016, 7: 9. doi: 10.1186/s13100-016-0065-9.
    [25] SCOTT E C, GARDNER E J, MASOOD A, et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer [J]. Genome Res, 2016, 26(6): 745 − 755.
    [26] MAO Hude, WANG Hongwei, LIU Shengxue, et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings [J]. Nat Commun, 2015, 6(1): 1 − 13.
    [27] MOLARO A, MALIK H S. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline [J]. Curr Opin Genet Dev, 2016, 37: 51 − 58.
    [28] CHOI Y J, LIN C P, RISSO D, et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells [J]. Science, 2017, 355(6325): eaag1927. doi: 10.1126/science.aag1927.
    [29] HUTCHISON C A, MERRYMAN C, SUN Lijie, et al. Polar effects of transposon insertion into a minimal bacterial genome [J]. J Bacteriol, 2019, 201(19): e00185-19. doi: 10.1128/JB.00185-19.
    [30] FURNER I J, MATZKE M. Methylation and demethylation of the Arabidopsis genome [J]. Curr Opin Plant Biol, 2011, 14(2): 137 − 141.
    [31] DENIZ Ö, FROST J M, BRANCO M R. Author correction: regulation of transposable elements by DNA modifications [J]. Nat Rev Genet, 2019, 20(7): 432 − 432.
    [32] CHAN S W L, HENDERSON I R, JACOBSEN S E. Gardening the genome: DNA methylation in Arabidopsis thaliana [J]. Nat Rev Genet, 2005, 6(5): 351 − 360.
    [33] GIRARD A, HANNON G J. Conserved themes in small-RNA-mediated transposon control [J]. Trends Cell Biol, 2008, 18(3): 136 − 148.
    [34] LI Qing, GENT J I, ZYNDA G, et al. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome [J]. Proc Natl Acad Sci, 2015, 112(47): 14728 − 14733.
    [35] JÖNSSON M E, BRATTÅS P L, GUSTAFSSON C, et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors [J]. Nat Commun, 2019, 10: 3182. doi: 10.1038/s41467-019-11150-8.
    [36] LIU Nian, LEE C H, SWIGUT T, et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators [J]. Nature, 2018, 553(7687): 228 − 232.
    [37] CUI Xiekui, JIN Ping, CUI Xia, et al. Control of transposon activity by a histone H3K4 demethylase in rice [J]. Proc Natl Acad Sci, 2013, 110(5): 1953 − 1958.
    [38] WANG Dafang, ZHANG Jianbo, ZUO Tao, et al. Small RNA-mediated De Novo silencing of Ac/Ds transposons is initiated by alternative transposition in maize [J]. Genetics, 2020, 215(2): 393 − 406.
    [39] CAPPUCCI U, NORO F, CASALE A M, et al. The Hsp70 chaperone is a major player in stress-induced transposable element activation [J]. Proc Natl Acad Sci, 2019, 116(36): 17943 − 17950.
    [40] BARTHOLOMEW B. Regulating the chromatin landscape: structural and mechanistic perspectives [J]. Annu Rev Biochem, 2014, 83: 671 − 696.
    [41] HORVÁTH V, MERENCIANO M, GONZÁLEZ J. Revisiting the relationship between transposable elements and the eukaryotic stress response [J]. Trends Genet, 2017, 33(11): 832 − 841.
    [42] JIE Yang, YUAN Lianyu, YEN M R, et al. SWI3B and HDA6 interact and are required for transposon silencing in Arabidopsis [J]. Plant J, 2019, 102(4): 809 − 822.
    [43] 陈昂. 毛竹微型反向重复转座子(MITEs)鉴定及对宿主基因表达的影响[D]. 杭州: 浙江农林大学, 2016.

