-
“景观”和“游憩”是城市森林的重要功能[1-3]。发挥城市森林“景观”功能的主要载体是林冠的“绿量”,而“游憩”功能则通过建立林下空间来实现。国家林业和草原局于2019年提出GB T37342−2019《国家森林城市评价指标》,旨在建立城乡一体化森林生态系统建设考核指标,并形成标准进行约束[4]。其中,涉及森林“绿量”的评价指标有市域森林覆盖率、新造林面积、城区绿化覆盖率、城区人均公园绿地面积、城区街道绿化(树冠覆盖率)、城区地面停车场绿化(乔木树冠覆盖率)等,用以表现城市总体绿化数量,但在推算城市绿化质量时会出现很大偏差。研究发现:2块面积形状相同、乔木数量和冠幅也相同的绿地,乔木高度不同时,其三维空间层面的绿量有显著差异,从而影响城市森林景观功能的发挥[5]。目前,中国城市森林建设中普遍存在过于讲求增加森林覆盖率的现象,对森林质量的要求相对忽视,树木人为矮化、垂直结构不合理、修剪严重等现象时常出现,城市森林绿量较小。城市森林不同于自然林,它具有一定的区位特殊性[6-8]和功能侧重性[9-13],“游憩”是城市森林的重要功能之一,需要通过构建一定数量的林下空间来实现。林下空间是城市森林空间占有量的有机组成部分,是人们利用最充分的活动场所。城市中人口密集,休闲活动空间有限,且多被硬化场地、草坪等所占据,利用率极低;同时部分林木枝下高过低,通透性差,严重影响了林下空间,限制了林内的游憩行为。本研究以广东省珠海市的城市公园风景林为研究对象,测算城市风景游憩林的林冠三维绿量(3DGQ)和林下游憩空间量(FRS),分析城市森林空间分配策略,从而引导城市森林生态服务功能的高效发挥和健康发展。
-
珠海市地处广东省南部(21°48′~22°27′N,113°03′~114°19′E),珠江出海口西岸,是珠江三角洲中心城市之一、珠江口西岸的核心城市、粤港澳大湾区重要节点城市。属南亚热带季风海洋性气候,气候湿润,年平均气温为22.5 ℃,年平均相对湿度为80%,年平均降水量为2 061.9 mm。选定的风景游憩林均为城市人工营建的常绿阔叶林,其中前山公园位于城市近郊区(CUA),林地面积约3.78 万m2;北理工珠海学院位于城市次核心区(SUA),林地面积约4.40 万m2;梅华城市公园位于城市核心区(UFA),林地面积约8.07 万m2。
-
采用森林群落生态学研究方法,参照周红敏等[14]方法选取样方,在考虑调查时间和成本情况下,设置样方大小为30 m×30 m,每1 万m2抽取4个样方以准确表达森林群落的空间分布格局。其中前山公园风景游憩林群落样地设置调查样方13个,北理工珠海学院14个,梅华城市公园26个。所有样方随机选取,尽可能互不相邻,尽量选择树木种类、配植和体量有一定差异的样方,水面、建筑、纯草地占比面积不超过1/3。所有样方的植被进行每木检尺,记录胸径≥5.0 cm的树种名称,测定胸径、树高、冠幅、树冠净空高度等指标。
-
三维绿量的计算参考郭雪艳等[15],不同树冠形态树种树冠体积计算公式不同。以x表示平均冠径(m),即东西和南北树冠长度的平均值,以y表示冠高(m),通过文献查阅确定不同树种的树冠形态[16-22],分别计算树冠体积(V,m3),确定树冠三维绿量(表1)。
表 1 树冠形态分类及树冠体积
Table 1. Classification of crown morphology and calculation of crown volume
树冠形状 树种 体积公式 球形 四季桂Osmanthus fragrans、黄金榕Ficus microcarpa V=πx2y/6 卵形 白兰Michelia × alba、垂柳Salix babylonica、翻白叶树Pterospermum heterophyllum、 红苞木Rhodoleia championii、黄金香柳Melaleuca bracteata、黄皮Clausena lansium、木荷 Schima superba、桑Morus alba、铁冬青Ilex rotunda、土蜜树Bridelia tomentosa、樟树 Cinnamomum camphora、海南蒲桃Syzygium hainanense、蒲葵Livistona chinensis V=πx2y/6 圆锥形 罗汉松Podocarpus macrophyllus、竹柏Nageia nagi、马占相思Acacia mangium、台湾相思Acacia confusa、马尾松Pinus massoniana、南洋杉Araucaria columnaris、鱼尾葵Caryota maxima、红 车Syzygium rehderianum V=πx2y/12 半球形/扁圆形 紫薇Lagerstroemia indica、黄槿Hibiscus tiliaceus、大花紫薇Lagerstroemia speciosa、鸡蛋花 Plumeria rubra、黄槐决明Senna surattensis、小叶榕Ficus microcarpa、潺槁木姜子Litsea glutinosa、 刺桐Erythrina variegata、非洲楝Khaya senegalensis、莲雾Syzygium samarangense、蒲桃 Sterculia monosperma、阴香Cinnamomum burmannii、印度紫檀Pterocarpus indicus、高山榕 Ficus altissima、荔枝Litchi chinensis V=πx2y/6 球扇形 大叶相思Acacia auriculiformis、洋紫荆Bauhinia variegata、红花紫荆Bauhinia×blakeana、蓝花 楹Jacaranda mimosifolia、柳叶榕Ficus binnendijkii、窿缘桉Eucalyptus exserta、麻楝 Chukrasia tabularis、杧果Mangifera indica、美丽针葵Phoenix canariensis、秋枫Bischofia javanica、盆架子Alstonia rostrata、散尾葵Chrysalidocarpus lutescens、小叶榄仁Terminalia neotaliala、凤凰木Delonix regia、番木瓜 Carica papaya、美丽异木棉Ceiba speciosa、木棉 Bombax ceiba、黄花风铃木Handroanthus chrysanthus V=π[2y3−y2(4y2−x2)1/2]/3 球缺形 澳洲火焰木Brachychiton acerifolius 、澳洲鸭脚木Schefflera actinophylla、大王椰子Roystonea regia、假槟榔Archontophoenix alexandrae、老人葵Coccothrinax crinita V=π(3xy2−2y3)/6 圆柱形 火焰木Spathodea campanulata、苹婆Sterculia monosperma、白千层Melaleuca cajuputi V=πx2y/4 说明:V为树冠体积(m3);x为平均冠层(m);y为冠高(m) -
林下游憩空间量反映风景游憩林为人们提供通行和游憩空间的大小。根据GB 51192−2016《城市公园设计规范》规定[23],公园集散场地种植的树木枝下净空应大于2.2 m。本研究定义林下游憩空间量为树冠垂直投影覆盖面积与乔木枝下净空乘积(枝下净空大于2.2 m),具体公式为:
$$ V_{\rm{C}} = \sum\limits_{i = 1}^n {{M_i}} {H_i}{\text{。}} $$ 其中:VC表示林下游憩空间量(m3),n表示枝下净空大于2.2 m的乔木数量;Mi表示第i株乔木树冠垂直投影覆盖面积(m2),Hi表示第i株乔木的枝下净空(m)。
-
研究可知:前山公园风景游憩林总绿量为4 442.60 m3,单位面积绿量0.38 m3·m−2,其中单木绿量最大的树种为白兰(262.00 m3),绿量排名前5%的单木绿量合计2 259.23 m3,占总绿量的50.85%,主要树种为白兰、小叶榕和樟树。北理工珠海学院风景游憩林总绿量为8 122.39 m3,单位面积绿量0.64 m3·m−2,其中单木绿量最大的树种为荔枝(261.67 m3),绿量排名前5%的单木绿量合计2 183.33 m3,占总绿量的26.88%,主要树种为荔枝、非洲楝、樟树。梅华城市公园风景游憩林总绿量为18 986.74 m3,单位面积绿量0.81 m3·m−2,其中单木绿量最大的树种为小叶榕(283.58 m3),绿量排名前5%的单木绿量合计4 855.09 m3,占总绿量的25.57%,主要树种为小叶榕、高山榕、凤凰木、阴香。
