留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施肥对普陀樟苗木生长及养分吸收利用的影响

陈闻 王晶 叶正钱 费行海 孙圳 王国明

高璐, 李香格, 祁亨年, 等. 种子呼吸检测方法及其应用研究进展[J]. 浙江农林大学学报, 2022, 39(5): 1133-1143. DOI: 10.11833/j.issn.2095-0756.20210748
引用本文: 陈闻, 王晶, 叶正钱, 等. 施肥对普陀樟苗木生长及养分吸收利用的影响[J]. 浙江农林大学学报, 2014, 31(3): 358-365. DOI: 10.11833/j.issn.2095-0756.2014.03.005
GAO Lu, LI Xiangge, QI Hengnian, et al. Advances in seed respiration detection and its application[J]. Journal of Zhejiang A&F University, 2022, 39(5): 1133-1143. DOI: 10.11833/j.issn.2095-0756.20210748
Citation: CHEN Wen, WANG Jing, YE Zhengqian, et al. Responses of Cinnamomum japonicum var. chenii growth and nutrient uptake to fertilization[J]. Journal of Zhejiang A&F University, 2014, 31(3): 358-365. DOI: 10.11833/j.issn.2095-0756.2014.03.005

施肥对普陀樟苗木生长及养分吸收利用的影响

DOI: 10.11833/j.issn.2095-0756.2014.03.005
基金项目: 

浙江省重大科学技术专项 2010C12024

舟山市科技计划项目 2011C13029

详细信息
    作者简介: 陈闻,助理工程师,从事水土保持与土壤肥料研究。E-mail:chenwen1019@163.com
    通信作者: 王国明,高级工程师,从事植物资源研究与开发。E-mail:km521@163.com
  • 中图分类号: S718.4

Responses of Cinnamomum japonicum var. chenii growth and nutrient uptake to fertilization

  • 摘要: 为了解不同施肥水平对普陀樟Cinnamomum japonicum var. chenii苗木生长及养分吸收利用情况的影响,设置了3个水平的田间试验,即不施肥(ck),常规施肥(T50,50 g·m-2)和增量施肥(T100,100 g·m-2),于2012年6月至9月观测苗高和地径,定期采集分析土壤和植物样品。结果表明:普陀樟苗木的苗高、地径、根部和茎部生物量均随施肥量的增加而增加(P<0.05);而叶生物量和总生物量在6月时随施肥量增加而升高(P<0.05),到9月时则呈先升后降的趋势(P<0.05)。苗木体内养分质量分数和单株养分含量随施肥量的增加而增加(P<0.05),不同处理均以叶片养分质量分数最高;养分吸收及利用率随着施肥的增加而降低(P<0.05),T50和T100处理各元素的吸收利用效率均为氮> 磷> 钾。到试验结束时,T50处理土壤养分质量分数与试验开始时持平,T100 处理钾积累,ck引起钾亏缺。从移栽成活来看,T50苗木体内养分积累,有利于移栽成活,保持土壤养分平衡;而T100养分浪费。综合判断,普陀樟苗木最适需养量应为50 g·m-2到100 g·m-2,且较接近50 g·m-2
  • 种子的呼吸作用是指在酶的参与下将种子本身的储藏物质进行一系列的氧化分解,同时释放二氧化碳、水以及能量的过程,是种子萌发过程中不可或缺的能量来源,其变化会直接影响种子的生理现象。种子的呼吸强度又称呼吸速率是衡量其呼吸作用强弱的重要生理指标[1],反映了种子的活力与代谢等生理现象的强弱,与种子的储藏存在密切关系。呼吸代谢途径的顺利启动是种子萌发并健康成长为幼苗的关键因素,对植物的后续生长发育具有重要影响。储藏过程中种子的呼吸作用会改变种子的质量和品质,影响种子活力,能否控制好种子呼吸是关系种子储藏成败的主要问题[2],因此,对种子呼吸过程进行精准检测十分必要。本研究对种子呼吸检测方法及其原理进行了综述,分析了各种检测方法的优点与存在的问题,讨论了种子呼吸检测方法在种子呼吸代谢、种子储藏和种子活力等方面的研究与应用。

    呼吸强度是种子生命活动最重要的指标之一,有效检测种子呼吸强度是研究种子呼吸作用的重要前提。种子呼吸消耗氧气(O2),释放二氧化碳(CO2),所以氧气消耗量或者CO2释放量可以在一定程度上反映种子的呼吸强度。检测种子呼吸耗氧量的方法有瓦氏微量法、Clark氧电极法和氧传感技术检测法(Q2技术)等;检测种子呼吸CO2释放量的方法有小篮子法、红外线CO2分析仪法和可调谐二极管激光吸收光谱(TDLAS)技术检测法等。种子呼吸检测方法向着检测速度快、效率高、重现性好的方向发展,并将成为研究热点。

    小篮子法主要通过测量种子在密闭容器中呼吸产生CO2增加量来测定种子呼吸的强度。将种子放入小篮子中,密封广口瓶,利用饱和碱液氢氧化钡[Ba(OH)2]吸收种子呼吸过程中产生的CO2。待测试结束后,再用草酸溶液滴定残留的Ba(OH)2,记录消耗的草酸溶液量为V1,另取空白组滴定记录草酸溶液量为V0。根据呼吸过程中Ba(OH)2减少量可定量测出种子在整个检测过程中CO2的增加量。基于小篮子法测定种子呼吸强度的计算公式为:种子呼吸强度(mg·g−1·h−1)=( V0V1)/(mt),其中:m为种子鲜质量(g),t为测定时间(h)。