    CHEN Ang. Identification of Miniature Inverted Repeat Transposable Elements (MITEs) from Phyllostachys edulis and Their Effects on Host Gene Expression[D]. Hangzhou: Zhejiang A&F University, 2016.
    [44] ZHOU Mingbing, LIANG Linlin, HÄNNINEN H. A transposition-active Phyllostachys edulis long terminal repeat (LTR) retrotransposon [J]. J Plant Res, 2018, 131(2): 203 − 210.
    [45] WANG Zhengming, BAULCOMBE D C. Transposon age and non-CG methylation [J]. Nat Commun, 2020, 11: 1221. doi: 10.1038/s41467-020-14995-6.
    [46] ZHANG Huiming, LANG Zhaobo, ZHU Jiankang. Dynamics and function of DNA methylation in plants [J]. Nat Rev Mol Cell Biol, 2018, 19(8): 489 − 506.
    [47] KIM M Y, ZILBERMAN D. DNA methylation as a system of plant genomic immunity [J]. Trends Plant Sci, 2014, 19(5): 320 − 326.
    [48] CZECH B, HANNON G J. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing [J]. Trends Biochem Sci, 2016, 41(4): 324 − 337.
    [49] XU Le, YUAN Kun, YUAN Meng, et al. Regulation of rice tillering by RNA-Directed DNA methylation at miniature inverted-repeat transposable elements [J]. Mol Plant, 2020, 13(6): 851 − 863.
    [50] MIROUZE M, REINDERS J, BUCHER E, et al. Selective epigenetic control of retrotransposition in Arabidopsis [J]. Nature, 2009, 461(7262): 427 − 430.
    [51] CHENG Chaoyang, TARUTANI Y, MIYAO A, et al. Loss of function mutations in the rice chromomethylase Os CMT 3a cause a burst of transposition [J]. Plant J, 2015, 83(6): 1069 − 1081.
    [52] HU Lanjuan, LI Ning, ZHANG Zhibin, et al. CG hypomethylation leads to complex changes in DNA methylation and transpositional burst of diverse transposable elements in callus cultures of rice [J]. Plant J, 2020, 101: 188 − 203.
    [53] ROWE H M, JAKOBSSON J, MESNARD D, et al. KAP1 controls endogenous retroviruses in embryonic stem cells [J]. Nature, 2010, 463(7278): 237 − 240.
    [54] MATSUI T, LEUNG D, MIYASHITA H, et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET [J]. Nature, 2010, 464(7290): 927 − 931.
    [55] IMBEAULT M, HELLEBOID P Y, TRONO D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks [J]. Nature, 2017, 543(7646): 550 − 554.
    [56] BERRENS R V, ANDREWS S, SPENSBERGER D, et al. An endosiRNA-based repression mechanism counteracts transposon activation during global DNA demethylation in embryonic stem cells [J]. Cell Stem Cell, 2017, 21(5): 694 − 703.
    [57] NOUROZ F, NOREEN S, HESLOP-HARRISON J S. Identification and evolutionary dynamics of CACTA DNA transposons in brassica [J]. Pak J Bot, 2017, 49(2): 789 − 798.
    [58] WANG Qingbiao, WANG Yanping, SUN Honghe, et al. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish [J]. J Exp Bot, 2020, 71(9): 2537 − 2550.
    [59] KONG Yu, ROSE C M, CASS A A, et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity [J]. Nat Commun, 2019, 10: 5228. doi: 10.1038/s41467-019-13035-2.
    [60] LA Honggui, DING Bo, MISHRA G P, et al. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice [J]. Proc Natl Acad Sci, 2011, 108(37): 15498 − 15503.
    [61] KASHINO-FUJII M, YOKOSHO K, YAMAJI N, et al. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions [J]. Plant Physiol, 2018, 178(2): 716 − 727.
    [62] CHOI J Y, PURUGGANAN M D. Evolutionary epigenomics of retrotransposon-mediated methylation spreading in rice [J]. Mol Biol Evol, 2018, 35(2): 365 − 382.
    [63] WALSH C P, CHAILLET J R, BESTOR T H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation [J]. Nat Genet, 1998, 20(2): 116 − 117.
    [64] ZHOU Y, CAMBARERI E, KINSEY J. DNA methylation inhibits expression and transposition of the neurospora tad retrotransposon [J]. Mol Genet Genomics, 2001, 265(4): 748 − 754.
    [65] CHERNYAVSKAYA Y, MUDBHARY R, ZHANG Chi, et al. Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling [J]. Development, 2017, 144(16): 2925 − 2939.
    [66] HOSAKA A, SAITO R, TAKASHIMA K, et al. Evolution of sequence-specific anti-silencing systems in Arabidopsis [J]. Nat Commun, 2017, 8: 2161. doi: 10.1038/s41467-017-02150-7.
    [67] FU Yu, KAWABE A, ETCHEVERRY M, et al. Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor [J]. EMBO J, 2013, 32(17): 2407 − 2417.
    [68] CUI Hongchang, FEDOROFF N V. Inducible DNA demethylation mediated by the maize suppressor-mutator transposon-encoded TnpA protein [J]. Plant Cell, 2002, 14(11): 2883 − 2899.
    [69] DUAN Chengguo, WANG Xingang, XIE Shaojun, et al. A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation [J]. Cell Res, 2017, 27(2): 226 − 240.
    [70] QIAN Weiqiang, MIKI D, ZHANG Heng, et al. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis [J]. Science, 2012, 336(6087): 1445 − 1448.
