-
三叶青Tetrastigma hemsleyanum为葡萄科Vitaceae 崖爬藤属Tetrastigma三叶崖爬藤,全株均具有药用价值[1],多以块根入药,味微苦,性平,具有清热解毒、消肿止痛、化痰散结等功效[2−4]。三叶青中的主要活性成分为酚类和黄酮类物质,在植物中不仅表现出各种生理和药理活性,包括抗氧化[5]、抗炎[6]和公认的抗癌活性[7−8],并且具有防御功能,可以保护植物免受紫外线的伤害[9]。
高剂量的紫外线辐射会诱导产生活性氧(ROS),进而损害多种细胞器和大分子物质(如DNA和光合蛋白),破坏光合功能,导致生长减缓[10−11]。但近年来的研究显示:紫外辐射可以诱导植物加速次生代谢物的合成进程[12−14],例如,紫外线促进铁线莲Clematis terniflora[15]、黄花蒿Artemisia annua[16]、黄连Coptis chinensis[17]等植物合成酚类和黄酮类化合物,从而降低紫外辐射的伤害。类黄酮质量分数与中波紫外线(UV-B)的持续辐射时间有关[18],例如,BAI等[19]研究发现:适当的UV-B和短波紫外线(UV-C)辐射30~180 min 可提高三叶青中黄酮类成分质量分数,黄酮类物质的种类和质量分数差异还与辐射时间有关。同时,UV-B辐射也有利于植物抗逆能力的增加,如GAO等[20]研究发现:低剂量UV-B辐射能提高植物抗逆酶活性,LÜ等[21]发现:经UV-B处理后类黄酮生物合成酶基因(PAL、C4H、4CL、CHS1和DTX41)和抗逆性基因(MYB、WRKY、APX3和EX2)表达水平均上调。此外,适当的黑暗处理并施加UV-B辐射对植物有积极影响,如处理后的茶树Camellia sinensis[22]可显著增加叶片中游离氨基酸质量分数,降低可溶性蛋白质量分数,处理后的苹果Malus pumila[23]可增加体内有效成分质量分数。但是,UV-B辐射及黑暗处理对三叶青次生代谢的调控和有效成分影响还不清晰。
本研究探究UV-B辐射及黑暗补充处理对三叶青总酚和总黄酮类物质质量分数、抗氧化能力、抗逆酶活性及相关基因表达的影响,以期为有效利用环境因素提高三叶青药用价值提供新的方法。
-
选取3年生三叶青成苗(购自浙江省丽水市遂昌县种植基地)作为研究材料,经浙江农林大学周爱存博士鉴定为三叶青。使用盆栽(直径为20 cm)方式种植于浙江省中药资源保护与创新重点实验室试验基地(30°15′30.39″N, 119°43′26.92″E)。单株种植,种植所用土壤购自杭州锦海农业有限公司,隔1 d浇水1次,浇水量为400 mL,缓苗2个月后于2022年5—10月进行取样。
选取生长健壮、无病虫害、苗高大小近似的三叶青苗,随机分为6组,分别移入置物架中,由不透光黑布完全覆盖,置物架中配置40 W的UV-B (280~320 nm)灯管(南京华强电子有限公司),UV-B辐射强度为10 W·m−2。持续辐射12 h并分别选取0、0.5、1.0、3.0、6.0和12.0 h 共6个时间节点观察表型。另取三叶青苗5组,以未经过UV-B辐射的植株作为对照(ck),分为2种处理(UV-B处理和UV-B+暗处理)进行,即经过UV-B辐射1.0、3.0 h后,一部分立即取样(处理代号分别为T1和T3),另一部分转移进行暗处理至完整处理时间为24.0 h (代号分别为T1+23和T3+21)。处理结束后取样,放入密封袋,立即液氮中冷冻并超低温冰箱保存(−80 ℃),备用。
-
精密称取新鲜三叶青块根和叶片各1 g,参考韩敏琪[24]的方法制备提取液;参考AL-KHAYRI等[25]的方法测定总酚质量分数;参考BAI等[19]的方法测定总黄酮质量分数。
-
取1.2中提取液,参考刘希达等[26]的方法测定三叶青叶片及块根中1,1-二苯基-2-三硝基苯肼(DPPH)清除率,计算抗氧化能力。
-
参考李世玉等[27]的方法测定过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)活性及丙二醛(MDA)质量摩尔浓度。
-
收集ck、T1、T1+23、T3和T3+21处理叶片样本在液氮中速冻。样品在−80 ℃的冰箱中保存,24 h后送至南京派森诺基因技术有限公司进行RNA提取和转录组测序。通过Oligo (dT)富集mRNA,通过Agilent 2100 Bioanalyzer对文库进行质检。样品经过RNA抽提、纯化、建库之后,采用第2代测序技术(next-generation sequencing,NGS),基于Illumina测序平台,进行双末端(paired-end,PE)测序。对原始下机数据中带接头、低质量的读长(reads)进行过滤,以获得去除接头和低质量reads后的数据(clean reads),并组装成非冗余序列(unigene),计算每个样品的unigene表达水平。对于多个样品,根据要求检测样品间的差异表达基因,并对差异表达基因进行深入的聚类和功能富集分析(|log2CF|≥2,P<0.05。CF为差异倍数)。
-
利用Origin 2021和SPSS 27计算平均值±标准差,运用单因素方差分析法(one-way ANOVA)和最小显著性差异法(LSD)进行方差分析和多重比较,用Origin 2021进行皮尔逊相关性分析,利用TB tools进行热图分析。
-
UV-B持续辐射下,三叶青苗的生长情况是反映其对胁迫响应最直观的指标。与对照组相比,辐射时长为0.5和1.0 h的三叶青苗并没有明显的外观差异,辐射3.0 h的叶片有局部发黄,辐射6.0和12.0 h的三叶青叶片有明显发黄和略微卷曲(图1)。因此本研究选用紫外光UV-B辐射1.0和3.0 h及补充黑暗处理至24.0 h的三叶青进行酚类化合物质量分数及抗氧化能力变化测定。
-
除T1处理外,三叶青总酚质量分数在叶片(图2A)和块根(图2B)中的变化趋势基本一致。在叶片中,T1处理的总酚质量分数是T3处理的1.84倍,分别为2.30、1.25 mg·g−1;在块根中,T3处理的总酚质量分数是T1处理的1.56倍,分别为1.45、0.93 mg·g−1。说明块根和叶片对于UV-B辐射的响应是不同步的。UV-B辐射后经过黑暗处理,总酚质量分数都有明显提升。T1+23处理的叶片和块根中的总酚质量分数都达到了最大值,分别为ck的2.23和1.87倍,差异极显著(P<0.001)。
-
经T1处理后,叶片中总黄酮质量分数比ck增加,为5.40 mg·g−1 (图3A),块根中黄酮质量分数比ck减少,为2.42 mg·g−1 (图3B),分别是ck的1.16和0.56倍,且均差异显著(P<0.05)。T1+23处理的叶片和块根中的总黄酮质量分数都达到了最大值,叶片中的总黄酮质量分数为7.16 mg·g−1,是T1处理的1.33倍;块根中的总黄酮质量分数为7.30 mg·g−1,是T1处理的3.02倍。在T3处理及后续的T3+21处理中,叶片和块根中的总黄酮质量分数均低于ck。
-
如图4所示:在ck及各处理组中,三叶青块根的抗氧化能力较高,约为叶片相应处理组的1.20~2.33倍。仅使用UV-B辐射对叶片和块根的抗氧化能力提升作用并不明显,而增加黑暗处理后抗氧化能力得到明显改善,尤其是块根的T1+23处理呈极显著差异(P<0.001)。T1+23处理的叶片和块根中DPPH清除率均达到了最大值,分别比T1处理增加39.48%和86.56%,是ck的1.28和1.80倍。
-
如图5所示:T1处理的CAT活性和SOD活性提高,分别是ck的3.15和1.31倍,其中CAT差异显著(P<0.01);而T3处理的CAT活性和POD酶活性降低,分别是ck的0.60和0.22倍,其中POD酶活性差异极显著(P<0.001)。在紫外辐射后加上黑暗处理,3种抗逆酶活性都有了大幅度的提升,其中T1+23处理后,CAT、SOD和POD活性均达到最大值,分别为725.66×16.67 nkat·g−1·min−1、37.40×16.67 nkat·g−1和463.94×16.67 nkat· g−1·min−1,分别是ck的6.89、2.26和1.23倍。
-
UV-B 辐射增加了各组三叶青叶片中的MDA质量摩尔浓度(图6)。T3+21处理后,三叶青叶片中的MDA质量摩尔浓度与ck相比差异极显著(P<0.001),且高于其他处理,达7.21 mmol·g−1,分别是ck的3.21倍、 T3处理的2.97倍。
-
如图7所示:总酚、总黄酮、CAT、SOD、POD和MDA均与DPPH呈正相关,其中总黄酮质量分数、CAT酶活性与三叶青抗氧化能力(DPPH清除率)呈现显著正相关(P<0.05);CAT活性与总黄酮质量分数呈显著正相关(P<0.05)。对三叶青上述成分进行热图聚类分析发现:总酚、总黄酮质量分数,POD、CAT、SOD活性和DPPH清除率均在T1+23处理达到最高,说明黑暗处理对这些指标具有促进作用,MDA质量摩尔浓度在T3+21处理达到最高。
-
对UV-B胁迫处理后的三叶青叶片做转录组差异表达unigene的京都基因与基因组百科全书(KEGG)通路富集分析,黄酮代谢通路中的差异基因如表1所示。12个结构基因中,ck-T1组的ThHCT (DN17271)和ThCYP98A3(DN156339)、ck-T1+23组的ThF3H (DN10838)和ThF3H (DN7985)、ck-T3+21组的ThANS (DN12973)、ThF3H (DN7985)和ThF3H (DN10838)以及T3-T3+21组的ThF3H (DN7985)、ThCHS (DN734)、ThANR(DN145313)、ThFLS (DN10864)和ThCYP75B1 (DN1106)基因的表达量均下降了2倍以上(log2CF为−2.08~−3.71),ThCHS (DN734)和ThANR (DN145313)基因的表达量下降了4倍以上,差异极显著(|log2CF|>4)。
表 1 黄酮代谢通路中的差异基因
Table 1. Differential genes in the flavonoid metabolic pathway