从3个研究林地的三维绿量核密度(KDE)分布图来看(图1),0~100 m3绿量级内,前山公园风景游憩林的三维绿量分布极不均衡,主要分布于0~25 m3,北理工珠海学院和梅华城市公园风景游憩林的三维绿量主要分布于0~50 m3。100~200 m3绿量级内,前山公园风景游憩林的绿量分布极不均衡,主要集中于100~150 m3,北理工珠海学院和梅华城市公园的三维绿量分布较为均匀,分布密度均小于0.015。200~300 m3绿量级内,前山公园和北理工珠海学院风景游憩林的三维绿量分布相对集中,在210~275 m3内分布密度较高,梅华城市公园分布较为均匀,分布密度小于0.015。
-
分析3个研究林地每木胸径和三维绿量的关系(图2)可知:三维绿量大于200 m3的树种,单木胸径多为30~50 cm,树冠以卵形、扁圆形和球扇形为主。随着胸径增加,扁圆形、卵形、圆锥形、球扇形和圆柱形树冠的树种三维绿量明显上升,而球缺形和球形树冠的树种三维绿量并无明显提升。不同树冠形状树种胸径与单木三维绿量的正相关系数从大到小依次为扁圆形、卵形、圆锥形、球扇形、圆柱形、球缺形、球形。
-
研究得知:前山公园风景游憩林林下空间总量为5 543.75 m3,林下游憩空间量为2 148.86 m3,占比38.88%,单位面积游憩空间量0.18 m3·m−2,其中单木林下游憩空间最大的树种为樟树(66.55 m3),林下游憩空间量排名前5%的单木游憩空间量合计813.05 m3,占游憩总空间量的37.84%,主要树种为樟树、凤凰木、海南蒲桃、秋枫、刺桐等。北理工珠海学院林下空间总量为10 534.72 m3,林下游憩空间量为7 880.47 m3,占比74.80%,单位面积游憩空间量0.63 m3·m−2,其中单木林下游憩空间最大的树种为樟树(235.20 m3),林下游憩空间量排名前5%的单木游憩空间量合计2 017.77 m3,占游憩总空间量的25.60%,主要树种为樟树、木棉、非洲楝、小叶榄仁等。梅华城市公园林下空间总量为16 662.62 m3,林下游憩空间量为12 914.97 m3,占比77.51%,单位面积游憩空间量0.55 m3·m−2,其中单木林下游憩空间最大的树种为高山榕(252.00 m3),林下游憩空间量排名前5%的单木游憩空间量合计4 649.33 m3,占游憩总空间量的36.00%,主要树种为高山榕、凤凰木、美丽异木棉。
-
对3个研究林地中三维绿量和林下游憩空间前5%且种群数量较大的9个树种进行分析,比较不同树种冠层空间与林下游憩空间的分配策略。从图3中可以得出:所有9个树种,50%以上单株的三维绿量和林下游憩空间比值小于1.0,表明在城市公园风景游憩林中,树木倾向于分配更多的林下游憩空间。其中,凤凰木、美丽异木棉、木棉和秋枫的三维绿量和林下游憩空间比值均小于0.5,表明这些树种的空间分配策略,林下游憩空间占据了绝对优势;非洲楝、海南蒲桃、小叶榕和樟树的三维绿量和林下游憩空间比值总体为0.5~1.0,表明这些树种的空间分配策略为林下游憩空间稍优于三维绿量;而白兰的三维绿量和林下游憩空间比值总体为0.5~2.0,表明白兰的空间分配策略有较强的多样性。
-
城市森林的三维绿量一定程度上反映城市森林生态服务功能的强弱。LIANG等[24]对上海公共绿地乔木的研究结果表明:乔木三维绿量与树冠投影面积呈现显著正相关;李晓婷[25]研究发现:随着研究林地的地理位置由城市核心区向城市近郊区过渡,乔木平均冠幅呈现逐渐减小趋势,单位面积三维绿量逐渐减小,绿量分布趋于集中。本研究中,0~300 m3绿量区间内,梅华城市公园绿量分布密度呈现“平缓均衡”的趋势,北理工珠海学院呈现“中间均衡,两头集中”的趋势,前山公园呈现“由集中急速向均衡”改变的趋势。与郑绍伟等[26]得出的大径级乔木数量随绿量级增大逐渐减小的结论略有差异,极有可能是树种形态不同导致的。本研究发现:每木胸径和三维绿量的正相关关系受树冠形态影响;相同胸径的球形乔木和扁圆形乔木,三维绿量差异较大。因此推测,相同绿量级的乔木径级很有可能处于不同区间,这也是北理工珠海学院绿量分布密度“中间均衡,两头集中”的原因。
林冠空间的三维绿量提供了生态服务功能,林下空间提供了有效的游憩功能。城市公园风景游憩林三维绿量和林下游憩空间量的比值不同,反映出不同树种在空间分配策略上的差异。凤凰木、美丽异木棉、木棉属于典型的观花景观树种,林冠空间是决定景观效果的关键性因子;然而从空间分配策略上看,这3个树种的林下游憩空间占据绝对优势,与树种自身的特点有矛盾。林下游憩空间的主要影响因子为树冠投影面积与最低分支点。然而在实际城市环境中,游憩空间主要由林下空旷地和林下少量植被共同构成[27],林下的小乔木和灌木对林下游憩的真实活动空间具有直接影响;平衡林下游憩真实的活动空间和林下植被量,关系到风景游憩林群落中下层的配置和游憩功能的发挥。因此,今后需构建反映林下游憩真实的活动空间和林下植被量的综合评价指标参数,从而更加真实地反映和评价城市风景游憩林林下游憩空间配置。
林木树冠三维绿量和林下游憩空间的分布格局,演替、生长、物候等引起的时间动态变化,森林群落学与生态学等相关学科的融合交叉,是进一步深入研究城市森林、城市植被提供生态与景观服务功能的有效途径[28]。本研究针对城市风景游憩林的林冠空间和林下空间展开,重点集中在体量、空间分布、分配策略等方面,是一种静态研究结果;而树冠三维绿量和林下游憩空间实则为一个动态过程,群落演替、生长、物候等都将引起时间、空间的动态变化。因此,构建反映动态过程的指标参数,可以更加科学地反映和评价城市风景游憩林的景观游憩功能。本研究基于树冠、树形、枝下高等数据测算出三维绿量和林下游憩空间,人力、时间成本巨大。今后可以利用搭载多光谱镜头的无人机监测城市森林斑块的冠层动态演变[29],运用孔径雷达估测大面积城市森林地上生物量的空间格局[30],从而快速获取更高精度的包括树冠结构、林下空间、生长演替、物候变迁在内的城市森林多维时空尺度数据,提升研究者对城市森林生态与景观功能的认知。
-
珠海城市公园风景游憩林单位面积绿量由城市核心区向近郊区逐渐降低。从三维绿量密度分布上看,处在城市近郊区的前山公园风景游憩林绿量分布较为集中,而处在城市核心区的梅华城市公园绿量分布较为均衡。单木绿量较大的树种有白兰、小叶榕、樟树、荔枝、非洲楝、高山榕、凤凰木、阴香。从每木胸径和三维绿量的关系分析,不同树冠形状树种胸径和三维绿量的正相关系数从大到小依次为扁圆形、卵形、圆锥形、球扇形、圆柱形、球缺形、球形。三维绿量和林下游憩空间量的比例关系一定程度上反映树木对提供观赏和生态服务功能的冠层空间和提供游憩功能的林下空间的分配策略;在风景游憩林构建过程中,应结合不同树种的自身特点分配冠层空间和林下空间。
Characteristics of the three-dimensional green quantity and recreation space for landscape-recreational forests in Zhuhai City
-
摘要:
目的 明确不同生态位风景游憩林的三维绿量(3DGQ)和林下游憩空间量(FRS)特征,揭示风景游憩林构建的规律和存在的问题。 方法 采用群落生态学的方法分别在广东省珠海市前山公园(13个样方)、北理工珠海学院(14个样方)和梅华城市公园(26个样方)设置风景游憩林群落研究林地,结合高分遥感影像,进行每木调查。测算三维绿量和林下游憩空间量,分析不同区位风景游憩林的差异。 结果 位于城市近郊区(UFA)的前山公园风景游憩林单位面积绿量最低。单木绿量较大的树种有白兰Michelia × alba、小叶榕Ficus microcarpa、樟树Cinnamomum camphora、荔枝Litchi chinensis、非洲楝Khaya senegalensis、高山榕Ficus altissima、凤凰木Delonix regia、阴香Cinnamomum burmannii。3个研究林地三维绿量分布有一定差异,位于城市核心区(CUA)的梅华城市公园三维绿量分布较均匀;树木胸径与其三维绿量呈正相关,相关系数与树种树冠形状有关。凤凰木、美丽异木棉Ceiba speciosa、木棉Bombax ceiba和秋枫Bischofia javanica的空间分配策略为林下游憩空间占据绝对优势,白兰的空间分配策略有较强的多样性。 结论 随着研究林地地理位置由城市核心向城市近郊过渡,单位面积三维绿量逐渐减小,绿量分布迅速趋于集中;胸径与三维绿量的正相关关系受树冠形态影响;风景游憩林构建过程中,冠层空间和林下游憩空间的分配应结合树种特点进行。