    [71] CHEN Xiaochao, SCHÖNBERGER B, MENZ J, et al. Plasticity of DNA methylation and gene expression under zinc deficiency in Arabidopsis roots [J]. Plant Cell Physiol, 2018, 59(9): 1790 − 1802.
    [72] MAGER S, LUDEWIG U. Massive loss of DNA methylation in nitrogen-, but not in phosphorus-deficient Zea mays roots is poorly correlated with gene expression differences [J]. Front Plant Sci, 2018, 9: 497. doi: 10.3389/fpls.2018.00497.
    [73] FERREIRA L J, AZEVEDO V, MAROCO J, et al. Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress [J]. PLoS One, 2015, 10(5): e0124060. doi: 10.1371/journal.pone.0124060.
    [74] RODRÍGUEZ-NEGRETE E, LOZANO-DURÁN R, PIEDRA-AGUILERA A, et al. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing [J]. New Phytol, 2013, 199(2): 464 − 475.
    [75] LIANG Xiong, HOU Xue, LI Jianying, et al. High-resolution DNA methylome reveals that demethylation enhances adaptability to continuous cropping comprehensive stress in soybean [J]. BMC Plant Biol, 2019, 19(1): 79. doi: 10.1186/s12870-019-1670-9.
    [76] YU A, LEPÈRE G, JAY F, et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense [J]. Proc Natl Acad Sci, 2013, 110(6): 2389 − 2394.
    [77] ZHANG Meng, ZHANG Xuexian, GUO Liping, et al. Single-base resolution methylomes of cotton CMS system reveal epigenomic changes in response to high-temperature stress during anther development [J]. J Exp Bot, 2019, 71(3): 951 − 969.
    [78] HE S, VICKERS M, ZHANG J, et al. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation [J]. eLife, 2019, 8: e42530. doi: 10.7554/eLife.42530.002.
    [79] NISHIMURA H, HIMI E, EUN C H, et al. Transgenerational activation of an autonomous DNA transposon, Dart1-24, by 5-azaC treatment in rice [J]. Theor Appl Genet, 2019, 132(12): 3347 − 3355.
    [80] SECCO D, WANG Chuang, SHOU Huixia, et al. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements [J]. eLife, 2015, 4: e09343. doi: 10.7554/eLife.09343.001.
    [81] KOFLER R. Dynamics of transposable element invasions with piRNA clusters [J]. Mol Biol Evol, 2019, 36(7): 1457 − 1472.
    [82] GRAY Y H M. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements [J]. Trends Genet, 2000, 16(10): 461 − 468.
  • [1] 朱佰良, 丁一倩, 周明兵.  非生物胁迫对毛竹转座子衍生TUCP转录活性的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240195
    [2] 陈娅欣, 周明兵.  毛竹长末端重复序列反转录转座子的全基因组特征及进化分析 . 浙江农林大学学报, 2021, 38(3): 455-463. doi: 10.11833/j.issn.2095-0756.20200458
    [3] 蒋政勤, 周明兵, 郑浩, 季航, 徐芷馨.  毛竹Phyllostachys edulis retrotransposon 7(PHRE7)转座子的克隆与鉴定 . 浙江农林大学学报, 2019, 36(5): 917-927. doi: 10.11833/j.issn.2095-0756.2019.05.010
    [4] 高向倩, 李忆林, 贾彩霞, 李大培, 杨玉婷, 杨桂燕.  核桃抗逆基因JrGSTU23的克隆及表达分析 . 浙江农林大学学报, 2018, 35(4): 589-595. doi: 10.11833/j.issn.2095-0756.2018.04.002
    [5] 冯彬, 何云核, 赵爽, 郭明.  香蒲不同部位水浸提液对4种水生植物种子的化感作用 . 浙江农林大学学报, 2017, 34(3): 427-436. doi: 10.11833/j.issn.2095-0756.2017.03.007
    [6] 洪震, 练发良, 刘术新, 胡有金.  3种乡土园林地被植物对干旱胁迫的生理响应 . 浙江农林大学学报, 2016, 33(4): 636-642. doi: 10.11833/j.issn.2095-0756.2016.04.012
    [7] 毛永成, 刘璐, 王小德.  干旱胁迫对3种槭树科植物生理特性的影响 . 浙江农林大学学报, 2016, 33(1): 60-64. doi: 10.11833/j.issn.2095-0756.2016.01.008
    [8] 安苗苗, 刘静, 郦元, 周明兵.  花叶矢竹转录组中的转座子表达分析 . 浙江农林大学学报, 2016, 33(6): 935-943. doi: 10.11833/j.issn.2095-0756.2016.06.003
    [9] 郑洁, 刘芳, 吴兴波, 许改平, 丁倩倩, 高岩, 张汝民.  白三叶叶片水浸提液对几种园林植物的化感作用 . 浙江农林大学学报, 2014, 31(1): 19-27. doi: 10.11833/j.issn.2095-0756.2014.01.004
    [10] 朱强, 安黎, 邹梦辉, 田曾元, 郭予琦.  红叶李水浸液对4种草坪植物的化感作用 . 浙江农林大学学报, 2014, 31(5): 710-715. doi: 10.11833/j.issn.2095-0756.2014.05.008
    [11] 左照江, 张汝民, 高岩.  盐胁迫下植物细胞离子流变化的研究进展 . 浙江农林大学学报, 2014, 31(5): 805-811. doi: 10.11833/j.issn.2095-0756.2014.05.023
    [12] 李顺福, 胡恒康, 张秋露, 徐艳玲, 张启香.  基于ISSR分子标记技术的山核桃幼胚DNA甲基化初步研究 . 浙江农林大学学报, 2014, 31(4): 521-527. doi: 10.11833/j.issn.2095-0756.2014.04.005
    [13] 张鹏翀, 应求是, 莫亚鹰.  阴生型地被植物耗水性与最大光化学效率对干旱胁迫的响应 . 浙江农林大学学报, 2013, 30(4): 499-504. doi: 10.11833/j.issn.2095-0756.2013.04.006
    [14] 王媛, 缪丽华, 高岩, 季梦成.  再力花地下部水浸提液对几种常见水生植物的化感作用 . 浙江农林大学学报, 2012, 29(5): 722-728. doi: 10.11833/j.issn.2095-0756.2012.05.014
    [15] 杜明利, 高岩, 张汝民, 高群英, 傅杭飞.  大花金鸡菊水浸液对6种常见园林植物种子萌发的化感作用 . 浙江农林大学学报, 2011, 28(1): 109-114. doi: 10.11833/j.issn.2095-0756.2011.01.017
    [16] 马进, 刘志高, 郑钢.  差异蛋白质组学及其在植物盐胁迫响应研究中的应用 . 浙江农林大学学报, 2011, 28(1): 139-143. doi: 10.11833/j.issn.2095-0756.2011.01.022
    [17] 申亚梅, 童再康, 马进, 吕健全, 韩潇, 巴蕾, 房亮亮, .  海水胁迫下2种观赏植物的生长与生理特性比较 . 浙江农林大学学报, 2009, 26(4): 490-497.
    [18] 朱小楼, 楼炉焕, 王慧.  土壤干旱胁迫对4种薹草植物生理生化特性的影响 . 浙江农林大学学报, 2009, 26(5): 656-662.
    [19] 向佐湘, 许桂芳, 蒋文君.  干旱胁迫对4种刺篱植物抗性生理生化指标的影响 . 浙江农林大学学报, 2007, 24(1): 7-11.
    [20] 张立钦, 郑勇平, 吴纪良, 孙品雷, 杨彤.  黑杨派新无性系水培苗对盐胁迫反应的研究 . 浙江农林大学学报, 2000, 17(2): 121-125.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200338