    在不同激素、药物和生长环境下,种子萌发过程的呼吸作用会出现很大差异,利用小篮子法能够直观地研究种子在不同外界环境下呼吸作用的变化情况。张璇等[3]利用小篮子法观测到适当浓度的赤霉素浸种可以提高香果树Emmenopterys henryi种子的呼吸速率;李佳等[4]利用小篮子法测定经不同浓度赤霉素处理后的杜仲Eucommia ulmoides种子的呼吸强度,发现随着赤霉素浓度上升,种子的呼吸速率下降;方能虎等[5]采用小篮子法对水稻Oryza sativa种子进行呼吸检测,观察到种子萌发初期稀土元素对其呼吸速率动态变化具有影响;杨雪鹏等[6]利用小篮子法研究不同浓度的维生素吡咯喹啉醌对水芹Oenanthe javanica种子萌发的影响。上述研究表明:利用小篮子法测定种子呼吸,能够简单高效地获取不同浸种环境下种子的呼吸变化规律,为不同环境因素对种子萌发生理效应的探索奠定了基础。

    小篮子法操作简便,但不能完全反映种子呼吸CO2浓度的动态变化过程,难以避免外界CO2的侵入和干扰,反应不敏感,在一定程度上影响了种子呼吸强度检测的精度,且计算相对复杂。李海霞等[7]对此做了改进,以利于小篮子法的推广。

    瓦氏呼吸仪(Warburg Respirometer)是测定生物因新陈代谢而产生的气压变化所用的装置。其工作原理为在恒温、恒体积的密闭系统中,用氢氧化钾(KOH)溶液吸收CO2使得气体压力降低,利用测压计显示压力值,从而得到种子呼吸过程中O2消耗量。利用瓦氏呼吸仪测量种子呼吸时,首先将种子称量后放入反应瓶中,并将反应瓶放入恒温控制器。实验开始后调节U型测压管底部的旋钮,使右侧闭管内测压液的液面保持在h=150 mm,读取左侧开管液面高度值。关闭三通活塞使压力计与反应瓶相通,待种子呼吸一段时间后,将右侧液面仍调节至原处,并记录左侧液面高度,然后关闭测压管。瓦氏微量法具有微量和多组测定的特点,灵敏度较高,压力计上只要有1 mm的测压液水柱变化就可以进行测定,比小篮子法的灵敏度和精确度好。

    吕洪飞等[8]利用瓦氏呼吸仪对杉木Cunninghamia lanceolata不同无性系小孢子叶球的呼吸强度进行了测量,比较不育株与可育株小孢子叶球及其子叶的呼吸强度,并将所测结果与Clark氧电极法进行比较,2种方法所测结果趋势一致。黄真池等[9]参照黄学林等[10]的瓦氏微量法,使用Shw-2型呼吸仪在25 ℃下测定不同活力等级的白菜Brassica pekinensis种子在不同吸水时间下的呼吸速率,发现了高活力种子和中等活力种子在吸水初期(1~12 h)呼吸速率相差不明显,低活力种子的呼吸速率在吸水前4 h明显低于前两者,但随着吸水时间延长,低活力种子的呼吸速率大小与高、中等级活力种子的呼吸速率逐渐接近。王亚文等[11]利用瓦氏呼吸仪测定在暗反应与光反应条件下黑豆Glycine max种子萌发时产生CO2和消耗O2之间的变化关系,发现黑豆种子的呼吸速率变化符合“S”形曲线,存在明显的呼吸滞缓期。

    利用瓦氏呼吸仪测定种子呼吸强度在一定程度上提高了测量的灵敏度和准确性。需要注意的是在瓦氏实验过程中需要保持温度恒定,进行温度校准,并尽可能采用小的呼吸室。为了避免瓦氏呼吸仪中压力和温度对呼吸室的容积产生影响,瓦氏微量法要求所取样品体积小,因此,难以用于大粒种子呼吸强度的测量。此外,Gilson差分呼吸仪和Warburg呼吸计根据呼吸作用产生的压力变化测得种子的呼吸速率,也属于瓦氏微量法,但目前Gilson差分呼吸仪在种子呼吸检测领域应用较少。

    Clark氧电极(Clark oxygen electrode)是一种极谱电极,最早用于测定水溶液中溶解氧的含量,在20世纪30年代就有人利用裸露的银-铂电极研究藻类的光合作用。CLARK[12]在1956年提出薄膜氧电极,1983年,日本学者首次采用微机械加工技术将氧电极微型化,使得测氧技术更加简便稳定[13]。Clark氧电极一般是用银作阳极,铂作阴极,加上一层氧分子可以通过但液体不能通过的薄膜以防止电极被污染,充以氯化钾(KCl)作为电解液。2个电极之间加上0.07 V左右的恒定电压,在极化电压及温度恒定的条件下,将扩散电流的大小作为溶解氧定量测定的基础,即电流大小反应溶解氧含量。Clark氧电极具有反应快、灵敏度高、可连续测量、能够记录O2的动态变化过程等优点,因此常用于研究植物根系、芽、种子、果实、叶片等组织的呼吸速率和耗氧情况,分析糖酵解、三羧酸循环等呼吸代谢途径,从而研究植物组织的休眠和休眠解除等变化过程。

    线粒体与种子呼吸直接相关,是细胞进行三羧酸循环和生物氧化的场所[14-15]。BENAMAR等[16]在25 ℃下用校准氧电极检测种子碎片和线粒体耗氧量,证实了线粒体功能与种子品质之间具有相关性。王伟青等[17]利用Clark氧电极分别测定黄皮Clausena lansium种子胚轴、子叶和线粒体的耗氧速率,研究黄皮种子的脱水敏感性与种子呼吸速率显著降低的关系。陶宗娅等[18]采用Clark氧电极测定大豆Glycine max和豌豆Pisum sativum种子子叶和去子叶胚的耗氧量,研究低温吸胀对种子呼吸代谢的影响。