图3表1参30 Abstract:Objective This study is aimed to clarify the three-dimensional green quantity (3DGQ) and the characteristics of forest recreation space (FRS) of landscape-recreational forests at different niches, and reveal the rules of constructing landscape-recreation forests and the existing problems. Method On the basis of the community ecology theory, with 13, 14 and 26 sample plots selected from Qianshan Park, Zhuhai Institute of BIT, and Meihua City Park respectively as the subjects, each tree was surveyed using high-resolution remote sensing images before 3DGQ and FRS were calculated to analyze the differences between different location of landscape-recreation forests. Result Qianshan Park, located in the core urban area (CUA), had the lowest 3DGQ density. Michelia × alba, Ficus microcarpa, Cinnamomum camphora, Litchi chinensis, Khaya senegalensis, Ficus altissima, Delonix regia and Cinnamomum burmannii displayed high values of 3DGQ. The three sites showed different spatial distributions of 3DGQ, and Meihua City Park which was located in the core urban area had relatively even distribution of 3DGQ than the others. There was a positive correlation between DBH and 3DGQ, which was related to the crown shapes of trees. In terms of the spatial allocation, for D. regia, Ceiba speciose, Bombax ceiba and C. camphora, superiority was given to FRS, while for M. ×alba, various spatial allocation strategies were adopted. Conclusion The 3DGQ density decreases while the distribution of 3DGQ showed a strong central tendency with the location of landscape-recreational forests shifting from the core urban area to the sub-urban area (SUA) and finally to urban fringe area (UFA). The correlation coefficient between DBH and 3DGQ is related to the crown shapes of tree species and the features of different tree species in the progress of the construction of landscape-recreation forest should be taken into consideration in the allocation of canopy space and recreation space. [Ch, 3 fig. 1 tab. 30 ref.] -
甘油脂的从头生物合成途径(de novo glycerolipid biosynthesis)是细胞中最基本的代谢过程。3-磷酸甘油酰基转移酶(glycerol-3-phosphate acyltransferase, GPAT)催化甘油脂从头合成的初始步骤,生成的溶血磷脂酸(LPA)在LPA酰基转移酶(lysophosphatidic acid acyltransferase, LPAAT)的作用下转化为磷脂酸(PA)[1−6]。PA是调节真核生物中多种细胞过程的重要信号分子,也是极性甘油磷脂与中性三酰甘油(TAG)的生物合成前体。在磷酸酶的催化下PA转化为二酰甘油,后者可经脂酰辅酶A-依赖型二酰甘油酰基转移酶(acyl-CoA: diacylglycerol acyltransferease, DGAT)和(或)磷脂-依赖型二酰甘油酰基转移酶(phospholipid-dependent diacylglycerol acyltransferase, PDAT)作用生成TAG[7−10]。TAG合成能力是油料作物的关键性状,同时与人类肥胖症等疾病密切相关。因而,运用遗传或化学遗传方法操控TAG生物合成,提高油料作物含油量,降低与肥胖症相关联的人类疾病,具有重要实践意义[11−16]。
脂酰基转移酶在TAG生物合成过程中发挥重要作用,但目前对于这类酶的结构与功能的内在关系知之甚少,参与第1步酰化反应的GPAT亦不例外,仅有少量关于其结构与功能关系的报道[17−18]。已知GPAT、LPAAT、磷酸二羟丙酮酰基转移酶(dihydroxyacetone-phosphate acyltransferase, DHAPAT)等脂酰基转移酶均含4个高度保守的结构域,结构域Ⅰ的组氨酸(H)、天冬氨酸(D),结构域Ⅲ的甘氨酸(G)和结构域Ⅳ的脯氨酸(P)是GPAT催化所必需的;而结构域Ⅱ的精氨酸(R)与结构域Ⅲ的谷氨酸(E)在结合底物3-磷酸甘油中起作用[18−20]。迄今为止,对于保守结构域外的其他氨基酸残基在酰基转移酶活性调控中的作用,及与保守结构域中的氨基酸残基存在的潜在互作关系的了解非常有限。
GPAT9位于植物细胞的内质网,参与膜脂和TAG的生物合成,其功能缺失会导致种子发育异常、油脂合成减弱[20−22]。本实验室前期的酵母遗传互补研究也显示:油菜Brassica napus BnGPAT9的异源表达能够恢复酵母条件致死型双敲除突变体(ZAFU1)因GPAT酶活性缺失引起的生长缺陷。然而,拟南芥Arabidopsis thaliana AtGPAT9却不具备这种互补能力[23−25],尽管AtGPAT9与BnGPAT9的进化关系密切[26−27],两者氨基酸序列的一致性高达 94.1%,且两者在4个酰基转移酶保守结构域的氨基酸残基完全一致。因此,可以假设保守结构域之外的某些氨基酸残基对GPAT9的活性起着重要的调节作用。本研究充分利用AtGPAT9和BnGPAT9在酵母异源系统中表现出的不同性质,并结合定点突变与酵母遗传互补技术,剖析单个和多个氨基酸残基改变对GPAT9酶活性的影响,鉴定新的关键活性位点,以深化对脂酰基转移酶结构与功能内在关系的认知,为酰基转移酶的分子改造与结构优化、真核生物中TAG合成途径的改良以及全新TAG从头合成途径的构建提供理论基础。
1. 材料与方法
1.1 序列分析
通过Vector NTI 11.5.4软件对AtGPAT9 (Genebank 登录号: ACT32031.1)和BnGPAT9 (Genebank 登录号: ANV28166.1)的氨基酸序列进行比对。使用TMHMM 2.0和Protter进行跨膜结构域和蛋白质拓扑异构模型预测[28-29]。由I-TASSER预测三维结构[30]。
1.2 基因定点突变
将AtGPAT9和BnGPAT9编码序列分别通过BamH I/XhoⅠ和BamH I/EcoR I双酶切位点克隆至pMD19-T载体,得到新的质粒pMD19-T-AtGPAT9和pMD19-T-BnGPAT9;以之为模板,对AtGPAT9和BnGPAT9进行定点突变。具体方法如下:利用包含突变位点的引物(表1),PCR扩增整个质粒;质粒DNA经Dpn I消化与纯化后,转入大肠埃希菌Escherichia coli并进行测序分析;序列正确的质粒经BamH I和Xho Ⅰ双酶切后,连接到经相同酶切处理的pYES2-yADH1-Kan V2酵母表达载体,并对产生的重组质粒再次进行DNA测序分析,以确保突变位点的正确性。需要说明的是,选择pMD19-T质粒作为定点突变过程中的中间质粒,而非直接在pYES2-yADH1-Kan V2质粒上进行GPAT9基因的定点突变,是因为后者DNA长度(6 998 bp)是前者(2 660 bp)的2.6倍,采取这样的策略可以降低因PCR扩增时间延长导致潜在的错误碱基出现频率。