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/3/634

图(4)
计量
  • 文章访问数:  4762
  • HTML全文浏览量:  1033
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-22
  • 修回日期:  2021-01-11
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-06-09

转座子沉默与DNA甲基化

doi: 10.11833/j.issn.2095-0756.20200338
    基金项目:  浙江自然科学基金重点资助项目(LZ19C160001);国家自然科学基金资助项目(31870656,31470615)
    作者简介:

    鲁亚萍(ORCID: 0000-0002-3657-0094),从事竹类植物基因组进化研究。E-mail: 2584467856@qq.com

    通信作者: 周明兵(ORCID: 0000-0001-5674-4410),教授,博士,从事竹类植物基因组进化研究。E-mail: zhoumingbing@zafu.edu.cn
  • 中图分类号: S718.3

摘要: 转座子(transposable elements,TEs)在生物体基因组可以通过转座或逆转座移动,它拷贝数的大规模增加是基因组不稳定的重要因素,因此,维持TEs沉默是宿主进化的方向。DNA甲基化被认为是沉默TEs的可遗传表观遗传修饰方式,同时也在维持基因组稳定、基因印迹、调节基因表达中发挥作用。本研究综述了TEs对生物基因组进化和基因表达的影响,重点总结了以DNA甲基化为主的转座子沉默机制的最新研究进展,归纳了环境因素通过DNA去甲基化调控转座子跳跃的机理。图4参82