    Clark氧电极法实现了种子呼吸的连续测量,提高了测量精度和灵敏度,但该方法对温度变化较为敏感,在测定中需要维持温度恒定。除此之外,测定前需要先从种胚中提取和纯化线粒体,操作方法较为繁琐,且需保持良好的线粒体结构不被其他细胞器污染,对操作要求较高。

    20世纪50年代,为了克服传统气体测压方法操作复杂、难以实现自动化等缺点,利用CO2气体能够强烈吸收红外线特定波段能量的特点,设计制造了红外线CO2分析仪(Infrared CO2 Analyzer)[19],其工作原理为:由光源发出的红外线经反射镜分成2束能量相等的平行光束,分别通过参比气室与分析气室2个气室。由于气体吸收红外线能量,使得原来能量相等的2束红外线产生了能量差,被电容检测器接收后转变成1个电信号,从而间接测量出待测CO2的浓度。红外线CO2分析仪具有操作简单,反应灵敏,读数直观,数据可存储等优点,已被国内外学者广泛应用于各种农业和气体监测等领域[20-21]

    诸多学者利用红外线CO2分析仪测定种子呼吸强度,探究种子呼吸与其萌发过程之间的关系,发现了很多重要的呼吸现象。如陈润政等[22]利用FQ-W-002型红外线CO2分析仪对花生Arachis hypogaea种子呼吸强度进行了研究,证实了种子呼吸强度与其生活力的密切相关。陈禅友等[23]使用GXH-3010E型便携式红外线CO2分析仪测定黄秋葵Hibiscus esculentus种子在萌发期间的呼吸速率,发现其呼吸速率变化曲线符合“快—慢—快”的规律,并且发芽率高的种子比发芽率低的种子呼吸速率更高。刘美[24]利用GXH-305型便携式红外线CO2分析仪测量不同温度条件下小麦‘山农17’ Triticum aestivum ‘Shannong 17’种子萌发期间呼吸速率变化,证明了温度对种子的萌发进程具有重要影响,温度过高或过低均不利于种子萌发。

    与小篮子法和瓦氏呼吸仪相比,利用红外线CO2分析仪测定种子呼吸强度,精度较高,能够在一定程度上减少人为干涉,提高种子呼吸强度测量的准确度。目前,国内红外线CO2分析仪多是进口仪器,价格较为昂贵,且在测量过程中环境温度变化会影响红外光源的稳定,直接影响测量结果。

    氧传感技术(oxygen sensing technology)检测法是在密闭环境中,通过测量种子萌发过程中氧气的消耗情况来检测种子呼吸强度,由荷兰ASTEC Global公司开发。该技术基于荧光猝灭原理,由氧传感检测仪向含有荧光材料的种子萌发试管中释放蓝光,蓝光被荧光物质吸收并发出红光返回传感器。O2分子可以消耗红光能量(即猝灭效应)。当种子萌发消耗氧气时,试管内O2浓度降低,返回的红光随之增强,所以红光的强度与O2分子的浓度成反比。在测量过程中,操作软件会根据O2浓度和时间自动绘制成耗氧曲线,测定种子呼吸时消耗O2的浓度,得到种子呼吸强度。根据耗氧曲线的特征,设定不同的氧代谢值,通过种子萌发启动时间(IMT)、萌发O2消耗速率(OMR)、临界O2压强(COP)、理论萌发时间(RGT)和理论萌发率(RGR)等值,快速区分不同活力种子。

    诸多学者对不同植物种子进行测量,分析了氧传感技术测定种子呼吸的原理、测定方法和测定结果,取得了较多研究成果。陈能阜等[25]利用氧传感技术测定了番茄Solanum lycopersicum、辣椒Capsicum annuum、黄瓜Cucumis sativus、茄Solanum melongena、杉木和马尾松Pinus massoniana等6种植物种子耗氧情况,发现不同种类、活力等级相同的种子,其耗氧曲线形状类似。利用耗氧曲线分析了IMT、OMR、COP和RGT等参数,全面分析了种子O2消耗曲线的特征。陈合云[26]选用浙江省主栽的籼稻和粳稻各20个品种,通过室内标准发芽试验、田间出苗试验和氧传感检测试验,确定了适用于常规籼稻种子和粳稻种子最佳氧传感指标分别为RGR和OMR,并且基于氧传感技术研究了经处理后种子活力的变化情况,表明氧传感技术测定种子呼吸可以有效地将老化处理、未处理与引发处理的种子区分开。

    氧传感技术是集生物技术与信息技术于一体的自动化测定种子呼吸耗氧能力的新技术,目前已经被应用于多种类型种子的活力水平测定[27-28]。该方法可以测量单粒种子在萌发过程中的呼吸速率,然而该方法需要对种子进行萌发,属于有损检测,检测时间较长,需要每间隔30 min或1 h对种子呼吸耗氧数据进行1次采样,无法展示种子耗氧曲线的细节。

    可调谐二极管激光吸收光谱技术(tunable diode laser absorption spectroscopy, TDLAS)利用激光器发出的光被待测气体选择性吸收来测量气体的浓度。HINKLEY[29]和REID等[30]在20世纪中期最早提出通过吸收光谱来检测气体浓度。1981年,REID等[31]利用波长调制技术采集数据,最终得到了和气体浓度成正比的二次谐波表达式,从而推动了TDLAS技术向高精度气体浓度检测的研究方向发展。由于TDLAS技术目前已经能够达到10−9级别甚至10−12级别的检测限,因此,很多学者利用TDLAS技术检测CO2的浓度[32-33]。目前,TDLAS技术在农业领域的研究主要包括:土地排放的气体浓度和通量的检测[34]、植物叶片水分蒸腾速率的测量[35]、农产品运输冷藏车内CO2浓度的检测[36]等方面,而对种子呼吸检测的研究较少。种子代谢产物成为种子活力检测的新思路[37]