表 1 拟南芥AtGPAT9和油菜BnGPAT9定点突变所用的引物序列Table 1 Sequences of the primers used for site-directed mutagenesis of A. thaliana AtGPAT9 and B. napus BnGPAT9突变位点 引物序列 (5′→3′) 突变位点 引物序列 (5′→3′) BnGPAT9(R40S) AGCCTCGTGGCAAGCTCAGCCTGCGTGATTTGCTAGACAT AtGPAT9(N119H) TTTCATTGTTTATCCCTGTACACGCGTTGCTGAAAGGTCAAG BnGPAT9(W85Y) TCTACTTGTTTCCTTTATACTGCTGTGGTGTTGTTGTTAG AtGPAT9(D230N) TTGTAGCAAAAAAGTTAAGGAACCATGTCCAAGGAGCTGAC BnGPAT9(C87F) TTGTTTCCTTTATGGTGCTTTGGTGTTGTTGTTAGATACT AtGPAT9(A235T) TAAGGGACCATGTCCAAGGAACTGACAGTAATCCTCTTCTC BnGPAT9(I102F) TTCTCTTTCCCTTGAGGTGCTTCACTTTAGCTTTTGGATG AtGPAT9(S237N) ACCATGTCCAAGGAGCTGACAATAATCCTCTTCTCATATTTCC BnGPAT9(F109I) CATCACTTTAGCTTTTGGATGGATTATTTTCCTTTCAACG AtGPAT9(D230N/A235T) TTGTAGCAAAAAAGTTAAGGAACCATGTCCAAGGAACTGAC BnGPAT9(T114L) TGGTTTATTTTCCTTTCATTGTTTATCCCTGTACACTCTC AtGPAT9(A235T/ S237N) TAAGGGACCATGTCCAAGGAACTGACAATAATCCTCTTCTCATATTTC BnGPAT9(H119N) TTCAACGTTTATCCCTGTAAATTCTCTCCTGAAAGGTCAG AtGPAT9(D230N/A235T/
S237N)TTGTAGCAAAAAAGTTAAGGAACCATGTCCAAGGAACTGAC BnGPAT9(N230D) GTAGCAAGAAAGTTAAGGGACCATGTTCAAGGAACTGACA AtGPAT9(G332A) CATAAGGCCCGGTGAAACAGCAATTGAATTTGCAGAGAGGG BnGPAT9(T235A) TAAGGAACCATGTTCAAGGAGCTGACAATAACCCTCTTCT AtGPAT9(L335H) GGTCAGAGACATGATATCTCATCGGGCGGGTCTCAAAAAGG BnGPAT9(N237S) CATGTTCAAGGAACTGACAGTAACCCTCTTCTTATATTTC AtGPAT9(P355S) TGAAGTATTCGAGACCAAGCTCCAAGCATAGTGAACGCAAG BnGPAT9(A322G) AAGGCCTGGTGAAACAGGAATTGAGTTTGCAGAGAGGGTC AtGPAT9(T10A) GTACGGCAGGGAGGCTCGTGGCTTCAAAATCCGAGCTTGAC AtGPAT9(S40R) ATGAACCTCGCGGCAAGCTCCGCCTGCGTGATTTGCTAGA AtGPAT9(S11A) CGGCAGGGAGGCTCGTGACTGCAAAATCCGAGCTTGACCTC AtGPAT9(Y85W) ATTTACTTATTCCCACTATGGTGCTTTGGGGTTGTTGTTAG AtGPAT9(S13A) GGAGGCTCGTGACTTCAAAAGCCGAGCTTGACCTCGATCAC AtGPAT9(F87C) CTTATTCCCACTATACTGCTGTGGGGTTGTTGTTAGATACT AtGPAT9(S28A) AACATCGAAGATTACCTTCCTGCTGGTTCTTCCATCAATGAAC AtGPAT9(F102I) TCCTCTTTCCCTTGAGGTGCATCACTTTAGCTTTTGGGTGG AtGPAT9(S30A) GAAGATTACCTTCCTTCTGGTGCTTCCATCAATGAACCTCGCG AtGPAT9(I109F) TCACTTTAGCTTTTGGGTGGTTTATTTTCCTTTCATTGTTT AtGPAT9(S31A) GATTACCTTCCTTCTGGTTCTGCCATCAATGAACCTCGCGGCA AtGPAT9(L114T) GGGTGGATTATTTTCCTTTCAACGTTTATCCCTGTAAATGCG 1.3 酵母遗传转化
条件致死型酵母双突变体ZAFU1[BY4742, gat1Δgat2Δ+(pGAL1::AtGPAT1 Leu2)] [25, 31],可在半乳糖的培养基上生长,但在葡萄糖培养基上丧失了生长能力。基于菌株ZAFU1建立的酵母遗传互补法对GPAT的鉴定具有很强的专一性[25, 31],本研究运用它鉴定不同氨基酸残基突变对GPAT9活性的影响。
使用基于醋酸锂的标准方法将重组酵母表达质粒导入菌株ZAFU1感受态细胞[25, 31],复苏4 h,分别涂布转化液于以葡萄糖(Glu)或半乳糖(Gal)为碳源,不含尿嘧啶、组氨酸和亮氨酸的培养基(SC-Ura-His-Leu)上, 30 ℃下培养3~5 d。为了准确地比较不同氨基酸残基突变对酶活性的影响,挑取在半乳糖培养基上生长的不同单菌落酵母进行浓度梯度稀释培养实验:从半乳糖培养基上随机挑选生长良好的单菌落至SC-Ura-His-Leu+Gal液体培养基,30 ℃振荡培养1~2 d至光密度[D(600)]为2.000 0~3.000 0,稀释菌液浓度至D(600)为1.000 0、0.200 0、0.040 0、0.008 0和0.001 6,取5 µL接种于SC-Ura-His-Leu+Glu和SC-Ura-His-Leu+Gal固体培养基上,30 ℃培养3~5 d。
1.4 酵母生长曲线测定及油脂分析
30 ℃下,将表达不同GPAT9突变基因的ZAFU1细胞在SC-Ura-His-Leu+Gal液体培养基中培养至D(600)为3.000 0~4.000 0,稀释接种于SC-Ura-His-Leu+Glu液体培养基至D(600)为0.100 0,振荡培养并定时记录D(600)。
将平台生长期收获的细胞在真空冷冻干燥机中干燥,提取酵母总脂质[32],点样于硅胶板,通过薄层色谱法分离总脂质。喷洒质量浓度为0.05%樱草黄显色剂,在紫外灯下观察板上的脂质,从硅胶中提取TAG,并通过气相色谱法定量分析TAG含量[32]。
2. 结果与分析
2.1 AtGPAT9和BnGPAT9的结构差异
早期研究发现:在酵母中异源表达时,拟南芥AtGPAT9与油菜BnGPAT9表现出不同的活性[23-24]。为了找出潜在的关键活性调控位点,对AtGPAT9与BnGPAT9进行了序列比对。AtGPAT9和BnGPAT9均由376个氨基酸组成,两者序列一致性高达94.1%,4个保守的酰基转移酶结构域和C端内质网定位必需的疏水五肽结构域(−ILARL−)的氨基酸残基完全一致[18, 20],且在N端都含多个潜在的磷酸化位点,主要由丝氨酸和苏氨酸组成(图1)。它们之间共有22个不同的氨基酸残基,其中11个具有相似的性质。基于TMHMM和Protter的跨膜结构域预测显示:跨膜区结构具有较高相似性,但3个跨膜区域中有7个不同的氨基酸残基(图1)。另外,基于I-TASSER的三维结构预测发现:AtGPAT9和BnGPAT9在40、109、114、119、230、235、237和322位氨基酸残基的不同,可能会引起两者三维空间结构的差异,因此它们成为本研究重点剖析的位点(图2)。
2.2 AtGPAT9和BnGPAT9的定点突变
为了明确哪些氨基酸位点对GPAT酶活性起着重要调控作用,据上述AtGPAT9和BnGPAT9中存在的氨基酸残基差异,运用定点突变技术对两者相应位置的氨基酸位点进行相互替代,即将AtGPAT9中的单个或多个氨基酸残基同时替换成与BnGPAT9中相应位置完全相同的氨基酸残基,反之亦然。本研究共构建了58种不同的GPAT9突变基因(表2)。