组别 基因编码 基因注释 log2CF 调节 ck-T1 TRINITY_DN17271_c0_g1 羟基肉桂酰基转移酶(HCT) −2.59 下调 ck-T1 TRINITY_DN156339_c0_g1 5-O-(4-香豆酰基)-D-奎喹酸酯 3′-单加氧酶(CYP98A3) −2.08 下调 ck-T3 TRINITY_DN10864_c0_g1 黄酮醇合酶(FLS) 3.28 上调 ck-T1+23 TRINITY_DN10838_c0_g1 黄烷酮3-羟化酶(F3H) −2.60 下调 ck-T1+23 TRINITY_DN7985_c0_g1 黄烷酮3-羟化酶(F3H) −2.56 下调 ck-T3+21 TRINITY_DN12973_c0_g1 花青素合酶(ANS) −3.71 下调 ck-T3+21 TRINITY_DN7985_c0_g1 黄烷酮3-羟化酶(F3H) −2.14 下调 ck-T3+21 TRINITY_DN10838_c0_g1 黄烷酮3-羟化酶(F3H) −2.73 下调 T3-T3+21 TRINITY_DN7985_c0_g1 黄烷酮3-羟化酶(F3H) −2.38 下调 T3-T3+21 TRINITY_DN734_c0_g1 查耳酮合酶(CHS) −4.74 下调 T3-T3+21 TRINITY_DN145313_c0_g1 花青素还原酶(ANR) −6.33 下调 T3-T3+21 TRINITY_DN10864_c0_g1 黄酮醇合酶(FLS) −3.21 下调 此外,KEGG 富集分析中T1-T1+23组和T3-T3+21组的过氧化物酶体(peroxisome)通路差异基因如表2所示。其中T1-T1+23组结果显示:抗氧化系统的ThCAT (DN105637)基因上调了2.97倍;T3-T3+21组结果显示:ThXMP2 (DN16875)、ThSOD (DN4487)、ThICDH (DN19733)和FMN依赖型α-羟基酸脱氢酶基因均上调。
表 2 过氧化物酶体通路中的差异基因
Table 2. Differential genes in the peroxisome pathway
组别 基因编码 基因注释 log2CF 调节 T1-T1+23 TRINITY_DN105637_c0_g1 过氧化氢酶(CAT) 2.97 上调 T3-T3+21 TRINITY_DN16875_c0_g1 过氧化物酶体膜蛋2(XMP2) 1.65 上调 T3-T3+21 TRINITY_DN4487_c0_g1 超氧化物歧化酶(SOD) 1.07 上调 T3-T3+21 TRINITY_DN19733_c0_g2 异柠檬酸脱氢酶(ICDH) 1.46 上调 T3-T3+21 TRINITY_DN48302_c0_g1 FMN依赖型α-羟基酸脱氢酶 2.10 上调 -
长时间的紫外光照射对于生长在林下的三叶青属于致胁迫因素。本研究对三叶青持续UV-B辐射发现:3.0 h后三叶青表型发生变化,叶片开始略微发黄,初步判断此时三叶青已受到轻度胁迫。这与小麦Triticum aestivum[28]、苦荞Fagopyrum tataricum[29]、黄瓜Cucumis sativus[30]等植物受到胁迫后的表型变化趋势相似。此外,多种植物在表型产生胁迫变化的同时,会在体内做出一系列适应紫外胁迫的生理生化反应。例如,鸡毛菜Brassica rapa显著提高了多种类黄酮代谢通路上游合成酶的活性[13],榛子Corylus avellana增加了花粉中多酚和黄酮类次生代谢产物的质量分数[31],三叶青改变了黄酮类化合物质量分数及相关合成酶、抗逆酶活性[19]等。在本研究中,经UV-B辐射1.0 h后,叶片中总酚和总黄酮质量分数均升高,这是因为黄酮类物质对紫外光极其敏感[32],可减少紫外线对植物组织的穿透作用,保护叶片免受伤害[33]。经UV-B辐射3.0 h后,三叶青总酚和总黄酮质量分数均较UV-B辐射1.0 h下降,分析认为可能是植物光合作用受到影响,合成速率降低,光合产物减少,导致黄酮类化合物合成减少。与GAO等[20]的研究结果一致,即较低水平的UV-B辐射比高水平的UV-B辐射更能促进植物黄酮类化合物的合成和积累。而在块根中,UV-B辐射1.0 h的总酚和总黄酮质量分数均小于ck,参考SURJADINATA等[34]和ÁLVAREZ-GÓMEZ等[35]的研究发现:刚开始遭受UV-B胁迫,块根中还原糖质量分数降低以供运输到叶片进行酚类物质合成,导致块根中合成酚类的前体物质减少,最终直接影响酚类化合物的积累。此外,在多种药用植物研究中发现:UV-B辐射后施以黑暗处理,铁线莲Clematis terniflora会通过增加黄酮类物质[36]、桑树Morus alba积累桑黄素N和黑木耳素[37]、长春花Catharanthus roseus积累生物碱[38]来提高耐胁迫能力。本研究结果与以上研究相似。单纯的紫外处理并未显著增加三叶青中的次生代谢产物,UV-B辐射后给予黑暗处理可大幅度增加总酚和总黄酮质量分数,并显著提升其抗氧化能力。相关性分析结果也表明:总酚和总黄酮质量分数与三叶青抗氧化能力有显著正相关性。
对多种植物的研究结果均显示:光照和生物钟会影响植物对UV-B胁迫的敏感性,并且一些基因(如ELIP1、CHS/PRR9和ELF4等)在不同环境中对UV-B的敏感度是不同的[39],例如,适当的紫外光辐射会提高彩色马铃薯Solanum tuberosum的抗氧化能力,从而增加花青素结构基因(F3'5'H、F3'H、DFR和ANS等)的表达[40];UV-B加黑暗处理对拟南芥Arabidopsis thaliana叶片光合相关基因(CAB)的表达、叶绿素质量分数和光合效率的影响较大[41];黑暗处理对茶树不同基因的影响存在差异,经黑暗处理后的CsPAL、CsCHS、Cs4CL、CsLAR、CsANR和CsANS基因表达下调,而CsFLS基因表达上调,表达结果较为复杂[42]。本研究的转录组结果进一步表明:与ck组相比,经UV-B和黑暗处理后多数黄酮合成酶基因,如ThF3H、ThANS和ThCHS等均下调。分析认为:这与植物在黑暗处理时会快速且大量合成次生代谢产物从而形成反馈抑制有关,并进一步下调了相关合成酶基因表达[42]。孟凡来等[43]对紫甘薯Ipomoea batatas叶片的转录组分析发现:UV-B辐射增强类黄酮合成通路中的各关键酶(如查尔酮合成酶、花青素合成酶、4-香豆酸-CoA连接酶6、类花青素3-O-葡萄糖基转移酶7)基因主要以下调表达为主,与本研究结果一致。而ThFLS基因经UV-B辐射3.0 h后上调,表明其在UV-B辐射增强中起关键的正向调控作用[44]。
当植物(如黄岑Scutellaria baicalensis[45]、葡萄Vitis vinifera[46]等)遭受紫外光照射时,抗逆酶系统启动,逐步清除体内的游离氧离子、自由基及一些有害物质,对叶片起到较好的保护作用。SOD处于抵御活性氧伤害的第1道防线,主要清除对植物毒性较大的超氧阴离子($\mathop {\rm{O}}\nolimits_2^{{\rm{\cdot}}-}$),将其转化成为毒性较小的H2O2、CAT和POD,H2O2进一步转化为无毒的H2O和O2[47]。本研究中,三叶青在遭受UV-B辐射1.0 h后CAT和SOD活性增加,并且CAT活性较SOD和POD活性大幅提升,说明三叶青中各种酶的作用机理不同,进而在细胞内的活性变化趋势略有不同。而在UV-B辐射1.0 h加黑暗处理后,酶活性达到最大,表明了一定时间的黑暗处理可提高H2O2清除能力,对三叶青有修复功能[48]。当辐射时间达3.0 h时,胁迫进一步加重,3种酶活性下降,分析认为可能是保护酶系统受损。进一步转录组分析显示:UV-B辐射并增加黑暗处理能提高三叶青中一些氧化应激反应相关基因(如CAT和SOD)表达上调,与褚润等[49]对香蒲Typha orientalis的研究结果一致。MDA作为膜质过氧化分解的重要产物,可以对受胁迫细胞再次造成伤害,在一定程度上其质量摩尔浓度的高低可以表示细胞的膜质过氧化水平和细胞受损程度[50]。本研究中,经UV-B辐射1.0 h后MDA质量摩尔浓度升高,这与先前的研究结果相同[51];增加黑暗处理后,MDA质量摩尔浓度小幅降低,提示黑暗有利于膜的修复。UV-B辐射3.0 h时MDA质量摩尔浓度较UV-B辐射1.0 h呈下降趋势,表明UV-B辐射3.0 h内三叶青中抗氧化系统产生应激反应,$\mathop {\rm{O}}\nolimits_2^{{\rm{\cdot}}-} $被迅速清除,缓解了膜受损程度。而UV-B辐射3.0 h加黑暗处理后,MDA质量摩尔浓度达到最高,可能的原因是MDA的影响相对于抗逆酶系统有滞后效应,这也与GONCHARUK等[52]的研究结果相同,即此时抗逆酶系统虽在缓慢修复,但$\mathop {\rm{O}}\nolimits_2^{{\rm{\cdot}}-} $仍超出了植物自身防御系统的清除能力,此时,即使给予黑暗处理,MDA质量摩尔浓度也会显著升高。
-
UV-B辐射1.0 h加23.0 h黑暗处理能更好地增加三叶青中次生代谢物质及其抗氧化能力,同时下调黄酮合成酶和上调氧化相关调节因子的基因表达,并且使各物质达到最大值,既能增加次生代谢产物,又能将紫外胁迫的伤害控制在一定范围内,保证植物正常生长。同时,暗处理对紫外照射后的三叶青是极其重要的,其影响机理仍未探明,今后的研究将予以持续关注。
Effect of UV-B radiation on mass fraction of phenolic substances, antioxidant capacity and genes expression in Tetrastigma hemsleyanum
-
摘要:
目的 探究短时间中波紫外线(UV-B)辐射对三叶青Tetrastigma hemsleyanum酚类成分、抗氧化能力及相关基因表达的影响。 方法 将3年生三叶青苗经UV-B持续辐射12.0 h,在0、0.5、1.0、3.0、6.0和12.0 h观察表型;另取三叶青辐射1.0和3.0 h (记为T1和T3)并补充暗处理至24.0 h (记为T1+23和T3+21),以未经处理为对照(ck),进行酚类物质(总酚和总黄酮)质量分数、抗氧化能力和叶片中抗逆酶活性、丙二醛(MDA)质量摩尔浓度测定以及转录组分析。 结果 持续UV-B辐射对三叶青表型有影响,3.0 h组叶片局部发黄,6.0和12.0 h组叶片明显发黄和略微卷曲。叶片和块根的总酚(2.65和2.63 mg·g−1)和总黄酮(7.16和7.30 mg·g−1)、块根中的抗氧化能力(86.56%)均在T1+23组达到最大值。同时,UV-B辐射后施以黑暗处理可促进过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)活性的大幅提升,且在T1+23组达到最大,MDA质量摩尔浓度在T3+21组达到最高(7.21 mmol·g−1)。UV-B辐射和黑暗处理下调了黄酮合成通路基因(ThF3H、ThANS、ThCHS、ThANR等)和上调了氧化相关调节因子(CAT和SOD)的表达。 结论 UV-B辐射后增加黑暗处理可提高三叶青酚类物质质量分数、抗氧化能力及抗逆酶活性,且在T1+23组达最大值,同时下调黄酮合成酶基因表达,上调氧化应激相关基因的表达。图7表2参52 Abstract:Objective This study aims to investigate the effects of UV-B radiation on phenolic components, antioxidant capacity and relation genes expression in Tetrastigma hemsleyanum. Method Three-year-old T. hemsleyanum seedlings were subjected to continuous UV-B radiation for 12.0 h and their phenotypes were observed at 0, 0.5, 1.0, 3.0, 6.0, and 12.0 h. With those untreated as control (ck), some other T. hemsleyanum were irradiated for 1.0 and 3.0 h (T1 and T3), and supplemented with dark treatment for 24.0 h (T1+23 and T3+21). Mass fractions of phenolic substances (total phenols and total flavonoids), antioxidant capacity, anti-stress enzyme activity, malondialdehyde (MDA) mass molar concentration in leaves were determined and transcriptome analysis was made. Result Continuous UV-B radiation had an effect on the phenotype of T. hemsleyanum. The leaves of 3-h group were partially yellowed, while the leaves of 6-h and 12-h groups were significantly yellowed and slightly curled. The mass fractions of total phenols (2.65 and 2.63 mg·g−1) and total flavonoids (7.16 and 7.30 mg·g−1) in leaves and root tubers, as well as the antioxidant capacity (86.56%) in root tubers reached the maximum in T1+23 group. Meanwhile, dark treatment after UV-B radiation promoted a significant increase in activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), which reached the maximum in T1+23 group. The MDA mass molar concentration was the highest in T3+21 group (7.21 mmol·g−1). UV-B radiation and dark treatment down-regulated the expression of flavonoid synthesis pathway genes (ThF3H, ThANS, ThCHS, ThANR, etc.) and up-regulated the expression of oxidation-related regulators (CAT and SOD). Conclusion Darkness treatment after UV-B radiation increases the mass fraction of phenolic substances, antioxidant capacity and anti-stress enzymes activity of T. hemsleyanum, reaching the maximum in T1+23 group. The expression of flavonoid synthase genes is down-regulated and the expression of oxidative stress-related genes is up-regulated. [Ch, 7 fig. 2 tab. 52 ref.] -
有研究表明,植物的叶表面结构和生理生化特性对细颗粒物(PM2.5)有吸附和净化作用,植物类型不同其所发挥的效果也不同[1-2]。目前,国内外学者针对PM2.5的详细研究主要包括其组成来源[3-4]、化学组成分析[5-6]、去除途径等方面[7];有关城市森林对PM2.5的阻滞作用研究也多有涉及,尤其是不同配置模式的城市绿地对PM2.5的阻滞作用,以及小气候因子与林带减尘率的关系等[8-11]。可见,城市森林阻滞PM2.5作用研究一直是相当重要的研究方向。城市道路林是城市森林的重要组成部分,在阻滞吸附大气颗粒物、改善空气质量、美化城市环境等方面发挥着重要作用[12-13]。因此,如何利用有限的城市用地,构建防尘抑霾且兼具美学功能的环境友好型城市道路林是亟待解决的难题之一。基于此,本研究选择了山东省泰安市3种结构共12种不同配置模式的城市道路林,通过分析林带内外的PM2.5在时间和空间中的变化规律,不同配置模式的道路林对PM2.5的阻滞效果以及小气候因子与林带阻滞率的关系等方面探讨以下问题:①PM2.5在城市道路林内外是如何随着时间和空间变化的?②不同配置模式的道路林对PM2.5的阻滞功效是否相似?何种配置的林带减尘率最佳?③林带在发挥减尘效果时,小气候因子是否发挥了功效?它们之间有何关系?最终目的是探索何种配置的城市道路林的防尘抑霾效果最佳,并根据研究结果对城市森林的合理建设提供建议和数据支撑。
1. 材料和方法
1.1 研究区概况
研究区位于山东省泰安市(35°38′~36°28′N,116°20′~117°59′E),属温带大陆性半湿润季风气候区,夏季炎热多雨,冬季寒冷干燥。年平均气温为13.0 ℃,7月气温最高,平均26.4 ℃;1月份最低,平均−2.6 ℃;年平均降水量697.0 mm。主导风向为东北季风,多年平均风速2.7 m·s−1,8、9月最小,平均2.0 m·s−1以下;3、4月最大,平均3.7 m·s−1。市内植物资源丰富,泰山风景区和徂徕山国家森林公园坐落其中,绿化总面积为215 km2,森林覆盖率达80%,植物种类繁多。中心城区行道树、滨河绿地、环城绿带、城郊结合部的路网绿带发达,可为城市和郊区之间开辟输氧通道,进一步改善城市生态环境。
1.2 研究方法
1.2.1 样地设置与调查
于2016年3月选取了3种道路林结构类型:针阔混交乔木(A)、乔灌草(B)、单行乔木(C),每种结构类型选择3~6块具有不同植物配置模式的样地,各样地内的植被组成见表1。为比较PM2.5在不同水平梯度的城市道路林内的变化规律,A结构设置样地为20 m×20 m,B结构设置样地为40 m×40 m,C结构设置样地为10 m×10 m,林内垂直于道路边每隔5 m设置一组取样点,3组重复,在每处样地的林外裸地无植被处设置对照点(ck),计算平均减尘率。对样地进行植物群落学调查,包括林分郁闭度,乔木层平均冠幅、平均高度;灌木、草本层的平均高度和盖度(表2)。
表 1 12种城市道路林样地的植被组成Table 1. Vegetation composition of 12 urban road forest plots群落结构 样地名称 植被组成 针阔混交乔木 A1 圆柏Sabina chinensis+白皮松Pinus bungeana+银杏Ginkgo biloba+雪松Cedrus deodara+柿树Diospyros kaki+垂 柳Salix babylonica-麦冬Ophiopogon japonicus A2 国槐Sophora japonica+紫叶李Prunus cerasifera+小龙柏Sabina chinensis A3 悬铃木Platanus acerifolia+雪松Cedrus deodara+白皮松 A4 栾树Koelreuteria paniculata+紫叶李+黑松Pinus thunbergii A5 色木槭Acer mono+紫叶李+圆柏 A6 雪松+国槐+色木槭+银杏-狗尾草Setaria viridis 单行乔木 B1 国槐+小龙柏 B2 悬铃木+小龙柏 B3 雪松-麦冬Ophiopogon japonicus 乔灌草 C1 旱柳Salix matsudana+圆柏+紫叶李+银杏+栾树-日本晚樱Cerasus yedoensis+石楠Photinia serrulata+大叶黄杨 Euonymus japonicus-鸢尾Iris tectorum C2 油松Pinus tabuliformi+柿树Diospyros kaki+白蜡Fraxinus americana+雪松+圆柏-紫薇Lagerstroemia indica-鸢 尾+细叶结缕草Zoysia tenuifolia C3 银杏+油松+麻栎Quercus acutissima+色木槭+柿树+垂柳-紫叶小檗Berberis thunbergii+龙柏-早熟禾Poa annua+狗尾草Setaria viridis 表 2 12种城市道路林样地的林分特征Table 2. Stand characteristics of 12 urban road forest plots样地