    贾良权等[38]基于TDLAS技术自主搭建了一套种子呼吸检测系统。相较于近红外光谱技术、高光谱技术和 X 光谱技术,该系统检测成本较低,能够反演出水稻和玉米Zea mays种子呼吸过程中产生的CO2浓度曲线。通过与发芽试验数据进行相关性分析,证明种子呼吸强度与种子活力等级的之间存在高度相关性。从水稻和玉米等种子呼吸与活力实验结果来看,TDLAS技术可以对种子呼吸强度进行连续实时的监测,检测精度可以达到10−6。通过优化设计光路和选择合适波长,可以进一步提高检测精度,实时监测单粒种子的呼吸情况。可见该方法具有较广阔的发展前景。此外,理论上TDLAS技术既可以检测CO2,也可以检测O2,因此,该方法也可以通过测定耗氧量来检测种子的呼吸强度,但在实际测量时参数选择会直接影响最终检测结果,选择实验参数的依据仍有待完善。

    表1归纳了上述几种种子呼吸检测方法的原理及优缺点,小篮子法、瓦氏微量法、Clark氧电极法、红外线CO2分析仪法等由于其检测精度限制,只能检测批量种子的呼吸强度或者长时间累计种子的呼吸强度。新兴技术如氧传感技术检测法和TDLAS技术检测法等在种子呼吸检测领域具有较好的发展潜力。其中,小篮子法、瓦氏微量法、Clark氧电极法等单次最小样本检测量通常为1批或数克,其检测精度取决于溶液或滴定反应沉淀物称量的准确性,检测时间取决于人为操作时间。

    表 1  种子呼吸检测方法比较
    Table 1  Comparison of respiration detection methods for seeds
    检测方法检测原理连续测量/
    自动存储
    优点缺点预处理方法检测时间最少样本
    检测量
    小篮子法[3] 化学 装置简单;应用范围广 易受外界环境干扰;反应
     不敏感
    浸种、萌发 10 ~20 min 1批(约2 g)
    瓦氏微量法[10] 化学/物理 灵敏度高;可多组同时
     测定
    受温度影响大;难以用于
     大粒种子测量
    浸种、萌发 10~20 min 1批(约1 g)
    Clark氧电极法[20] 电化学 响应快;灵敏度高 对温度敏感;需破碎种子 破碎、吸胀 10~20 min 1批
    红外线CO2分析仪法[26] 光学 反应灵敏;检测精度高 价格昂贵;温度影响光源
     稳定
    浸种、萌发 约5 s 1批(约1.5 g)
    氧传感技术检测法[27] 化学 检测氧气,实现单粒种
     子和多粒种子同步测量
    有荧光物质的消耗,无法
     实时监测
    浸种、萌发 约30 min 单粒
    TDLAS技术检测法[39] 光学 灵敏度高;分辨率高 尚在实验阶段;参数选择
     对结果有影响
    清洗 约0.1 s 单粒
    下载: 导出CSV 
    | 显示表格

    呼吸代谢是生命活动的中心,种子内存在多条呼吸代谢途径,最基本的3条途径为糖酵解(EMP)途径、三羧酸(TCA)循环和磷酸戊糖(PPP)途径。不同的代谢途径提供不同的能荷和还原力,在各发育阶段有不同的代谢途径与之相适应。呼吸代谢各途径的强弱与呼吸速率和种子萌发密切相关[40-41],通过探索种子的代谢途径及其各阶段呼吸强度的变化,研究呼吸代谢在种子休眠与萌发中的作用,有助于找到打破种子休眠机制的依据,从而控制种子的休眠与萌发,缩短育种年限,提高育种效率[42]

    在研究种子休眠与萌发过程各呼吸代谢途径的变化规律中,种子的呼吸速率是重要的测定指标[43]。SIMMONDS等[44]在验证PPP途径在种子休眠解除起重要作用的研究中,利用Warburg呼吸仪测量不同后熟期种子0~10 h的呼吸变化。利用此测定方法只能对收集的数据进行回归分析,计算种子呼吸速率,不能实时反映种子呼吸连续变化情况。浦心春等[45]在研究休眠及打破休眠种子的发芽过程中加入了各种呼吸抑制剂,得出各代谢途径呼吸速率占总呼吸速率的比例,分析结果表明:TCA途径及PPP途径没有充分活化是导致休眠种子不能发芽的原因之一。采用小篮子法测定种子呼吸CO2的释放速率,虽操作简便,但受环境影响较大,并且只能人工读取结果,容易造成误差。陈丽培等[46]将培养过程中的油松Pinus tabuliformis种子每隔9 h取出并放入LI-6400光合作用呼吸仪中测量其呼吸速率,获得呈“S”形曲线的呼吸速率变化结果,并结合代谢途径关键酶活性的测定,得出种子在培养初期以EMP途径为主,而中后期由EMP途径转向PPP途径和TCA途径。该研究采用的LI-6400光合作用呼吸仪基于红外线CO2测量原理,可以有效地测定种子呼吸速率,具有测量相对精确、自动化程度高等优点,但该方法需要间隔较长时间(9 h)取出样品进行测量,时间分辨率较低,对获得的呼吸曲线质量有一定影响。