表 2 AtGPAT9和BnGPAT9中单和多位点氨基酸残基的定点突变Table 2 Site-directed mutagenesis of amino acid residues at single and multiple sites in AtGPAT9 and BnGPAT9单个氨基酸残基突变 AtGPAT9氨基酸残基突变组合 BnGPAT9 AtGPAT9 BnR40S** AtT10A AtF102I/S237N AtY85W/D230N BnW85Y AtS11A AtI109F/S237N AtY85W/A235T BnC87F** AtS13A AtD230N/A235T AtY85W/S237N** BnI102F** AtS28A AtD230N/S237N AtY85W/D230N/A235T BnF109I** AtS30A AtA235T/S237N AtY85W/D230N/S237N BnT114L*** AtS31A AtD230N/A235T/S237N AtY85W/A235T/S237N BnH119N AtS40R AtS237N/G322A AtY85W/D230N/A235T/S237N BnN230D*** AtY85W AtY85W/N119H*** AtS40R/Y85W/S237N** BnT235A** AtF87C AtY85W/L114T/N119H* AtN119H/D230N BnN237S* AtF102I AtY85W/N119H/S237N*** AtN119H/A235T BnA322G* AtI109F AtY85W/L114T/N119H/S237N*** AtN119H/S237N*** AtL114T AtY85W/N119H/D230N** AtN119H/D230N/A235T AtN119H* AtY85W/N119H/A235T** AtN119H/D230N/S237N** AtD230N AtN119H/A235T/S237N*** AtA235T AtN119H/D230N/A235T/S237N AtS237N AtG322A AtL335H AtP355S 说明:每种突变以物种的首字母缩写和突变前后的氨基酸残基缩写表示,如AtS40R/S237N代表AtGPAT9的40位由丝氨酸(S)变为精氨酸(R),237位由丝氨酸(S)变为天冬酰胺(N)。*代表基因的异源表达能够恢复酵母双突变体ZAFU1的生长缺陷;*数目代表恢复能力的大小,数目越多,能力越强。 2.3 单个氨基酸残基突变对GPAT9活性的影响
将不同GPAT9突变基因克隆至带有葡萄糖诱导启动子(ADH1)的质粒中,并以空载体与含野生型AtGPAT9的质粒为阴性对照,以含野生型BnGPAT9的质粒为阳性对照,将这些重组质粒导入到ZAFU1菌株中,测定不同GPAT9突变基因恢复ZAFU1在葡萄糖培养基上的生长缺陷能力。根据转化酵母细胞的生长速率,可以比较直观地评估不同突变位点对GPAT9酶活性的影响。结果显示:当ZAFU1突变体在葡萄糖培养基上培养时,W85Y或H119N的单位点替换导致BnGPAT9丧失对突变体生长缺陷的恢复能力(图3A),说明W85和H119是BnGPAT9正常功能所必需的。另外,与野生型BnGPAT9相比,含N237S或A322G突变位点的BnGPAT9对ZAFU1菌株生长的促进作用下降(图3A),表明这2个位点亦参与BnGPAT9活性的调节。相反,其他5个单位点替换(R40S、C87F、I102F、F109I、T235A)对BnGPAT9的活性不产生明显影响(图3A)。特别是N230D和T114L单位点替换增强了BnGPAT9活性,这种上调作用对于BnT114L而言尤为突出。如图4所示:与野生型BnGPAT9相比,含T114L突变位点的BnGPAT9在酵母突变体中的表达能促使细胞生长速率大幅度提高,表现为经2 d培养,表达BnGPAT9 (T114L)的菌落在葡萄糖培养基上生长的数量为野生型BnGPAT9的4倍,且每个单菌落表面积更大。
类似地,对19个不同的AtGPAT9突变基因进行了酵母遗传互补鉴定,其中的6个编码蛋白分别在N端的潜在磷酸化位点发生T10A、S11A、S13A、S28A、S30A和S31A 替换,另外13个分别发生了S40R、Y85W、F87C、F102I、I109F、L114T、N119H、D230N、A235T、S237N、G322A、L335H和P355S替换。结果显示:N端6个潜在磷酸化位点分别替换成中性氨基酸残基并不能改善AtGPAT9活性(图3B)。除了N119H,其他的单位点突变亦对AtGPAT9在酵母异源系统中的活性不产生可见影响(表2)。在酵母菌浓度梯度稀释培养实验中,N119H替换能使AtGPAT9恢复ZAFU1突变体在葡萄糖上的生长缺陷,但这种作用相对较弱(表2,图5D)。
2.4 多个氨基酸残基突变对GPAT9活性的交互影响
基于相邻与非相邻氨基酸残基之间均可能对酶活性产生某种特定的互作效应的假设,根据AtGPAT9和BnGPAT9之间存在的氨基酸差异,进一步构建了28个含有2~4个氨基酸残基替换的AtGPAT9突变酶。与W85、H119和N237位点对BnGPAT9活性产生重要调节作用一致,同步替换AtGPAT9上2或3个相应位点的氨基酸残基(Y85W、N119H、S237N)均能大幅提高AtGPAT9酶活性,表现为携带Y85W/N119H、Y85W/S237N、N119H/S237N、Y85W/N119H/S237N突变的AtGPAT9均能互补菌株ZAFU1的生长缺陷(图5A);不过,单位点突变对AtGPAT9活性的影响十分有限(表2)。进一步调查发现:携带Y85W/N119H或Y85W/N119H/S237N突变组合的AtGPAT9比野生型BnGPAT9更能促进菌株ZAFU1的生长,且与携带T114L突变的BnGPAT9具有相近的作用效果(图3A,图5A)。
为了更好地剖析114位氨基酸性质对GAPT9活性的调节作用以及与其他氨基酸相互作用产生的效应,将双位点突变酶AtGPAT9 (Y85W/N119H)和三位点突变酶AtGPAT9 (Y85W/N119H/S237N)的114位亮氨酸(L114)替换为BnGPAT9相应位置存在的苏氨酸(T)。结果显示:生成的三位点突变酶AtGPAT9 (Y85W/L114T/N119H)的活性明显弱于AtGPAT9 (Y85W/N119H),但四位点突变酶AtGPAT9(Y85W/L114T/N119H/S237N)仍与AtGPAT9 (Y85W/N119H/S237N)的活性相当(图5B)。对这种现象的可能解释是,当2个潜在磷酸化位点即T114和S237同时出现于AtGPAT9 (Y85W/L114T/N119H) (其中含S237)或BnGPAT9 (N237S)(其中含T114)时,GPAT9的磷酸化程度可能加剧,从而抑制酶的活性。因此,推测植物GPAT9活性可能受磷酸化和非磷酸化机制调节,野生型GPAT9中存在的2个潜在磷酸化位点T114和S237可能对酰基转移酶活性产生负面效应。
进一步研究发现:230位氨基酸残基能与85、119位氨基酸残基产生互作效应而影响GPAT活性。虽然D230N本身或与A235T、S237N组合突变未能对AtGPAT9酶活性产生明显影响(表2),但当与N119H、Y85W/N119H或Y85W/S237N结合时, D230N突变能对AtGPAT9活性产生抑制作用。这是因为,与表达含N119H、Y85W/N119H或Y85W/S237N突变位点的酶的菌株相比,表达AtGPAT9 (N119H/D230N)、AtGPAT9 (Y85W/N119H/D230N)或AtGPAT9 (Y85W/D230N/S237N)的菌株ZAFU1在葡萄糖培养基上呈现生长速率明显减弱或不能生长的现象,暗示着D230N的替换不利于AtGPAT9活性(表2,图5B~D)。这一推测得到下述结果的支持,即N230D替换能提高BnGPAT9活性(图3A)。但是AtGPAT9(N119H/D230N/S237N)与AtGPAT9 (N119H/S237N)的活性相当,这说明D230N的负效应依赖于其他氨基酸的互作关系(表2,图5D)。
另外,N119H/D230N/S237N和N119H/A235T/S237N三突变组合均能提高AtGPAT9活性,使之具有拯救ZAFU1生长缺陷的能力,但在前者和后者中分别添加A235T和D230N得到的N119H/D230N/A235T/S237N四突变组合,能使相应蛋白丧失GPAT活性,如野生型AtGPAT9一样,无法恢复ZAFU1的生长缺陷(表2,图5D)。此外,无论是S237N和G322A单或双替换,均不能增强AtGPAT9在酵母中表达时的活性(表2),这与N237S或A322G的替换导致BnGPAT9活性下降现象不一致。由此可见,尽管在237位保留非磷酸化氨基酸(天冬酰胺,N)对BnGPAT9活性有利,但其效应取决于其他位置的氨基酸性质。
综上所述,GPAT9的酶活性受85、114、119、230、237和322位氨基酸残基性质的影响,它们之间存在互作效应;当这些位置的氨基酸残基分别为色氨酸(W)、亮氨酸(L)、组氨酸(H)、天冬氨酸(D)、天冬酰胺(N)和丙氨酸(A)时,酰基转移酶的活性较高。上述多位点突变增强AtGPT9酶活性的事实说明:运用分子设计能有效地改造和优化酰基转移酶的结构,并使之产生新的特性,这对将来人为操控甘油脂的从头合成十分有益。