名称郁闭度 乔木层平
均冠幅/m乔木层
高度/m灌木层
盖度/%灌木层
高度/m草本层
盖度/%草本层
高度/mA1 0.7 2.35 5.20 − − 15 0.25 A2 0.5 3.10 4.65 7 0.50 − − A3 0.7 4.40 7.70 − − − − A4 0.8 3.20 5.50 − − − − A5 0.6 3.35 5.40 10 0.50 − − A6 0.5 3.10 7.00 − − 10 0.30 B1 0.5 4.50 7.50 25 0.45 − − B2 0.6 5.40 8.50 15 0.50 − − B3 0.7 5.20 7.80 − − 10 0.20 C1 0.4 2.72 5.04 40 1.30 65 0.30 C2 0.4 2.28 4.78 40 1.50 80 0.28 C3 0.5 2.05 4.85 60 0.60 45 0.35 说明:“−”表示样地内无灌木或草本 1.2.2 监测内容与指标
于2016年4月至2017年1月,选择晴朗或微风(风力<3级)天气,每个月上中下旬各取3 d,使用Dustmate粉尘测试仪(分辨率:0.001 μg·m−3)同步监测所有样地,每个监测点取3次重复,监测时间段为8:00−18:00,隔2 h监测1次。采样高度为距离地面1.5 m处(人体的呼吸高度)。气象因子对PM2.5质量浓度影响显著,尤其是雾霾天或湿度较大的天气,故同步监测相对湿度、温度和风速3种气象因子。
1.3 数据处理
使用Excel 2013汇总整理原始实验数据,各样地内调查指标计算平均值和标准偏差;依据PM2.5质量浓度限值标准[14](表3)评价污染等级;计算各样地PM2.5阻滞率[14],计算公式:
${B_{{\rm{PM}}i}} = $ $ [({C_{\rm{s}}} - {C_i})/{C_{\rm{s}}}] \times 100\% $ 。其中:BPMi为第i个样地PM2.5阻滞率,Cs为对照点PM2.5质量浓度,Ci为第i个样地的PM2.5质量浓度。表 3 空气质量分级指数及对应PM2.5质量浓度限值Table 3. Air quality grading index and corresponding PM2.5 concentration limit空气质量指数/
(μg·m−3)污染等级
(六级)PM2.5日均值/
(μg·m−3)PM2.5年均值/
(μg·m−3)0~50 优 ≤35 ≤15 51~100 良 35~75 15~35 101~150 轻度 76~115 36~75 151~200 中度 116~150 76~115 201~300 重度 151~250 116~150 >300 严重污染 >250 >150 使用SPSS 18.0进行数理统计与分析,对林地内PM2.5质量浓度和阻滞率进行单因素方差分析,并和气象因子间进行相关性分析,显著性水平设定为α = 0.05。
2. 结果分析
2.1 城市道路林内外PM2.5时间变化特征
如图1所示:12种道路林及ck内的PM2.5日变化表现出相似性,早晚高,中间低,变化曲线近似“U”形。8:00最高,之后逐渐下降,10:00达到低谷后逐渐上升,12:00左右达到峰值后又逐渐下降,14:00达到最小值,之后逐渐升高,18:00又达到峰值。从全年变化角度分析,道路林及ck内的PM2.5年变化规律表现为冬季(136.74~194.18 μg·m−3)>秋季(63.48~104.96 μg·m−3)>春季(28.68~36.31 μg·m−3)>夏季(13.30~19.13 μg·m−3) (表4);4个季节及季节均值都表现为林内<ck;春夏季节,林内对比ck差异较小,差值分别在8.00 和6.00 μg·m−3范围内波动,ck与林内的PM2.5质量浓度之比分别为1.00∶1.27和1.00∶1.44;秋冬季节差值分别在41.00和57.00 μg·m−3范围内波动,PM2.5质量浓度之比分别为1.00∶1.65和1.00∶1.42。
表 4 城市道路林内外PM2.5季节均值Table 4. Seasonal mean value of PM2.5 inside and outside urban roads样地名称 样地结构 PM2.5变化值/(μg·m−3) 春季 夏季 秋季 冬季 季节均值 A1 针阔混交乔木 28.68±2.80 ab 19.13±1.44 d 90.16±6.85 g 174.09±16.35 e 78.01±6.86 e A2 针阔混交乔木 33.63±2.75 c 14.15±2.22 ab 78.86±8.29 d 176.77±16.05 f 75.86±7.33 d A3 针阔混交乔木 28.0±1.42 a 14.91±1.53 abc 98.46±7.67 i 185.82±16.54 g 81.80±6.79 f A4 针阔混交乔木 30.24±2.42 b 13.30±1.51 a 85.38±9.16 f 136.74±14.54 b 66.41±6.91 a A5 针阔混交乔木 33.28±1.83 c 15.60±1.54 bc 96.46±9.17 h 138.05±14.95 b 70.85±6.87 b A6 针阔混交乔木 31.62±1.54 c 16.55±1.81 c 76.47±8.99 c 134.53±16.11 a 64.79±7.11 a B1 单行乔木 34.24±1.58 cd 15.75±1.65 bc 104.07±6.81 k 136.91±10.08 b 72.74±5.03 c B2 单行乔木 32.68±1.15 c 16.11±1.78 c 104.96±6.18 k 140.22±10.35 c 73.49±4.87 c B3 单行乔木 36.31±1.87 e 14.00±1.82 ab 81.45±7.00 e 150.10±12.58 d 70.46±5.82 b C1 乔灌草 31.72±2.20 c 13.96±1.54 ab 73.58±11.12 b 175.77±14.89 f 73.76±7.44 c C2 乔灌草 33.25±3.07 c 15.32±1.75 bc 63.48±11.58 a 192.32±18.92 h 76.09±8.83 d C3 乔灌草 31.87±1.93 de 13.38±1.66 a 80.94±10.62 e 175.90±20.62 f 75.52±8.71 d ck 35.51±4.09 de 18.88±2.04 d 101.33±14.86 j 194.18±36.42 i 87.40±14.35 g 依据环境空气质量标准(表3),春夏季节道路林内PM2.5质量浓度在所有监测时段空气质量为优;秋冬季节在8:00和18:00,空气质量达到中重度污染,其他时间监测时段为良。
2.2 PM2.5水平空间变化特征
PM2.5在水平空间上的变化因季节表现出差异(图2~4)。春夏季节,PM2.5质量浓度在不同水平梯度(10、20、30 m)中表现为从ck向林内逐渐递减,即PM2.5质量浓度从大到小依次为10、20、30 m,减少幅度为12.53%~16.79%。秋冬两季,PM2.5质量浓度则从ck向林内呈递增趋势,具体表现为从林带边缘1 m处开始增加,15~25 m处达到峰值,25 m之后逐渐减少,30 m位置处达到最低值。对比ck发现,PM2.5质量浓度在0~25 m以内高于ck,只在25~30 m处低于ck,减少幅度为4.37%~10.76%,且表现出林带宽度越大,阻滞率越高的趋势。
2.3 城市道路林对PM2.5阻滞效果
根据图5可知:春季,12种道路林对PM2.5均有阻滞效果,减幅最高的是A1(针阔混交乔木)、C1(乔灌草)、C2(乔灌草),分别减少15.12%、12.89%、13.63%,显著高于其他林带(5.86%~9.52%)(P<0.05);夏季,减幅最高的是C3(乔灌草)、A2(针阔混交乔木),分别减少28.84%、27.26%,其他林带平均减幅为13.86%~25.78%。可见,夏季雨水多,林带内植物经过风力和雨水的冲刷后滞尘能力较强。秋季,林带滞尘效果均较差,且差异性显著(P<0.05),只有A5(针阔混交乔木)、B3(单排乔木)有正消减,平均减幅分别为4.68%和5.62%,其他林带均为负值(−1.35%~−11.50%)。冬季削减能力也较差,且差异性显著(P<0.05),只有B1~B3(单排乔木)和乔灌草结构(C2、C3)阻滞率为正值,分别为7.22%、3.15%、8.08%、1.53%、3.47%,其他均为负值(−0.17%~−7.59%)。
2.4 气象因子的影响
2.4.1 气象因子与林带内PM2.5质量浓度的相关性
如表5所示:在一定范围内,PM2.5质量浓度与风速存在负相关(P<0.05),春、秋、冬3个季节相关性分别达到显著、极显著、显著(r=−0.619 0、−0.862 0、−0.680 0),夏季相关不显著;与相对湿度存在正相关(P<0.05),春、夏2季相关性达到显著、极显著(r=0.670 0、0.767 0),其他季节相关性不显著;与气温存在正相关关系(P<0.05),秋、冬2季相关性达到极显著(r=0.924 0、0.853 0),其他季节相关性不显著。