English Abstract

鲁亚萍, 周明兵. 转座子沉默与DNA甲基化[J]. 浙江农林大学学报, 2021, 38(3): 634-643. doi: 10.11833/j.issn.2095-0756.20200338
引用本文: 鲁亚萍, 周明兵. 转座子沉默与DNA甲基化[J]. 浙江农林大学学报, 2021, 38(3): 634-643. doi: 10.11833/j.issn.2095-0756.20200338
LU Yaping, ZHOU Mingbing. On transposon silencing and DNA methylation[J]. Journal of Zhejiang A&F University, 2021, 38(3): 634-643. doi: 10.11833/j.issn.2095-0756.20200338
Citation: LU Yaping, ZHOU Mingbing. On transposon silencing and DNA methylation[J]. Journal of Zhejiang A&F University, 2021, 38(3): 634-643. doi: 10.11833/j.issn.2095-0756.20200338
  • 转座子(transposable elements,TEs)被定义为能够在生物体基因组中移动的DNA序列,能在同一染色体的不同位点或者不同染色体之间转移[1]。由于起源和进化路径的差异,TEs包含不同的家族。FINNEGAN[2]首次根据TEs的转座中间体和转座机制将转座子分为Ⅰ类RNA转座子(retrotransposons)和Ⅱ类DNA转座子(DNA transposons)。Ⅰ类通过RNA介导的复制-粘贴过程迅速增殖,RNA转座子进一步分为:长末端重复序列反转录转座子(long terminal repeat,LTR,也称为内源性逆转录病毒)、非LTR反转录转座子(non-LTR)、PLEs(penelope-like elements)、DIRS(dictyostelium intermediate repeat sequence)[3]。Ⅱ类使用剪切-粘贴机制增加拷贝数[4-5],包括末端反向重复序列(terminal inverted repeat,TIR)、微型反向重复序列转座子(miniature inverted repeat transposable elements,MITEs)和Helitrons[2]。自然选择和遗传漂变导致TEs在不同物种中类别的比例和含量都不相同,在同一物种的个体之间也存在差异[6]。研究表明:人类基因组大约一半为TEs[7],其中RNA反转座子约42%[8],LTR反转座子约8%[9];在小鼠Mus musculus和人类的基因组中,长散在核元件(long interspersed nuclear elements-1,LINE-1)大约20%[10];小麦Triticum aestivum和小麦白粉病真菌Blumeria graminis基因组中,90%的序列是TEs[11];水稻Oryza sativa转座子的20%~40%中,Ⅱ类DNA转座子含量甚至高于Ⅰ类RNA转座子4倍以上[12],其中LTR约14%,而non-LTR反转座子却只有1%[13]。在玉米Zea mays基因组中,TEs含量高达85%,其中LTR反转座子和其他TEs家族含量分别为70%和15%[14-15]。通常,TEs对宿主有很多积极的影响。例如,TEs的插入控制着包括牵牛花Ipomoea purpurea在内的所有花色变化[16],贡献了可供选择的性状。反转录转座子的正常转座不仅可以产生果肉呈红色的血橙Citrus sinensis[17],还控制着葡萄Vitis vinifera[18]和番茄Solanum lycopersicum[19]等果实的颜色和形状,也参与着番茄茎尖分生组织的形成[20],还影响着哺乳动物骨骼的发育[21]。并且,可以利用TEs的激活诱导疾病的发生,从而明确疾病的机理,寻找出治疗的药物与方法。然而,由于TEs的负面影响而被称为“垃圾DNA”。例如,LINE-1是人类基因组中唯一的自主转座元件,它的表达成为许多恶性肿瘤的标志[22],并且导致包括精神分裂症在内的众多精神疾病[23],人类的120多种遗传疾病都是由于LINE-1的插入而引起的[24],其拷贝数的增加会导致腺瘤性息肉病基因(APC)肿瘤抑制基因突变从而引发人类直肠癌(colorectal cancer,CRC)[25]ZmNAC111基因是维持玉米幼苗耐旱性的关键基因,MITE转座子的插入会下调ZmNAC111的表达,从而引起玉米幼苗的干旱敏感性增强[26]。在小鼠生殖系中,TEs增加拷贝数会导致其不育[27],并有调控具有双向命运细胞的潜能[28]。TEs插入基因组中不仅破坏基因的功能,而且对邻近基因的表达有极性影响[29],对着丝粒稳定性同样具有重要的作用。由此可见,TEs转座破坏了宿主基因组的稳定,也搅动了宿主的基因表达调控网络,因此,TEs活性通常受到宿主多种表观遗传修饰机制的调控,例如,DNA甲基化、抑制性组蛋白修饰、小RNA途径和染色质途径。DNA甲基化是高等真核生物中广泛存在的保持TEs沉默的表观遗传修饰方式,包括从头甲基化、维持甲基化和脱甲基3个水平[30]。哺乳动物基因组中主要为CG二核苷酸序列环境的胞嘧啶甲基化,由DNA甲基转移酶1(DNA methyltransferase 1,DNMT1)和DNA甲基转移酶3(DNA methyltransferase 3,DNMT3)维持,植物中还具有CHG和CHH(H表示A、T或C)胞嘧啶环境的甲基化[31],则是由与DNMT3相似的域重排甲基转移酶1(domains rearranged methyltransferase 1,DRM1)和域重排甲基转移酶2(domains rearranged methyltransferase 2,DRM2)催化[32]。本研究论述了TEs沉默与DNA甲基化的关系,重点总结了以DNA甲基化为主的转座子沉默机制最新研究进展,归纳了环境因素通过DNA去甲基化调控转座子跳跃的机理。