    呼吸代谢由EMP/TCA途径转向PPP途径对种子休眠的解除具有重要作用,通过呼吸速率测定可以了解种子各代谢途径的活化程度。为了进一步探究种子休眠与萌发机制,需要综合分析多种因素及其相互作用,结合种子呼吸速率、酶活性和内源激素调控,全面把握种子生理变化,使呼吸代谢的研究具有更大的理论意义和实际效益。种子呼吸检测方法在种子休眠解除与促进萌发的研究中具有关键作用,研究者们采用不同的呼吸代谢检测方法对种子呼吸代谢途径的呼吸速率进行测定。传统方法受环境因素影响较大,灵敏度低,时间分辨率有限,并且由人工读取测量结果容易造成实验误差,合理选取或研究新型高灵敏度且自动化程度高的种子呼吸代谢测定方法有助于提高种子呼吸代谢效率以及结果的准确性。

    种子储藏是种质资源离体保存、年度间用种余缺调剂与应急用种的有效措施[47]。种子的呼吸作用是种子储藏期间的重要生理活动,控制好种子的呼吸作用,减少储藏物质的消耗,保持种子旺盛的生命力,才能达到种子安全储藏的目的[48]。测定种子的呼吸强度可以衡量其呼吸作用的强弱,有利于了解储藏过程中种子生理状态、环境影响因素与种子呼吸强度之间的关系,为改善储藏条件提供必要数据支撑。胡小荣等[49]将储藏12个月的大葱Allium fistulosum和油菜Brassica campestris种子分别存于50、35、20和−18 ℃环境下,并利用GC-7AG气相色谱仪测定种子呼吸速率,研究发现:随着储藏温度的升高,大葱和油菜种子的CO2释放量增大,同一储藏温度下,随着含水量的降低,种子CO2释放量减少。LIU等[50]在常温与低温2种环境下,用小篮子法测定储藏第4年的马尾松种子的呼吸强度,发现在常温开放储藏环境下,种子呼吸旺盛、养分消耗快,易丧失生活力,而采用低温密封法可以较好地保持种子的生活力。可见,在一定范围内,呼吸作用的强度会随温度的上升而增强。在储藏期间,温度变化导致的种子呼吸变化还可能影响种子的感官品质。王道营等[51]将玉米种子在不同温度条件下储藏一段时间后,取出放入密闭玻璃瓶中,通过GXH-3010D型红外CO2分析仪测定一段时间内种子的呼吸变化情况,发现在不同温度下含糖量递减速率随温度的升高而加大,在较低储藏温度下甜玉米含糖量较高,呼吸强度和失水量较低,能够保持较高的食用品质。种子的水分含量与空气成分同样是种子呼吸的重要影响因素。王若兰等[52]取适量预处理后的小麦种子放入SKW-3仪器的呼吸瓶内,测定在不同温度、水分和氧气浓度下小麦种子呼吸速率的变化。结果表明:在一定条件下,小麦种子呼吸作用的强度随着温度或水分的升高而加强,随着氧气浓度的降低而逐渐被抑制。

    部分学者指出:种子呼吸作用在储藏期间受温度、湿度及环境中O2、CO2等因素的影响[53],通过降温、干燥、缺氧储藏等手段能够有效抑制种子的呼吸作用[54],使种子处于极微弱的呼吸状态,保持种子品质,延长储藏时间,减少农业生产中的经济损失。然而在不同环境中,部分呼吸检测仪器同样会受到环境因素变化的影响,如小篮子法难以避免外界CO2气体的干扰,且仅能测量取出后储藏种子的呼吸强度,无法及时反映不同储藏环境下种子的呼吸情况;Gilson差分呼吸仪和Warburg呼吸计2种仪器对压强或温度变化都极为敏感,设置不同温度与O2浓度环境,都需要对仪器进行平衡,且耗费时间较长;红外线CO2分析仪和TDLAS技术等方法可以通过调节气室环境来测量不同温度、气体浓度下种子的呼吸作用,能有效避免环境因素对仪器产生的影响。可见,在储藏环境因素对种子呼吸强度影响的研究中,所采用的种子呼吸检测方法不仅要结果精确、自动化程度高,还需尽量减少环境因素干扰,才可以实时反映不同储藏环境下种子的呼吸变化情况。

    种子活力作为衡量种子质量的一个重要指标,对农业生产和自然环境等民生问题有着重要影响[55]。种子的呼吸强度与其活力存在一定的正相关性[56-57]。国内外学者尝试采用不同的检测技术对种子呼吸过程中O2的消耗量或产生的CO2量进行检测,研究种子呼吸与活力相关性。在种子活力研究中采用测定耗氧量的方法有:Gilson差分呼吸仪法、瓦氏微量法、Clark氧电极法[58]和氧传感技术检测法等。

    WOODSTOCK等[59]将玉米种子置于装有5 mL水的反应瓶中并连接Gilson差分呼吸仪,测量种子吸水开始后2~30 h的耗氧情况,得出在空气环境下种子的呼吸速率与根长、芽长的相关系数分别为0.82和0.79,表明种子呼吸速率与发芽和幼苗生长之间呈显著正相关。赵光武等[37]探讨了氧传感测定指标与杉木种子发芽测定指标之间的相关性,应用氧传感技术软件自动绘制耗氧曲线并计算,得到COP,指出呼吸强度开始降低时O2浓度与发芽率呈显著负相关。钟希琼等[60]在水稻种子萌发进行到80~88 h时,用滴定法(同小篮子法)测定种子呼吸速率,研究发现:其生活力、发芽势、发芽率、发芽指数均与呼吸速率呈显著正相关,相关系数分别为0.847、0.931、0.937和0.870。贾良权等[38]基于TDLAS检测技术选取3个活力等级的甜玉米种子,将预处理后的种子放入基于TDLAS技术的种子呼吸容器中,启动设备自动存储数据并绘制呼吸产生的CO2浓度曲线图,计算得到第3~8小时各时刻种子的呼吸强度与活力指数的相关系数均大于0.900。这表明种子的呼吸强度可以快速反映种子的活力水平。