2.5 异源表达突变酶对酵母油脂合成的影响
为进一步探究氨基酸位点突变对GPAT9功能的影响,选取了3个活性程度不同的AtGPAT9突变酶,分别含N119H、Y85W/N119H 和Y85W/N119H/S237N突变,使其进行异源表达,测定其表达对酵母细胞中TAG合成的影响;阳性对照为野生型BnGPAT9。当相应酵母细胞的生长进入平台生长期时,提取总脂质,经薄层层析分离后,采用气相色谱法测定TAG含量。
需要指出的是,因不同突变酶活性的差异,相应酵母菌到达平台生长期所需的培养时间不一,且平台生长期时的细胞密度也不完全相同。譬如,表达BnGPAT9、AtGPAT9 (Y85W/N119H)和AtGPAT9 (Y85W/N119H/S237N)的酵母细胞在平台生长期时的细胞密度,以D(600)表示,分别为3.72、4.40、5.32 (图6)。总体而言,酶活性愈大,细胞生长越快、密度越高。
脂质分析显示:AtGPAT9 (Y85W/N119H/S237N)的表达使突变体酵母ZAFU1细胞中的TAG含量达0.51%,而BnGPAT9和AtGPAT9 (Y85W/N119H)的表达则分别产生0.35%和0.39%的含油量,前者比后两者分别增加了45.7%和 30.8% (图7)。与AtGPAT9 (N119H)具有相对较低的活性一致,表达此酶的酵母细胞,其TAG含量仅为0.22%,显著低于表达BnGPAT9的酵母细胞(0.35%)。以上结果表明:酵母细胞中TAG的合成能力受GPAT活性的调节,而GPAT活性大小与特定位置的氨基酸性质密切相关,因此通过分子设计优化GPAT9的氨基酸组成将有助于修饰细胞中TAG的合成能力。
3. 讨论
提高油料作物油脂的合成对于保障食用油的供需平衡至关重要;相反,人类细胞中油脂合成能力的增强并非对健康有利,因为这会诱发肥胖症和心血管疾病等。目前人们试图运用遗传或化学遗传方法操控TAG的生物合成[11-16],但仍存在诸多因素影响,如人们对TAG合成途径中酶的结构与功能的内在关系知之甚少,这阻碍了酶结构的优化,并限制了基于翻译后修饰机制调控酶活性的技术开发。本研究充分利用GPAT专一的酵母遗传互补法[25, 31],鉴定控制植物GPAT9酶活性的关键氨基酸位点以及不同位点之间存在的互作效应,以深化对酰基转移酶结构与功能内在关系的认知,为将来运用合成生物学等手段有效操控真核生物中TAG的合成提供基础。
植物GPAT9与哺乳动物GPAT3结构相似,两者均参与极性膜脂和中性三酰甘油的生物合成[20-22]。尽管AtGPAT9和BnGPAT9序列相似性大于90%,它们在酵母异源表达时呈现的活性却相去甚远[23-24],这一特性有助于有效寻找调控酶活性的候选位点。在此基础上,本研究首次明确了酰基转移酶保守结构域外的6个氨基酸位点对植物GPAT酶活性的重要调节作用。
3.1 W85和H119对GPAT9膜结合性质的影响
AtGPAT9的N端和C端均暴露于细胞质,意味着该蛋白应有偶数个跨膜结构域[20],然而这与生物信息学预测结果不一致,即AtGPAT9含3个潜在的跨膜结构域。对于这一现象的可能解释是,位于N端的几个脯氨酸残基可能会形成一个铰链状结构,使得疏水结构域Ⅰ不能跨膜,而是附着在内质网的表面[20]。基于85和119位氨基酸残基分别位于预测的第Ⅰ和Ⅱ个疏水结构域这一特点推测,将85位的疏水色氨酸替换成亲水的酪氨酸(Y)或将119位带正电荷的组氨酸替换成中性的天冬酰胺,可能会改变GPAT9在膜中的组装方式[33],这可能是构成AtGPAT9的酶活性低于BnGPAT9的原因之一。
3.2 磷酸化机制调节对GPAT9活性的影响
本研究结果表明:尽管AtGPAT9的N端的6个磷酸化位点单独突变(T10A、S11A、S13A、S28A、S30A和 S31A)不能增强AtGPAT9在酵母异源表达时的活性,但T114L替换能增强BnGPAT9酶活性,而N237S替换则降低其活性。当114和237位氨基酸残基为非磷酸化氨基酸,即亮氨酸和天冬酰胺,而不是潜在的磷酸化位点苏氨酸(T)和丝氨酸(S)时,AtGPAT9和BnGPAT9突变酶保持较高活性。因此,推测GPAT9的活性受磷酸化机制调节,在114和237位点的磷酸化程度升高不利于维持酰基转移酶的活性。这种假设可以在某种程度上得到过去研究的支持。蛋白质磷酸化与非磷酸化修饰是酶活性的一种重要调节方式,已有研究报道哺乳动物线粒体GPAT (mtGPAT1)通过其C端S632和S639残基的磷酸化修饰调节其活性,酵母GPAT (Gat1p和Gat2p)的C端氨基酸残基发生磷酸化后也能使酶活性下调[34-35]。
3.3 多个氨基酸位点的互作效应对酰基转移酶活性的影响
当多个氨基酸残基同时突变时,它们之间的物理相互作用会导致蛋白质分子内的上位效应[36]。某些氨基酸残基突变组合可以产生协同作用,即产生正向上位效应,如Y85W、N119H和S237N任意突变组合均能增强AtGPAT9活性。相反,其他突变组合可能形成拮抗作用,导致负向上位效应,下调酶活性或彻底损伤蛋白质功能,正如AtGPAT9 (N119H/D230N/A235T/S237N)突变酶中4个氨基酸残基相互间的某种拮抗作用导致该突变酶在酵母ZAFU1中无法发挥功能。230、235和237位氨基酸残基位置相近,且位于酰基转移酶保守结构域Ⅱ中的精氨酸(R215)和Ⅲ中的谷氨酸(E245)之间;鉴于R215和E245这2个氨基酸残基对GPAT的底物结合至关重要[18],推测230、235和237位氨基酸残基与其他位点之间存在的复杂互作效应对酶活性的影响可能与其干扰3-磷酸甘油底物结合区域的三维结构有关[37]。
尽管N237S或A322G单位点突变均能降低BnGPAT9的活性,但无论是S237N和G322A单或双替换均不能增强AtGPAT9的活性,这从一个侧面说明237和322位氨基酸的作用均极大地受到其他氨基酸的理化性质影响。但需要指出的是,两者的作用方式可能不一。如前所述,237位氨基酸的磷酸化状态可能对酶活性产生某种调节作用,而322位的丙氨酸被甘氨酸取代可能会影响蛋白构象的稳定性,这是因为甘氨酸侧链小,仅有1个氢原子,这不利于α-螺旋结构的稳定。与此一致,三维空间结构预测显示:BnGPAT9中的A322与AtGPAT9中的G322相比,前者在空间上更靠近114、119、230、235、237位氨基酸残基(它们可能与酶活性中心形成有关),这可能对GPAT9活性产生正面效应。鉴于237与322位氨基酸的重要作用,将来有必要进一步探究在这2个氨基酸位点的何种替换有利于增强酰基转移酶的活性。
4. 结论
本研究首次报道了6个位于酰基转移酶保守区域外的GPAT9酶活性调控位点及其复杂的互作效应,从而深化了对酰基转移酶结构与功能内在关系的认知,为酰基转移酶的分子改造与结构优化提供了理论基础。另外,构建的GPAT9变异基因可用于探索植物中TAG的生物合成机制,特别是磷酸化-非磷酸化调控机制对GPAT酶活性的调节作用。
-
表 1 树冠形态分类及树冠体积
Table 1. Classification of crown morphology and calculation of crown volume
树冠形状 树种 体积公式 球形 四季桂Osmanthus fragrans、黄金榕Ficus microcarpa V=πx2y/6 卵形 白兰Michelia × alba、垂柳Salix babylonica、翻白叶树Pterospermum heterophyllum、 红苞木Rhodoleia championii、黄金香柳Melaleuca bracteata、黄皮Clausena lansium、木荷 Schima superba、桑Morus alba、铁冬青Ilex rotunda、土蜜树Bridelia tomentosa、樟树 Cinnamomum camphora、海南蒲桃Syzygium hainanense、蒲葵Livistona chinensis V=πx2y/6 圆锥形 罗汉松Podocarpus macrophyllus、竹柏Nageia nagi、马占相思Acacia mangium、台湾相思Acacia confusa、马尾松Pinus massoniana、南洋杉Araucaria columnaris、鱼尾葵Caryota maxima、红 车Syzygium rehderianum V=πx2y/12 半球形/扁圆形 紫薇Lagerstroemia indica、黄槿Hibiscus tiliaceus、大花紫薇Lagerstroemia speciosa、鸡蛋花 Plumeria rubra、黄槐决明Senna surattensis、小叶榕Ficus microcarpa、潺槁木姜子Litsea