表 5 PM2.5质量浓度与气象因子的偏相关系数Table 5. Partial correlation coefficient between PM2.5 concentration and meteorological factors季节 风速 相对湿度 气温 春季 −0.619 0* 0.670 0* 0.440 0 夏季 −0.508 0 0.767 0** 0.307 0 秋季 −0.862 0** 0.553 0 0.924 0** 冬季 −0.680 0* 0.025 0 0.853 0** 说明:*在0.05水平上显著相关,**在0.01水平上显著相关 2.4.2 气象因子与城市道路林PM2.5阻滞率的相关性
由表6可知:PM2.5阻滞率与气象因子存在一定的相关性,4个季节与风速基本呈负相关,但相关性不显著;PM2.5阻滞率与相对湿度在秋季达到极显著正相关(P<0.01,r=−0.847 0),其他季节均不显著;与气温存在负相关关系(P<0.05),秋、冬2个季节下相关性分别达到极显著、显著(r=−0.862 0、r=−0.654 0),其他季节相关性不显著。
表 6 城市道路林PM2.5阻滞率与气象因子的偏相关系数Table 6. Partial correlation coefficient between PM2.5 block rate and meteorological factors in urban road forests季节 风速 相对湿度 气温 春季 −0.571 0 −0.183 0 −0.301 0 夏季 0.135 0 0.075 0 −0.226 0 秋季 −0.150 0 0.847 0** −0.862 0** 冬季 −0.299 0 0.517 0 −0.654 0* 说明:*在0.05水平上显著相关,**在0.01水平上显著相关 3. 讨论和结论
城市中的PM2.5主要来源于生活排放、地面扬尘和交通排放等。PM2.5的变化和人们的生活习惯密切相关,而其沉降是一个复杂的过程,气流运动、环境因子等因素都可能会对PM2.5的沉降产生影响。本研究中,道路中(ck)PM2.5日变化规律均表现为早晚高,中间低,峰值出现在8:00和18:00,主要原因是此时正值上下班高峰期,道路上车辆增加,导致排放的颗粒物增加,其次是来往的车辆会引起地面扬尘。而林带内PM2.5日变化与道路一致,这说明林带对PM2.5的阻滞作用有协同作用。早晚温度较低,湿度较大,不利于大气的输送和扩散,因此导致PM2.5在林内外积聚,不易扩散[15-16];正午前后,车辆减少,气温升高,相对湿度减小,太阳光照增强,大气对流和湍流强烈,有利于大气的扩散运动[17],PM2.5由林缘向林内逐渐扩散,同时,林内植物对颗粒物发挥了阻滞作用,故PM2.5质量浓度下降且低于早晚[18]。
一般来说,PM2.5存在季节性差异。前人研究表明:PM2.5质量浓度年变化从高到低依次为冬季、春季、秋季、夏季[19]。也有学者认为:PM2.5质量浓度秋季高于春季[20]。本研究结果显示:PM2.5质量浓度年变化从高到低依次为冬季、秋季、春季、夏季,与前人结果存在一定差异;这种季节性规律的主要原因应该与大气扩散条件的季节差异以及排放源的冬、夏季差异有关。研究表明:降水通过惯性碰并过程和布朗扩散作用可冲刷附着在叶面上的颗粒物,同时也能有效减少空气中颗粒物含量及地表扬尘,从而增加植物叶片对颗粒物的循环吸附能力[21-22]。泰安市夏天雨水充沛,对PM2.5的冲刷效果明显,同时,气温高,大气垂直对流作用强,这些因素使得PM2.5不易聚集,质量浓度减少,故夏季达到最低[20];而秋冬季燃煤排放源增加及雾霾天气多发,导致在秋冬季居高不下。而春秋季节的差异主要和植物的生长期、气候变化等有关[23]。相关植物和气象因素是影响空气中PM2.5阻滞效应的主要因素。本研究表明:PM2.5在水平空间上具有季节性差异,其主要原因是城市道路污染源向四周持续线性扩散输送污染物,表现为进入慢、累积慢、消散慢的特点,道路林内的植被在吸附PM2.5时过程缓慢,短时间内容易累积在林内,随着林带宽度的增加,林内参与削减PM2.5的植被增加,因此,春夏季节呈现ck至林内逐渐降低的趋势。但秋冬季节,在林带内25 m处,PM2.5质量浓度增加,这可能是由于此处的的风速降低,导致PM2.5沉降[18, 24]。
不同配置模式的城市道路林对PM2.5的阻滞率季节差异明显。本研究结果表明:春夏季节对PM2.5有正向的阻滞效应,阻滞能力最强的是乔灌草结构,其次是针阔混交乔木结构、单排乔木结构;主要原因是乔灌草结构具有良好的降低风速的功能和立体化滞尘效果;而秋冬季节,只有A5(针阔混交乔木)、B1~B3(单排乔木)和乔灌草(C2、C3)阻滞效果较好,其余均富集PM2.5。这可能和样地内树种组成以及环境因子有关。本研究样地内种植有松柏类和高大阔叶类乔木植物,松柏类针叶树针叶细长、枝茎复杂且全年有叶期,其吸附颗粒物的能力在秋冬季节强于阔叶树,且能够分泌树脂,可减少吸附颗粒物的弹回比例[25-27];而乔木类树种林冠层茂盛、叶面积指数大、林分郁闭度较高等比灌木和草本植物更能有效阻滞大气颗粒物,同时对空气流动的影响比针叶类乔木更强,更易使周边空气形成湍流,从而为颗粒物沉降提供有利条件,促进植物对颗粒物的吸附[28-29]。但大气颗粒物的组成成分复杂,不同树种的滞尘能力又有很大差异[30],对于单一树种的滞尘能力需进一步研究和探讨。
一般来说,风速与PM2.5呈负相关关系,而温湿度呈正相关关系。本研究结果显示:气象因子和PM2.5相关关系与前人的研究结果一致,但是阻滞率与气象因子的相关关系变具有季节性。本研究表明:阻滞率和气温为负相关关系,与吴兑[31]的研究结果相反。这可能是植物叶面气孔的张合有关;春秋冬季阻滞率与风速成负相关,主要是和风力大小有关,合适的风力(5 m·s−1)可通过水平输送和稀释扩散效应降低颗粒物浓度,风力过强或过弱都可能会对植物吸附能力产生反效果,也有学者认为:风力大时较风力小时吸附效果更好[32]。春季阻滞率与相对湿度呈负相关关系,这和吕铃钥等[23]的研究结构相反。这可能和春季植物生长有关。
本研究结果表明:林带对PM2.5阻滞效应表现出强烈的季节性,受车辆、气候和植被类型等多维生态因子的交互作用,尤其是植被的作用机制,因此,在探讨道路林对PM2.5的作用时应充分考虑多维生态因子的协同作用。建议在城市道路林建设中合理增加林带宽度及加大常绿针叶乔木和灌草的比例。
-
表 1 黄酮代谢通路中的差异基因
Table 1. Differential genes in the flavonoid metabolic pathway
组别 基因编码 基因注释 log2CF 调节 ck-T1 TRINITY_DN17271_c0_g1 羟基肉桂酰基转移酶(HCT) −2.59 下调 ck-T1 TRINITY_DN156339_c0_g1 5-O-(4-香豆酰基)-D-奎喹酸酯 3′-单加氧酶(CYP98A3) −2.08 下调 ck-T3 TRINITY_DN10864_c0_g1 黄酮醇合酶(FLS) 3.28 上调 ck-T1+23 TRINITY_DN10838_c0_g1 黄烷酮3-羟化酶(F3H) −2.60 下调 ck-T1+23 TRINITY_DN7985_c0_g1 黄烷酮3-羟化酶(F3H) −2.56 下调 ck-T3+21 TRINITY_DN12973_c0_g1 花青素合酶(ANS) −3.71 下调 ck-T3+21 TRINITY_DN7985_c0_g1 黄烷酮3-羟化酶(F3H) −2.14 下调 ck-T3+21 TRINITY_DN10838_c0_g1 黄烷酮3-羟化酶(F3H) −2.73 下调 T3-T3+21 TRINITY_DN7985_c0_g1 黄烷酮3-羟化酶(F3H) −2.38 下调 T3-T3+21 TRINITY_DN734_c0_g1 查耳酮合酶(CHS) −4.74 下调 T3-T3+21 TRINITY_DN145313_c0_g1 花青素还原酶(ANR) −6.33 下调 T3-T3+21 TRINITY_DN10864_c0_g1 黄酮醇合酶(FLS) −3.21 下调 表 2 过氧化物酶体通路中的差异基因
Table 2. Differential genes in the peroxisome pathway
组别 基因编码 基因注释 log2CF 调节 T1-T1+23 TRINITY_DN105637_c0_g1 过氧化氢酶(CAT) 2.97 上调 T3-T3+21 TRINITY_DN16875_c0_g1 过氧化物酶体膜蛋2(XMP2) 1.65 上调 T3-T3+21 TRINITY_DN4487_c0_g1 超氧化物歧化酶(SOD) 1.07 上调 T3-T3+21 TRINITY_DN19733_c0_g2 异柠檬酸脱氢酶(ICDH) 1.46 上调 T3-T3+21 TRINITY_DN48302_c0_g1 FMN依赖型α-羟基酸脱氢酶 2.10 上调 -