    上述研究结果表明:玉米、水稻、杉木等种子的呼吸强度与其发芽率、发芽势、发芽指数等呈现一定的正相关性。但目前还存在一些科学问题尚未解决,如在同一遗传品系内部种子呼吸强度与种子活力的定量关系,以及不同遗传品系间种子的活力与呼吸强度相关度等具体问题。针对上述问题,可通过种子呼吸检测及发芽试验,定量研究种子呼吸强度与种子活力之间的相关关系,以期通过呼吸强度的检测来准确判定种子活力的高低,从而提高制种效率。氧传感技术与TDLAS技术在种子呼吸检测领域的应用,使得种子活力检测向着快速、准确且自动化程度高的方向发展。相比发芽、田间出苗等试验,氧传感技术与TDLAS技术操作更加简便、耗时较短、效率更高,可将呼吸强度作为鉴定种子活力的生理指标,并在种子选择、检验、储藏等领域广泛应用。

    种子呼吸强度的检测可以用于研究种子休眠解除过程中各代谢途径,了解种子的活力情况及收获后的生理状态,指导选用和生产高活力种子,在研究种子呼吸代谢、种子活力和种子储藏等方面具有重要的意义与价值。结合目前种子呼吸检测方法和应用领域的研究进展,笔者认为应着力从以下几个方面开展进一步研究:①小篮子法、瓦氏微量法等目前常用的种子呼吸检测方法多数存在不能实时反映种子呼吸变化等缺陷且属于有损检测。新型技术如红外线CO2分析仪法、氧传感技术法等近年得到了较好的应用与发展,这些方法能够获得种子呼吸检测的变化曲线,然而这些方法多针对批量种子长时间呼吸积累量进行检测,对单粒种子以及种子萌发前的呼吸检测尚无能为力,因此具有一定的应用局限。总体种子呼吸检测方法的研究进展缓慢,对种子生理生化的深入研究产生了一定的影响。以TDLAS技术为代表的新型光学检测方法具有高灵敏度、快速检测等优点,其检测精度能够达10−6以下,通过选用强吸收线的激光器光源并配合长光程种子吸收池,种子呼吸CO2检测精度甚至可以达到10−9,种子呼吸消耗O2检测精度达10−6级别。可见,TDLAS技术是一种颇具前途的种子呼吸检测方法,能够有效地避免上述问题,且TDLAS技术可以进行CO2和O2等多种气体的同步监测,能够全面掌握种子呼吸代谢过程变化情况。因此,随着种子呼吸与生理生化、储藏环境等相关领域的研究进展,基于TDLAS等光学检测技术的研究,同时开展呼吸代谢中CO2和O2的同步监测,研究出灵敏度更高、操作更为简单的种子呼吸检测方法及装备具有可行性。②目前,种子呼吸研究主要集中在种子呼吸代谢与休眠、萌发、代谢途径等相关领域。随着技术手段的提升,可以进一步加强种子休眠、种子早期萌发机制以及盐碱、温度等环境胁迫与种子呼吸代谢关系研究,深入分析种子呼吸代谢及其影响因素的关系,从而完善种子呼吸代谢相关理论。③保持种子储藏活力的关键因素之一在于降低种子的呼吸强度和减缓劣变进程。在种子储藏仓库中除了设置测温仪、水分测定仪、发芽箱等设备,还应该增加呼吸检测仪器,监测储藏过程中种子的呼吸强度,及时了解种子的生理活动状态。开展低成本种子储藏呼吸CO2在线气体监测系统研制具有重要价值。④目前种子呼吸与种子活力的研究主要为定性研究,定量研究还相对较少。两者定量关系模型的研究和建立可为利用种子呼吸进行种子活力检测提供重要的理论支撑。此外,在种子呼吸与种子活力关系研究中,应将种子呼吸指标和种子活力参数(种子发芽率、发芽势、发芽指数、活力指数)以及种子发育过程中内含物的变化情况相结合,全面分析种子呼吸强度与种子活力的定量关系,并以此为依据,探寻能够将种子呼吸强度作为有效判定种子活力的方法,特别应加强种子萌发前的呼吸与活力相关指标的研究。

  • 图  1  不同施肥对普陀樟苗木株高、地径生长的影响

    Figure  1  Effects of different treatments on height and diameter of Cinnamomum japonicum var. chenii seedlings

    表  1  不同施肥处理肥料用量

    Table  1.   Fertilizer rate of different treatments

    处理施肥量/(g·m-2)总养分量/(g·m-2)
    5月7月总计五氧化二磷氧化钾
    ck000000
    T502525507.57.57.5
    T100505010015.015.015.0
    说明:复合肥m(氮):m(五氧化二磷):m(氧化钾)=15:15:15.
    下载: 导出CSV

    表  2  不同施肥对普陀樟苗木生物量的影响

    Table  2.   Effects of different treatments on biomass of Cinnamomum japonicum var. chenii seedlings

    处理植物各器官生物量/g
    总生物量
    6月9月6月9月6月9月6月9月
    ck1.24±0.06 b3.60±0.14 b0.34±0.09 b1.19±0.20 a0.50±0.13 b1.12±0.26 a2.08±0.28 b5.91±0.33 b
    T502.13±0.13 a5.42±0.02 a0.54±0.02ab1.78±0.36 a0.68±0.02ab1.57±0.25 a3.35±0.16 a8.77±0.17 a
    T1002.22±0.15 a5.01±0.26 a0.63±0.07 a1.88±0.09 a0.89±0.01a1.72±0.07 a3.74±0.20 a8.61±0.37 a
    说明:表中数据为平均值±标准误) 同一列数后注有不同英文字母者为达到新复极差检验5%(显著水平).
    下载: 导出CSV