glutinosa、 刺桐Erythrina variegata、非洲楝Khaya senegalensis、莲雾Syzygium samarangense、蒲桃 Sterculia monosperma、阴香Cinnamomum burmannii、印度紫檀Pterocarpus indicus、高山榕 Ficus altissima、荔枝Litchi chinensis V=πx2y/6 球扇形 大叶相思Acacia auriculiformis、洋紫荆Bauhinia variegata、红花紫荆Bauhinia×blakeana、蓝花 楹Jacaranda mimosifolia、柳叶榕Ficus binnendijkii、窿缘桉Eucalyptus exserta、麻楝 Chukrasia tabularis、杧果Mangifera indica、美丽针葵Phoenix canariensis、秋枫Bischofia javanica、盆架子Alstonia rostrata、散尾葵Chrysalidocarpus lutescens、小叶榄仁Terminalia neotaliala、凤凰木Delonix regia、番木瓜 Carica papaya、美丽异木棉Ceiba speciosa、木棉 Bombax ceiba、黄花风铃木Handroanthus chrysanthus V=π[2y3−y2(4y2−x2)1/2]/3 球缺形 澳洲火焰木Brachychiton acerifolius 、澳洲鸭脚木Schefflera actinophylla、大王椰子Roystonea regia、假槟榔Archontophoenix alexandrae、老人葵Coccothrinax crinita V=π(3xy2−2y3)/6 圆柱形 火焰木Spathodea campanulata、苹婆Sterculia monosperma、白千层Melaleuca cajuputi V=πx2y/4 说明:V为树冠体积(m3);x为平均冠层(m);y为冠高(m) -
[1] PIRNAT J. Conservation and management of forest patches and corridors in suburban landscapes [J]. Landscape Urban Plann, 2000, 52(2/3): 135 − 143. [2] NOVÁKOVÁ J. Vegetation changes in Prague’s suburban forest during the last 40 years: human impact and legislative protection [J]. Urban For Urban Greening, 2008, 7(4): 301 − 314. [3] 陈鑫峰, 沈国舫. 森林游憩的几个重要概念辨析[J]. 世界林业研究, 2000, 13(1): 69 − 73. CHEN Xinfeng, SHEN Guofang. Dissection of some concepts about forest recreation [J]. World For Res, 2000, 13(1): 69 − 73. [4] 国家市场监督管理总局, 中国国家标准化管理委员会. 国家森林城市评价指标: GB T37342-2019[S]. 北京: 中国标准出版社, 2019. [5] 赵庆, 唐洪辉, 魏丹, 等. 基于绿视率的城市绿道空间绿量可视性特征[J]. 浙江农林大学学报, 2016, 33(2): 288 − 294. ZHAO Qing, TANG Honghui, WEI Dan, et al. Spatial visibility of green areas of urban greenway using the green appearance percentage [J]. J Zhejiang A&F Univ, 2016, 33(2): 288 − 294. [6] MILLER R W. Urban Forestry[M]. New Jersey: Prentice Hall, 1996. [7] 陈丹, 彭蓉. 台湾地区国家公园环境教育体系浅析: 以金门国家公园为例[J]. 林产工业, 2019, 46(5): 62 − 64. CHEN Dan, PENG Rong. Analysis on environmental education system in China’s Taiwan National Parks: take Jinmen National Park as an example [J]. China For Prod Ind, 2019, 46(5): 62 − 64. [8] 梁星权. 城市林业[M]. 北京: 中国林业出版社, 2001. [9] 刘常富, 李海梅, 何兴元, 等. 城市森林概念探析[J]. 生态学杂志, 2003, 22(5): 146 − 149. LIU Changfu, LI Haimei, HE Xingyuan, et al. Concept discussion and analysis of urban forest [J]. Chin J Ecol, 2003, 22(5): 146 − 149. [10] 王孟欣. 福建华安九龙江湿地公园保护与利用研究[J]. 林产工业, 2019, 46(4): 61 − 64. WANG Mengxin. Protection and utilization of Jiulongjiang Wetland Park in Fujian Huaan [J]. China For Prod Ind, 2019, 46(4): 61 − 64. [11] BREUSTE J H. Decision making, planning and design for the conservation of indigenous vegetation within urban development [J]. Landscape Urban Plann, 2004, 68(4): 439 − 452. [12] 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2001. [13] 何兴元, 金莹杉, 朱文泉, 等. 城市森林生态学的基本理论与研究方法[J]. 应用生态学报, 2002, 13(12): 1679 − 1683. HE Xingyuan, JIN Yingshan, ZHU Wenquan, et al. Basic theory and research method of urban forest ecology [J]. Chin J Appl Ecol, 2002, 13(12): 1679 − 1683. [14] 周红敏, 惠刚盈, 赵中华, 等. 森林结构调查中最适样方面积和数量的研究[J]. 林业科学研究, 2009, 22(4): 485 − 495. ZHOU Hongmin, HUI Gangying, ZHAO Zhonghua, et al. Studies on the area and the number of the sample for forest structure [J]. For Res, 2009, 22(4): 485 − 495. [15] 郭雪艳. 南京市常见园林植物的绿量研究[D]. 南京: 南京林业大学, 2009. GUO Xueyan. Research on the Living Vegetation Volume of Common Landscape Plants in Nanjing[D]. Nanjing: Nanjing Forestry University, 2009. [16] 王东良, 金荷仙, 范丽琨, 等. 疗养院人工绿地三维绿量分布特征及影响因子[J]. 浙江农林大学学报, 2013, 30(4): 529 − 535. WANG Dongliang, JIN Hexian, FAN Likun, et al. Distribution and influencing factor of three-dimensional green biomass for artificial greenbelts in sanatoriums [J]. J Zhejiang A&F Univ, 2013, 30(4): 529 − 535. [17] 王帆. 深圳坝光区域滨海河溪红树植物群落生态与景观特性研究[D]. 