    • TEs沉默分为检测、扩增和抑制3个部分[33],保持TEs沉默通常受DNA甲基化、抑制性组蛋白修饰、小RNA途径以及染色质途径的调控。(1)例如,在玉米基因组中,mCHH甲基化岛常常插入活跃基因与沉默转座子之间,去甲基化会导致沉默的转座子表达上调,RNA指导的DNA甲基化(RNA-directed DNA methylation,RdDM)能够维持转座子的沉默[34],mCHH甲基化岛缺失会导致CG、CHG的丢失,同时上调TEs活性(图1A)。DNMT1在hNPCs (human neural progenitor cells)维持DNA甲基化,通过CRISPR-Cas9技术去除DNMT1后,导致CPG甲基化水平降低,激活LINE-1,进一步影响与精神疾病有关的基因[35]。(2)抑制性组蛋白修饰是另一个沉默TEs的途径。通常认为组蛋白H3的赖氨酸9和27的三甲基化H3K9me3 (histone H3 Lys9 trimethylation)、H3K27me3 (histone H3 Lys27 trimethylation)能够沉默TEs。MORC2蛋白和HUSH (human silencing hub)与在进化上较年轻的全长LINE-1结合,诱导组蛋白H3K9me3富集,从而沉默TEs(图1B)[36]。水稻的H3K4特异性脱甲基酶蛋白JMJ703介导H3K4脱甲基,当JMJ703活性受到影响时,增加H3K4me3积累,2个LINE元素被激活转座[37]。(3)小RNA途径同样是沉默TEs的有效途径。AT(alternative transposition)产生的CIs(composite insertions)的反向复制被转录生成dsRNA(double-stranded RNA),等位基因P1-WW-ID1和P1-WW-ID4上富集21、22、24 nt (nucleotide) siRNA,然后siRNA介导玉米Ac/Ds转座子沉默(图1C)。这是首次提出TEs自主介导的沉默[38]。RNA与Piwi (P-element-induced wimpy testis)蛋白相互作用结合形成piRNAs,Hsp70伴侣蛋白是piRNAs生物合成的主要参与者,在果蝇Drosophila生物体中,Hsp70伴侣蛋白遭受热激胁迫导致piRNAs的合成被破坏,因此在转录后水平增加了TEs的表达[39]。(4)染色质途径对TEs的沉默同样也很重要。染色质重塑复合物(chromatin remodelers)包括CHD、SWI/SNF、INO80、SWR1等,它能利用ATP水解的能量移动或者重组核小体,从而沉默TEs(图1D)[40-41]。SWI/SNF家族中SWI3B协同HDA6 (histone deacetylase 6)增加H3K9me2水平,沉默TEs,同时,MET1和SUVH4/5/6也参与增加H3K9me2以及DNA甲基化维持TEs沉默[42]

      图  1  TEs沉默的途径

      Figure 1.  Mechanisms of TEs silence

    • DNA甲基化在TEs沉默中的作用已被很多研究证实。毛竹Phyllostachys edulis的DNA甲基化水平经过甲基化抑制剂5-氮杂胞苷和γ射线的处理后显著降低,具有转座活性的MITEs家族转座子PhTst-3-79的转座频率相比野生型对照显著增加,并且DNA甲基化随甲基化抑制剂浓度和γ射线辐照剂量增加而下降,TEs的转座频率也随之增加[43]。ZHOU等[44]鉴定的毛竹基因组全长LTR反转录转座子PHRE2(Phyllostachys edulis retrotransposon 2)经过脱落酸(ABA)、水杨酸(SA)、γ射线处理后,甲基化水平显著降低,而拷贝数显著增加。

      转录后基因沉默(post-transcriptional gene silencing,PTGS)以RDR6合成的双链RNA为起始,然后在由DCL2/4(dicer-like 2/4)介导产生21~22 nt (nucleotide) sRNA(图2A),招募DRM1/2产生5-甲基胞嘧啶(5mC)[45]。其中,21 nt sRNA在转录后水平和24 nt sRNA在转录水平指导TEs沉默[46]。RdDM是开花植物维持TEs沉默的主要机制[47]。RdDM是由RNA聚合酶Ⅳ (RNA polymerase Ⅳ,Pol Ⅳ)介导RNA转录起始,依赖RNA的RNA聚合酶2 (RDR2)合成双链RNA,然后双链RNA在RDR2和DCL3(dicer-like 3)作用下,降解为24 nt sRNA,AGO4/6 (ARGONAUTE 4/6)蛋白与24 nt sRNA结合,最终由DRM1/2介导DNA甲基化(图2B)[31, 48-49]。最新的关于植物non-CG甲基化的研究中,在转座子失活的3个阶段基础上,提出了第4个阶段[45]。在番茄基因组中,第1阶段为转录后基因沉默,LTR反转座子在Pol II(RNA polymerase II)等参与下,生成21~22 nt sRNA(small RNA)(图2A)。第2阶段是RdDM的短暂参与,LTR拷贝数增加,RdDM导向LTR甲基化(图2B)。第3阶段不包含RdDM途径,而是由MET1和CMT3维持沉默(图2C)[50]。第4阶段中,沉默的LTR反转座子失去转座能力,不再受MET1和CMT3的靶向,再次开始转录,RdDM第2次增加LTR反转座子甲基化水平(图2D)。