    表  3  不同施肥对普陀樟苗木养分质量分数的影响

    Table  3.   Effects of different treatments on nutrients contents and concentrations of C. japonicum var. chenii seedlings

    指标处理养分库全株
    ck14.25±0.33 b7.16±0.89 a11.44±0.22 a9.20 ± 0.43 a12.27 ± 0.18 b
    氮/(mg·g-1)T5015.74±0.55 b8.30±1.65 a12.88 ± 0.84 a10.37 ± 1.01 a13.69 ± 0.71 b
    T10019.65±1.15 a8.38±1.05 a13.44±0.89 a10.76 ± 0.59 a15.99 ± 0.88 a
    单株含氮量/ck51.21±3.32 c8.43±3.50 a12.66 ± 3.12 a21.09 ± 6.66 a72.30 ± 4.95 c
    (mg·株-1)T5085.03 + 2.08 b14.15 + 2.43 a20.35 ± 3.88 a32.35 ± 6.57 a119.53 ± 2.48 b
    T10098.52±3.98 a16.09±1.07 a22.97 ± 0.50 a38.88 ± 0.61 a137.57 ± 4.52 a
    ck2.92±0.41a3.18±0.99 a4.24 ± 0.35 a3.69 ± 0.10 a3.23 ± 0.23 b
    磷/(mg.g-1)T503.70±0.15 a3.78±0.40 a3.82 ± 0.29 a3.64 ± 0.61 a3.68 ± 0.10ab
    T1004.29±0.38 a4.17±0.14 a3.97 ± 0.51 a4.07 ± 0.23 a4.21 ± 0.24 a
    单株含磷量/ck10.49±2.35 b3.80±1.50 a4.79 ± 1.33 a8.59 ± 2.41 b19.08 ± 0.91 b
    (mg·株-1)T5020.10 + 1.64 a6.43 + 0.55 a5.75 ± 0.27 a11.13 ± 1.48 ab32.28 ± 1.90 a
    T10021.57±1.32 a7.63±0.36 a6.90 ± 0.67 a14.48 ± 1.03 a36.10 ± 1.46 a
    ck4.93±0.18 b4.50±0.35 a4.81 ± 0.23 a4.64 ± 0.13 b4.81 ± 0.10 b
    钾/(mg.g-1)T504.95±0.10 b4.59±0.42 a5.06 ± 0.71 a4.69 ± 0.11 b4.85 ± 0.09 b
    T1005.65±0.10 a5.37±0.43 a5.90 ± 0.44 a5.60 ± 0.31 a5.64 ± 0.17 a
    ck17.73±1.52 b5.31±1.31a5.31 ± 1.18 b10.62 ± 2.53 b28.35 ± 0.96 b
    单/(mg·株-1)T5026.85±1.82 a8.06±1.46 a7.66 ± 0.77 ab14.21 ± 1.49 b42.57 ± 2.66 a
    T10028.38±0.31a10.10±0.42 a10.02 ± 0.17 a20.03 ± 0.25 a48.50 ± 0.14 a
    下载: 导出CSV

    表  4  不同施肥对普陀樟苗木养分吸收及利用的影响

    Table  4.   Effects of different treatments on nutrient uptake and utilization of Cinnamomum japonicum var. chenii seedlings

    器官处理EAUN/%EAUP/%EAUK/%EF/(g·g-1)IBH/(g·g-1)INH/%IPH/%IKH/%
    养分T503.71 ±0.42a2.87 ±0.87a1.26 ±0.04a2.41 ±0.11a3.15± 0.11a6.90 ±1.40a5.40 ±0.72a3.67 ±0.39 a
    T1001.89 ±0.71a2.08 ±1.46a1.21 ±0.32a1.32 ±0.21a1.69± 0.21b4.15 ±0.71a3.51 ±0.58b2.58 ±0.33 a
    全株T5010.07 ±0.53a6.40 ±1.53a3.67 ±0.71a6.90 ±0.35a8.25± 0.35a25.50 ±0.91a15.65 ±0.92a10.98±0.68a
    T1006.96 ±0.39b4.13 ±0.24b2.60 ±0.11b3.37 ±0.15b4.05± 0.15b14.67 ±0.91b8.75 ±0.22b6.26 ±0.12 b
    下载: 导出CSV

    表  5  不同施肥对土壤养分的影响

    Table  5.   Effects of different treatments on soil nutrient

    月份处理pH有机质/(g·kg-1)碱解氮/(mg·kg-1)有效磷/(mg·kg-1)速效钾/(mg·kg-1)
    ck6.33 ± 0.12 a22.51 ± 6.57 a106.35 ± 1.87 ab40.30 ± 3.32 b106.67 ± 12.94 c
    6T506.07 ± 0.01 b30.65 ± 5.26 a102.74 ± 0.42 b58.56 ± 8.73 ab144.83 ± 5.67 b
    T1006.15 ± 0.04 ab29.35 ± 6.12 a113.20 ± 3.12 a60.06 ± 1.19 a181.83 ± 4.70 a
    ck6.27 ± 0.16 a19.90 ± 8.94 a92.29 ± 6.97 a48.30 ± 1.11 a64.00 ± 8.61 c
    9T505.82 ± 0.09 b24.84 ± 5.49 a105.99 ± 1.25 a46.68 ± 12.03 a104.25 ± 0.43 b
    T1005.62 ± 0.26 c25.40 ± 0.75 a97.82 ± 1.25 a72.82 ± 3.03 a158.50 ± 2.89 a
    下载: 导出CSV
  • [1] 孙慧彦,刘勇,马履一,等. 氮磷供给对长白落叶松苗木质量的影响[J]. 内蒙古农业大学学报,2011,32(3):58-62.