[1] 中国科学院中国植物志委员会. 中国植物志: 第48卷第2分册[M]. 北京: 科学出版社, 2004: 122. Editorial Committee of Flora of China, Chinese Academy of Science. Flora of China: Vol 48, Issue 2 [M]. Beijing: Science Press, 2004: 122. [2] JI Tao, JI Weiwei, WANG Juan, et al. A comprehensive review on traditional uses, chemical compositions, pharmacology properties and toxicology of Tetrastigma hemsleyanum [J/OL]. Journal of Ethnopharmacology, 2020, 264: 113247[2023-05-30]. doi: 10.1016/j.jep.2020.113247. [3] HU Wangying, ZHENG Yujie, XIA Pengguo, et al. The research progresses and future prospects of Tetrastigma hemsleyanum Diels et Gilg: a valuable Chinese herbal medicine [J/OL]. Journal of Ethnopharmacology, 2021, 271: 113836[2023-05-30]. doi: 10.1016/j.jep.2021.113836. [4] 徐硕, 金鹏飞, 徐文峰, 等. 民间中药三叶青的研究进展[J]. 中南药学, 2016, 14(12): 1336 − 1341. XU Shuo, JIN Pengfei, XU Wenfeng, et al. Research advances in Chinese herbal medicine Tetrastigmae hemsleyanum [J]. Central South Pharmacy, 2016, 14(12): 1336 − 1341. [5] LAI Chengchun, PAN Hong, ZHANG Jing, et al. Light quality modulates growth, triggers differential accumulation of phenolic compounds, and changes the total antioxidant capacity in the red callus of Vitis davidii [J]. Journal of Agricultural and Food Chemistry, 2022, 70(41): 13264 − 13278. [6] GARCÍA-LAFUENTE A, GUILLAMÓN E, VILLARES A, et al. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease [J]. Inflammation Research, 2009, 58(9): 537 − 552. [7] LI Yongli, FENG Xinyu, ZHANG Yiru, et al. Dietary flavone from the Tetrastigma hemsleyanum vine triggers human lung adenocarcinoma apoptosis via autophagy [J]. Food &Function, 2020, 11(11): 9776 − 9788. [8] 范适, 胡春梅, 李有清, 等. 三叶青的研究进展[J]. 湖南生态科学学报, 2018, 5(2): 46 − 51. FAN Shi, HU Chunmei, LI Youqing, et al. Advances in Tetrastigma hemsleyanum [J]. Journal of Hunan Ecological Science, 2018, 5(2): 46 − 51. [9] PAOLETTI E. UV-B and Mediterranean forest species: direct effects and ecological consequences [J]. Environmental Pollution, 2005, 137(3): 372 − 379. [10] FROHNMEYER H. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection [J]. Plant Physiology, 2003, 133(4): 1420 − 1428. [11] HOLLÓSY F. Effects of ultraviolet radiation on plant cells [J]. Micron, 2002, 33(2): 179 − 197. [12] SONG Yan, MA Bin, GUO Qingxun, et al. UV-B induces the expression of flavonoid biosynthetic pathways in blueberry (Vaccinium corymbosum) calli [J/OL]. Frontiers in Plant Science, 2022, 13: 1079087[2023-05-30]. doi: 10.3389/fpls.2022.1079087. [13] HAO Juan, LOU Panpan, HAN Yidie, et al. Ultraviolet-B irradiation increases antioxidant capacity of pakchoi (Brassica rapa L. ) by inducing flavonoid biosynthesis [J/OL]. Plants, 2022, 11(6): 766[2023-05-30]. doi: 10.3390/plants11060766. [14] LIU Yang, LIU Jia, ABOZEID A, et al. UV-B radiation largely promoted the transformation of primary metabolites to phenols in Astragalus mongholicus seedlings [J/OL]. Biomolecules, 2020, 10(4): 504[2023-05-30]. doi: 10.3390/biom10040504. [15] TAO Minglei, ZHU Wei, HAN Haote, et al. Mitochondrial proteomic analysis reveals the regulation of energy metabolism and reactive oxygen species production in Clematis terniflora DC. leaves under high-level UV-B radiation followed by dark treatment [J/OL]. Journal of Proteomics, 2022, 254: 104410[2023-05-30]. doi: 10.1016/j.jprot.2021.104410. [16] PANDEY N, PANDEY-RAI S. Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L. [J]. Plant Cell,Tissue and Organ Culture, 2014, 116(3): 371 − 385. [17] 温泉, 张楠, 曹瑞霞, 等. 增强UV-B对黄连代谢及小檗碱含量的影响[J]. 中国中药杂志, 2011, 36(22): 3063 − 3069. WEN Quan, ZHANG Nan, CAO Ruixia, et al. Effect of enhanced UV-B radiation on metabolism and berberine content of Coptis chinensis [J]. China Journal of Chinese Mataria Medica, 2011, 36(22): 3063 − 3069. [18] NEUGART S, BUMKE-VOGT C. Flavonoid glycosides in Brassica species respond to UV-B depending on exposure time and adaptation time [J/OL]. Molecules, 2021, 26(2): 494[2023-05-30]. doi: 10.3390/molecules26020494. [19] BAI Yan, GU Yiwen, LIU Shouzan, et al. Flavonoids metabolism and physiological response to ultraviolet treatments in Tetrastigma hemsleyanum Diels et Gilg [J/OL]. Frontiers in Plant Science, 2022, 13: 926197[2023-05-30]. doi: 10.3389/fpls.2022.926197. [20] GAO Limei, LIU Ying, WANG Xiaofei, et al. Lower levels of UV-B light trigger the adaptive responses by inducing plant antioxidant metabolism and flavonoid biosynthesis in Medicago sativa seedlings [J]. Functional Plant Biology, 2019, 46(10): 896 − 906. [21] LÜ Min, SU Hongyan, LI Meiling, et al. Effect of UV-B radiation on growth, flavonoid and podophyllotoxin accumulation, and related gene expression in Sinopodophyllum hexandrum [J]. Plant Biology, 2021, 23: 202 − 209. [22] CHEN Yiyong, FU Xiumin, MEI Xin, et al. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves [J]. Journal of Proteomics, 2017, 157: 10 − 17. [23] LI Ke, TIAN Huiyue, MAO Jiangping, et al. Effect of darkness treatment on the morphology, hormone status and gene expression of developing adventitious root in apple rootstock [J]. Plant Cell,Tissue and Organ Culture, 2021, 148(2): 331 − 346. [24] 韩敏琪. 短波长光质对三叶青生理生化及黄酮含量的影响[D]. 杭州: 浙江农林大学, 2019. HAN Minqi. Effects of Short-wavelength Light Quality on Physiology, Biochemistry and Flavonoid Content Tetrastigmatis hemsleyani Diels et Gilg [D]. Hangzhou: Zhejiang A&F Uiversity, 2019. [25] AL-KHAYRI J M, UPADHYA V, PAI S R, et al. Comparative quantification of the phenolic compounds, piperine content, and total polyphenols along with the antioxidant activities in the Piper trichostachyon and P. nigrum [J/OL]. Molecules, 2022, 27(18): 5965[2023-05-30]. doi: 10.3390/molecules27185965. [26] 刘希达, 韩娜, 刘志惠, 等. 覆盆子抗氧化和α-葡萄糖苷酶抑制活性成分研究[J]. 中草药, 2021, 52(17): 5226 − 5232. LIU Xida, HAN Na, LIU Zhihui, et al. Active components of antioxidation and α-glucosidase inhibitory from Rubi Fructus [J]. Chinese Traditional and Herbal Drugs, 2021, 52(17): 5226 − 5232. [27] 李世玉, 程登虎, 闫星, 等. 外源SNP对盐胁迫下甜瓜幼苗生长及抗氧化酶活性的影响[J]. 西北植物学报, 2022, 42(6): 994 − 1002. LI Shiyu, CHENG Denghu, YAN Xing, et al. Effect of exogenous SNP on the growth and antioxidant enzyme activities in melon seedlings under salt stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(6): 994 − 1002. [28] 王晓宇, 张艳娥, 张林生. 4种非生物胁迫下小麦幼苗表型及可溶性蛋白含量的变化[J]. 干旱地区农业研究, 2018, 36(2): 113 − 117. WANG Xiaoyu, ZHANG Yan’e, ZHANG Linsheng. Changes of phenotype and soluble protein content in wheat seedlings under four kinds of abiotic stress [J]. Agricultural Research in the Arid Areas, 2018, 36(2): 113 − 117. [29] 朱智慧, 温东, 张栋, 等. 紫外光促进苦荞中黄酮类化合物积累的分子机制探究[J]. 中草药, 2021, 52(5): 1448 − 1453. ZHU Zhihui, WEN Dong, ZHANG Dong, et al. Molecular mechanisms of UVB-induced flavonoid accumulation in Fagopyrum tataricum [J]. Chinese Traditional and Herbal Drugs, 2021, 52(5): 1448 − 1453. [30] QIAN Minjie, ROSENQVIST E, PRINSEN E, et al. Downsizing in plants-UV light induces pronounced morphological changes in the absence of stress [J]. Plant Physiology, 2021, 187(1): 378 − 395. [31] ÇETINBAŞ-GENÇ A, TOKSÖZ O, PICCINI C, et al. Effects of UV-B radiation on the performance, antioxidant response and protective compounds of hazelnut pollen [J/OL]. Plants, 2022, 11(19): 2574[2023-05-30]. doi: 10.3390/plants11192574. [32] DU Zhaokui, LIN Weida, YU Binbin, et al. Integrated metabolomic and transcriptomic analysis of the flavonoid accumulation in the leaves of Cyclocarya paliurus at different altitudes [J/OL]. Frontiers in Plant Science, 2021, 12: 794137[2023-05-30]. doi: 10.3389/fpls.2021.794137. [33] JULKUNEN-TIITTO R, HÄGGMAN H, APHALO P, et al. Growth and defense in deciduous trees and shrubs under UV-B [J]. Environmental Pollution, 2005, 137(3): 404 − 414. [34] SURJADINATA B B, JACOBO-VELÁZQUEZ D A, CISNEROS-ZEVALLOS L. UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding [J/OL]. Molecules, 2017, 22(4): 668[2023-05-30]. doi: 10.3390/molecules22040668. [35] ÁLVAREZ-GÓMEZ F, KORBEE N, FIGUEROA F. Effects of UV radiation on photosynthesis, antioxidant capacity and the accumulation of bioactive compounds in Gracilariopsis longissima, Hydropuntia cornea and Halopithys incurva (Rhodophyta) [J]. Journal of Phycology, 2019, 55(6): 1258 − 1273. [36] YANG Bingxian, GUAN Qijie, TIAN Jingkui, et al. Transcriptomic and proteomic analyses of leaves from Clematis terniflora DC. under high level of ultraviolet-B irradiation followed by dark treatment [J]. Journal of Proteomics, 2017, 150: 323 − 340. [37] LI Yaohan, LIU Shengzhi, SHAWKY E, et al. SWATH-based quantitative proteomic analysis of Morus alba L. leaves after exposure to ultraviolet-B radiation and incubation in the dark [J/OL]. Journal of Photochemistry and Photobiology, B: Biology, 2022, 230: 112443[2023-05-30]. doi: 10.1016/j.jphotobiol.2022.112443. [38] ZHU Wei, YANG Bingxian, KOMATSU S, et al. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus [J/OL]. Frontiers in Plant Science, 2015, 6: 582[2023-05-30]. doi: 10.3389/fpls.2015.00582. [39] TAKEUCHI T, NEWTON L, BURKHARDT A, et al. Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles [J]. Journal of Experimental Botany, 2014, 65(20): 6003 − 6012. [40] WU Xiaojie, CHEN Bicong, XIAO Jiping, et al. Different doses of UV-B radiation affect pigmented potatoes’ growth and quality during the whole growth period [J/OL]. Frontiers in Plant Science, 2023, 14: 1101172[2023-05-30]. doi: 10.3389/fpls.2023.1101172. [41] SZTATELMAN O, GRZYB J, GABRYŚ H, et al. The effect of UV-B on Arabidopsis leaves depends on light conditions after treatment [J/OL]. BMC Plant Biology, 2015, 15: 281[2023-05-30]. doi: 10.1186/s12870-015-0667-2. [42] SHI Jing, ZHANG Xue, ZHANG Yuanyuan, et al. Integrated metabolomic and transcriptomic strategies to understand the effects of dark stress on tea callus flavonoid biosynthesis [J]. Plant Physiology and Biochemistry, 2020, 155: 549 − 559. [43] 孟凡来, 白磊, 郭华春, 等. 紫甘薯叶片响应UV-B辐射增强的转录组分析[J]. 华北农学报, 2021, 36(5): 135 − 142. MENG Fanlai, BAI Lei, GUO Huachun, et al. Transcriptome analysis of purple sweet potato leaf in response to enhanced UV-B radiation [J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 135 − 142. [44] MARIZ-PONTE N, MENDES R, SARIO S, et al. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: a contribution to the use of UV-A/B in horticulture [J]. Journal of Plant Physiology, 2018, 221: 32 − 42. [45] WANG Hui, KANG Yunyan, YANG Ni, et al. Inhibition of UV-B stress in lettuce through enzyme-like Scutellaria baicalensis carbon dots [J/OL]. Ecotoxicology and Environmental Safety, 2022, 246: 114177[2023-05-30]. doi: 10.1016/j.ecoenv.2022.114177. [46] 吴业飞, 吴鲁阳, 张振文. 紫外线-B辐射增强对葡萄叶片抗氧化系统的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(12): 161 − 166. WU Yefei, WU Luyang, ZHANG Zhenwen. Effect of enhanced ultraviolet-B radiation on antioxidant systems in grapevine seedling leaves [J]. Journal of Northwest A&F University (Nature Science Edtion), 2008, 36(12): 161 − 166. [47] FAIZE M, BURGOS L, FAIZE L, et al. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress [J]. Journal of Experimental Botany, 2011, 62(8): 2599 − 2613. [48] POÓR P, TAKÁCS Z, BELA K, et al. Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato [J]. Journal of Plant Physiology, 2017, 213: 216 − 226. [49] 褚润, 陈年来, 韩国君, 等. 三种UV-B辐射强度下香蒲的生长和抗氧化状况[J]. 湿地科学, 2020, 18(1): 32 − 39. CHU Run, CHEN Nianlai, HAN Guojun, et al. Growth and antioxidant status of Typha orientalis under 3 kinds of UV-B radiation intensities [J]. Wetland Science, 2020, 18(1): 32 − 39. [50] AYALA A, MUÑOZ M, ARGÜELLES S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal [J/OL]. Oxidative Medicine and Cellular Longevity, 2014, 2014: 360438[2023-05-30]. doi: 10.1155/2014/360438. [51] 梁晨, 安美玲, 杨锡洪, 等. 紫外辐射(UVB)胁迫下南极硅藻Phaeodactylum tricornutum ICE-H的生理生化与抗氧化活性响应[J]. 海洋科学进展, 2023, 41(2): 283 − 294. LIANG Chen, AN Meiling, YANG Xihong, et al. Physiological, biochemical and antioxidant activity response of Antarctic diatom Phaeodactylum tricornutum ICE-H under ultraviolet radiation (UVB) stress [J]. Advances in Marine Science, 2023, 41(2): 283 − 294. [52] GONCHARUK E, ZUBOVA M, NECHAEVA T, et al. Effects of hydrogen peroxide on In vitro cultures of tea (Camellia sinensis L.) grown in the dark and in the light: morphology, content of malondialdehyde, and accumulation of various polyphenols [J/OL]. Molecules, 2022, 27(19): 6674[2023-05-30]. doi: 10.3390/molecules27196674. 期刊类型引用(12)
1. 鲁凯莉,王爱霞,郭亚男. 冬季公园绿地消减颗粒物的植物群落结构与空间差异. 内蒙古工业大学学报(自然科学版). 2024(01): 82-91 . 百度学术
2. 周继磊,李传荣,贾艳艳,杨柳,刘琳,肖茂. 泰安市主城区道路林结构特征及碳储量估算. 中国城市林业. 2024(02): 121-128 . 百度学术
3. 李立文,周润洋,万欣,邢玮. 不同模式防护林内PM_(2.5)浓度变化及其影响因子分析. 南方农业学报. 2024(09): 2689-2700 . 百度学术
4. 王薛平,胡玮琪,杨吉,黄星. 桐花树及其他植被群落对PM_(2.5)的吸附能力对比研究. 农业灾害研究. 2024(11): 16-19 . 百度学术
5. 李陶陶,刘硕,马丽娜,门志远,于庆鑫,蔡璐瑶,孙萌. 哈尔滨城市积雪中微塑料赋存特征及生态风险评估. 环境科学学报. 2023(04): 368-376 . 百度学术
6. 张莉,李铖,谭皓泽,韦家怡,程炯,彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素. 生态环境学报. 2023(02): 341-350 . 百度学术
7. 李心愿,包红光,闫晓云,侯秀娟,王波. 干旱半干旱城市公园绿地夏季环境效应评价. 内蒙古农业大学学报(自然科学版). 2023(01): 26-33 . 百度学术
8. 门志远,刘硕,李昀东,宣立强,蔡璐瑶. 哈尔滨新区不同下垫面悬浮大气微塑料污染特征及潜在生态风险评估. 环境科学学报. 2022(06): 329-336 . 百度学术
9. 袁楚阳,章银柯,朱国亮,李晓璐,于慧,张天然,黄芳,莫莉,邵锋. 基于ENVI-met的道路绿带植物配植对PM_(2.5)浓度影响模拟. 浙江林业科技. 2021(01): 24-32 . 百度学术
10. 张天然,郑文革,章银柯,黄芳,李晓璐,袁楚阳,于慧,晏海,邵锋. 杭州市临安区4种绿地内细颗粒物中重金属污染特征. 浙江农林大学学报. 2021(04): 737-745 . 本站查看
11. 张刘东,郭建曜,万家隆,付德刚,高晴,申卫星,张义坤,李传荣. 泰山景区不同林型空气颗粒物浓度研究. 中国农学通报. 2021(19): 100-105 . 百度学术
12. 曾万祺,张纯曦,张娟. 张掖市城市道路林带对PM_(2.5)的削减作用. 农业与技术. 2021(18): 89-91 . 百度学术
其他类型引用(7)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230385