      图  2  番茄中TEs沉默的4个阶段[45]

      Figure 2.  Four stages of TEs silence in tomato[45]

      甲基化酶对DNA甲基化的维持是非常重要的,间接调控TEs的活性。在水稻基因组中,染色体甲基化酶OsCMT3a维持CHG甲基化维持TEs沉默,转座子Tos17处理的OsCMT3a突变体甲基化水平降低,繁殖阶段时,8个TEs家族发生转座,其中包括1个LINE,1个MITE等[51]。关于水稻基因组甲基化水平下调而沉默TEs的研究中,在DNA甲基转移酶OsMET1-2纯合突变体中发现,CG甲基化损失激活包括低拷贝LTR反转座子copia-like在内的TEs[52](图3A)。在拟南芥Arabidopsis thaliana中,关于RdDM通路的研究已有很多,但很少有明显RdDM通路介导的发育表型变化。RdDM途径影响水稻TEs表达从而导致水稻表型发生变化。OsMIR156dOsMIR156j是水稻中促进分蘖的基因,其启动子区域的MITEs被RdDM介导甲基化,抑制OsMIR156dOsMIR156j基因的表达,从而调控水稻的分蘖[49](图3B)。这在表观遗传水平上对调控农艺性状的表达具有重要意义。另一个沉默TEs的关键通路涉及KRAB-ZFPs(krüppel-associated box-zinc-finger proteins)。在小鼠胚胎发生早期,KRAB-ZFPs特异识别TEs,KAP1(KRAB-associated protein 1)作为辅助因子,在组蛋白甲基转移酶SETDB1(SET domain bifurcated 1)、HP1(heterochromatin protein 1)以及组蛋白去乙酰化酶复合物NuRD(nucleosome remodeling deacetylase)等作用下形成压制性染色质结构,维持H3K9me3,抑制内源性逆转录病毒(endogenous retrovirus,ERVs),胚胎干细胞(embryonic stem cells,ESCs)KAP1缺失将导致ERVs的上调,并且,DNMT1、DNMT3A/B也参与沉默ERVs,但是敲除DNMT1、DNMT3a/b后,KRAB-ZFPs仍然维持绝大多数ERVs的沉默[53-55](图3C)。小RNA途径可以作为TEs激活后的快速防御,而抑制性组蛋白修饰作为接下来的缓慢防御。小鼠ESCs中,DNMT1缺失导致CPG甲基化水平从85%降到20%,DNA去甲基化诱导TEs激活,这是因为低甲基化时的反义TEs转录,核酸内切酶Dicer切割dsRNA,接下来AGO2(ARGONAUTE2)与小RNA结合,基于endosiRNA(endogenous short interfering RNAs)的抑制机制沉默甲基化丧失激活的TEs[56](图3D)。

      图  3  DNA甲基化与转座子作用机制

      Figure 3.  DNA methylation and transposon mechanism

      无论Ⅰ类或Ⅱ类TEs的活性,都与DNA甲基化水平密切相关。En/Spm DNA家族转座子也称CACTA转座子[57]。在红肉萝卜Raphanus sativus中,CACTA转座子高度甲基化导致其拷贝数下降,同时甲基化扩散至花青素合成基因RsMYB1启动子区域,导致基因RsMYB1表达下调,影响花青素的积累[58]。有研究通过分析癌症数据库,发现400多个TEs表达上调,其中包括HERVs (human endogenous retroviral)、LINE、SINE等,接近2/3的TEs表达上调似乎是由于邻近区域DNA甲基化的损失导致的[59]。敲除番茄基因组中对CHG甲基化起关键作用的KYPCMT3基因后,LTR反转座子富集在上调基因的启动子区域[45]。DNA糖基化酶介导的主动去甲基化同样可以激活水稻反转座子[60]。反转录转座子MRL (multiretrotransposon-like)插入大麦Hordeum vulgare基因组启动子区域,可以极大增强HvAACT1基因的表达,从而增强大麦抵抗铝毒害的能力。但是MRL的插入通常伴随着高甲基化,因此只有MRL转座子去甲基化才能增强大麦耐铝性[61]。水稻中,LTR反转座子的插入导致有害的异位重组,高度甲基化抑制LTR反转座子的活性,从而抑制这种有害作用[62]。在小鼠中,胞嘧啶甲基化在缺乏DNMT1的胚胎中下调,导致内源性逆转录病毒ERVs(endogenous retrovirus)上调,这是首次证明DNA甲基化在小鼠中沉默TEs的研究[63]。丝状真菌Neurospora crassa中的Ⅰ类TEs在胞嘧啶甲基化信号诱导下发生甲基化,下调了TEs的表达[64]。在斑马鱼Danio rerio基因组中,DNA低甲基化上调RNA转座子表达[65]