广州: 仲恺农业工程学院, 2017. WANG Fan. The Study on The Ecology and Landscape of Mangrove Communities in Coastal Rivers of Baguang Community, Shenzhen[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2017. [18] 祖若川. 海口市公园抗风园林植物的选择与应用[D]. 海口: 海南大学, 2016. ZU Ruochuan. Haikou Park Selection and Application of Wind-Resistant Garden Plants[D]. Haikou: Hainan University, 2016. [19] 乔小菊. 南京城区园林绿化中常见阔叶乔木树种的光合特性及相关生态功能的研究[D]. 南京: 南京农业大学, 2016. QIAO Xiaoju. Nanjing City Landscaping Broadleaf Tree Species of Photosynthetic Characteristics and Associated Ecosystem Functions[D]. Nanjing: Nanjing Agriculture University, 2016. [20] 吴显坤. 台风灾害对深圳城市园林树木的影响和对策[D]. 南京: 南京林业大学, 2007. WU Xiankun. Effect of Typhoon Disasters to Urban Landscape Trees and Typhoon Disaster-Reducing Strategies in Shenzhen[D]. Nanjing: Nanjing Forestry University, 2007. [21] 王燕. 广东省生态景观林带生态效益和景观评价[D]. 广州: 华南农业大学, 2016. WANG Yan. Ecological Benefit and Landscape Aesthetic Value of Eco-Landscape Forest Belt in Guangdong Province: A Case Study of Huizhou City and Meizhou City[D]. Guangzhou: South China Agricultural University, 2016. [22] 陈莉. 福州市棕榈科植物景观特性及评价[D]. 福州: 福建农林大学, 2015. CHEN Li. Analysis on the Landscaping Characteristics of Palms and Ecaluation of Its Application in Fuzhou[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. [23] 北京市园林绿化局. 公园设计规范: GB51192-2016[S]. 北京: 中国标准出版社, 2019. [24] LIANG Huilin, LI Weizheng, ZHANG Qingping, et al. Using unmanned aerial vehicle data to assess the three-dimension green quantity of urban green space: a case study in Shanghai, China [J]. Landscape Urban Plann, 2017, 164: 81 − 90. [25] 李晓婷. 北京城区校园与医院林木树冠覆盖与城市森林结构研究[D]. 北京: 中国林业科学研究院, 2018. LI Xiaoting. A Study on Urban Tree Canopy and Urban Forest Structure of Schools and Hospitals in Beijing Urban Area[D]. Beijing: Chinese Academy of Forestry, 2018. [26] 郑绍伟, 李隽, 黎燕琼, 等. 利用形态因子建立城市森林主要乔木树种三维绿量预测模型[J]. 四川林业科技, 2017, 38(1): 6 − 10. ZHENG Shaowei, LI Jun, LI Yanqiong, et al. Establishing the three dimensional green quantity forescast model of main tree species in urban forest by using morphological factors [J]. J Sichuan For Sci Technol, 2017, 38(1): 6 − 10. [27] ZHAO Qing, XU Dongxian, QIAN Wanhui, et al. Ecological and landscape perspectives on urban forest planning and construction: a case study in guangdong-hongkong-macao greater bay area of China [J]. Front Sustainable Cities, 2020, 2: 44. doi: 10.3389/frsc.2020.00044. [28] ZHAO Q, TANG H, GAO C J, et al. Evaluation of urban forest landscape health: a case study of the Nanguo Peach Garden, China [J]. For Biogeosci For, 2020, 13: 175. doi: 10.3832/ifor3206-013. [29] TIAN Jinyan, WANG Le, LI Xiaojuan, et al. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest [J]. Int J Appl Earth Observ Geoinf, 2017, 61: 22 − 31. [30] RANSON K J, SUN G, WEISHAMPEL J F, et al. Forest biomass from combined ecosystem and radar backscatter modeling [J]. Remote Sensing Environ, 1997, 59(1): 118 − 133. 期刊类型引用(12)
1. 陈昱舟. 浙江省未来乡村建设典型案例分析——基于桐乡市荣星村的调查. 现代农机. 2024(04): 36-38 . 百度学术
2. 孔祥文,商楠,于墨涵,申超,刘一鸣. 生态产业引领发展的植物园景观规划探析——以岳阳植物园为例. 城市建筑. 2024(20): 214-220 . 百度学术
3. 隋洁. 乡村振兴背景下乡村景观环境中的艺术介入研究. 绿色科技. 2023(09): 51-56+70 . 百度学术
4. 何思笑,张建国. 浙江省森林康养品牌资源空间分布特征及其影响因素. 浙江农林大学学报. 2022(01): 180-189 . 本站查看
5. 何圣博,丁昶. 人居环境科学视角下乡村景观营造研究——以徐州市三座楼村为例. 城市建筑. 2022(05): 16-20 . 百度学术
6. 邹初红. 基于特征约束的乡村景观植物布局规划模型. 河北北方学院学报(自然科学版). 2022(05): 55-60 . 百度学术
7. 赵丹萍,聂文彬,黄若之. 认知发展理论下的乡村公共空间景观营建策略. 山西建筑. 2022(13): 40-44 . 百度学术
8. 王能洲,周昭英. 基于产业导向的城市建设策略——以南京江北新区为例. 城市. 2022(09): 3-13 . 百度学术
9. 刘世芳. 新型城镇化背景下乡村产业与景观环境生态分析. 美与时代(城市版). 2022(10): 126-128 . 百度学术
10. 霍晓姝,熊艳,王艳辉. 林业科技推广在林业产业发展中的应用探讨. 林产工业. 2021(04): 84-86 . 百度学术
11. 杨炎坤,朱箫笛. 家具企业盈利模式问题及对策分析. 林产工业. 2021(05): 83-85 . 百度学术
12. 赵勇强,马明,赵莉莉,雷占礼. 国土空间规划背景下田园综合体创新模式与发展路径探究——以内蒙古土默特右旗大雁滩田园综合体为例. 西北师范大学学报(自然科学版). 2021(04): 93-100+127 . 百度学术
其他类型引用(10)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200455