    • DNA甲基化是当TEs对宿主产生有害影响时的防御机制,但在拟南芥中,进化出转座子Hi (Hiun)编码的抗沉默蛋白VANC,上调被DNA甲基化沉默的TEs表达。这种抗沉默蛋白VANC不仅可以诱导低甲基化,增加TEs的拷贝数,而且能够把对宿主的不利影响降到最小[66-67](图4A)。与抗沉默蛋白VANC一样诱导低甲基化的还有玉米转座子编码蛋白TnpA,TnpA介导玉米转座子Spm DNA脱甲基化,这是由TnpA结合到Spm上,在脱甲基底物和脱甲基酶的参与下进行的DNA去甲基化[68](图4B)。在拟南芥中,Harbinger转座子编码的2个蛋白HDP1(H arbinger-derived protein 1)和HDP2(H arbinger-derived protein 2)的正常表达可以维持低甲基化和内源TEs的沉默,HDP1、HDP2、IDM1(increased DNA methylation 1)、IDM2等作为IDM(increased DNA methylation)组蛋白乙酰转移酶复合物的组成成分,任一结合因子的突变都会升高甲基化水平和影响TEs的表达。HDP1、HDP2突变后下调了AT1TE46455、AT1TE36115和AT1TE35325的表达[69-70](图4C)。

      图  4  转座子抵抗DNA甲基化介导的沉默

      Figure 4.  Transposons resist DNA methylation-mediated silencing

    • 生物或非生物胁迫会导致DNA甲基化发生改变,例如,强烈的锌缺乏会导致拟南芥全基因组的DNA甲基化水平发生变化[71]。在CG对称环境中,缺磷对甲基化水平影响较小,但缺氮会导致玉米根甲基化水平降低[72]。水稻在遭受盐胁迫时,盐敏感的IR29缺乏改变DNA甲基化水平的能力,而耐盐水稻能降低甲基化水平[73]。双生病毒干扰植物DNA甲基转移酶MET1和CMT3,导致DNA去甲基化[74]。连作胁迫导致大豆Glycine max基因组DNA去甲基化酶ROS1和DML增加表达,从而降低基因组DNA甲基化水平[75]

      环境胁迫会降低DNA甲基化水平,可能诱导TEs激活。用鞭毛蛋白衍生肽flg22(flagellin peptide 22)处理拟南芥叶片,会触发DNA去甲基化,导致某些TEs转录增加[76]。在棉花Gossypium hirsutum基因组中,高温胁迫导致DNA甲基化水平降低,甲基化程度较高的TEs被激活增加拷贝数[77]。在拟南芥的精子伴细胞(vegetative cell,VC)中,H1组蛋白缺失会使转录起始位点发生去甲基化,从而激活TEs[78]。用去甲基化剂5-azaC处理水稻种子后,激活Dart1-24 DNA转座子,同时验证了转座子拷贝数增加是5′区域的核苷酸去甲基化导致的[79]。在磷酸盐缺乏的环境中,水稻基因组DNA甲基化水平优先在TEs中瞬时变化,在抑制TEs方面发挥潜在的作用。磷酸盐不足的压力环境诱导高甲基化,从而沉默TEs[80]

    • 通常,TEs对宿主不利影响是由于TEs的插入破坏启动子区域或基因区域,导致基因组重排,以及引起的缺失、重复、倒位等基因组结构变异[81-82]。调控TEs表达对维持基因组稳定性具有重要意义,DNA修饰是物种进化过程中普遍采用的调控TEs表达的方式。现阶段,基因组学和表观基因组学的快速发展推动了DNA修饰的研究,其中,DNA甲基化是最主要的调控机制之一。然而,DNA修饰的这种作用具有不稳定性,包括在亲缘关系很近的物种中也存在变异[31]。并且,DNA甲基化水平变化涉及特定酶的参与,影响甲基化酶发挥作用的因素也在间接影响TEs表达。因此,与DNA甲基化相关的酶和基因的作用被进一步发现,可以明确DNA甲基化调控TEs表达的机制。生物或非生物胁迫导致的甲基化水平降低以及主动去甲基化上调TEs,TEs抵抗由DNA甲基化介导的沉默,编码了例如VANC、TnpA等抗沉默蛋白,促进DNA脱甲基从而增加TEs拷贝数[67-68]。宿主在遗传进化过程中更好适应环境的前提就是基因组的稳定,TEs的表达则是破坏基因组稳定的重要因素,环境因子诱导DNA甲基化水平发生变化,进一步影响TEs的表达。DNA甲基化和TEs响应环境因子的互作机制,以及最终调控宿主基因表达的机制是未来研究的方向。

参考文献 (82)

目录

    /

    返回文章
    返回