    SUN Huiyan,LIU Yong,MA Lüyi,et al. Effects of supplying of nitrogen and phosphorus to larix olgensis seedling quality[J]. J Inner Mongolia Agric Univ,2011,32(3):58-62.
    [2] 左海军,马履一,王梓,等. 苗木施肥技术及其发展趋势[J]. 世界林业研究,2010,23(3):39-43.

    ZUO Haijun,MA Lüyi,WANG Zi,et al. Research on fertilizer application technology for seedlings and its development trends[J]. World For Res,2010,23(3):39-43.
    [3] 蒋云东,王达明,邱琼,等. 7种热带阔叶树种的苗木施肥试验[J]. 云南林业科技,2003(2):11-16.

    JIANG Yundong,WANG Daming,QIU Qiong,et al. Fertilization experiment on young plants of seven broad-leaved tree species indigenous to tropical areas[J]. J Yunnan For Sci Technol,2003(2):11-16.
    [4] 郑辉,刘彦慈,李帅英,等. 氮磷对刺槐生长和蛋白质组分的影响[J]. 河北农业大学学报,2006,29(5):44-46.

    ZHENG Hui,LIU Yanci,LI Shuaiying,et al. Effects of nitrogen and phosphorus on growth and protein component of Robinia pseudoacacia[J]. J Agric Univ Hebei,2006,29(5):44-46.
    [5] 吴俊杰,刘方春,马丙尧,等. 滨海盐碱地白蜡的施肥效应[J]. 林业科技开发,2013,27(5):57-60.

    WU Junjie,LIU Fangchun,MA Bingyao,et al. Growth response of Fraxinus chinensis to fertilizer applications in coastal saline field[J]. China For Sci Technol,2013,27(5):57-60.
    [6] 吴家胜,张往祥,曹福亮. 氮磷钾对银杏苗生长和生理特性的影响[J]. 南京林业大学学报:自然科学版,2003,27(1):63-66.

    WU Jiasheng,ZHANG Wangxiang,CAO Fuliang. Effects of different application amount of nitrogen,phosphorus and potassium on growth and physiological properties of ginkgo seedling[J]. J Nanjing For Univ Nat Sci Ed,2003,27(1):63-66.
    [7] BOIVIN J R,SALIFU K F,TIMMER V R. Late-season fertilization of Picea mariana seedlings:intensive loading and outplanting response on greenhouse bioassays[J]. Ann For Sci,2004,61:737-745.
    [8] 康瑶瑶,刘勇,马履一,等. 施肥对长白落叶松苗木养分库氮磷吸收及利用的影响[J]. 北京林业大学学报,2011,33(2):31-36.

    KANG Yaoyao,LIU Yong,MA Lüyi,et al. Effects of fertilization on uptake and availability of N and P nutrient pool of Larix olgensis seedlings[J]. J Beijing For Univ,2011,33(2):31-36.
    [9] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000.
    [10] 王力朋,李吉跃,王军辉,等. 指数施肥对楸树无性系幼苗生长和氮素吸收利用效率的影响[J]. 北京林业大学学报,2012,34(6):55-62.

    WANG Lipeng,LI Jiyue,WANG Junhui,et al. Effects of exponential fertilization on seedling growth and nitrogen uptake and utilization efficiency of Catalpa bungei clones[J]. J Beijing For Univ,2012,34(6):55-62.
    [11] 吴家森,陈闻,姜培坤,等. 不同施肥对雷竹林土壤氮、磷渗漏流失的影响[J]. 水土保持学报,2012,26(2):33-37.

    WU Jiasen,CHEN Wen,JIANG Peikun,et al. Effects of different fertilization on seepage loses of nitrogen and phosphorus in the soil under Phyllostacys praecox stand[J]. J Soil Water Conserv,2012,26(2):33-37.
    [12] TIMMER V R. Exponential nutrient loading:a new fertilization technique to improve seedlings performance on competitive sites[J]. 1996,13(1/3):275-295.
    [13] 李国雷,祝燕,蒋乐,等. 指数施肥对栓皮栎容器苗生长和氮积累的影响[J]. 东北林业大学学报,2012,40(11):6-9.

    LI Guolei,ZHU Yan,JIANG Le,et al. Effect of exponential fertilization on growth and nitrogen storage of containerized Quercus variabilis seedlings[J]. J Northeast For Univ,2012,40(11):6-9.
    [14] 魏红旭,徐程扬,马履一,等. 不同指数施肥方法下长白落叶松播种苗的需肥规律[J]. 生态学报,2010,30(3):685-690.

    WEI Hongxu,XU Chengyang,MA Lüyi,et al. Nutrient uptake of Larix olgensis seedlings in response to different exponential regimes[J]. Acta Ecol Sin,2010,30(3):685-690.
    [15] CUESTA B,VILLAR-SALVADOR P,PUERTOLAS J,et al. Why do large,nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species[J]. For Ecol Manage,2010,260(1):71-78.
    [16] CUESTA B,VEGA J,VILLAR-SALVADOR P,et al. Root growth dynamics of Aloppo pine(Pinus halepensis Mill.)seedlings in relation to shoot elongation,plant size and tissue nitrogen concentration[J]. Trees,2010,24(5):899-908.
    [17] KAINER K,DURYEA M. Root wrenching and lifting date of slash pine:effects on morphology,survival,and growth[J]. New For,1990,4(3):207-221.
    [18] SALIFU K F.TIMMER V R. Nitrogen retranslocation response of young Picea mariana to nitrogen-15 supply[J]. Soil Sci Soc Am J,2003,67(1):309-317.
    [19] OLIET J A,PLANELLES R,ARTERO F,et al. Field performance of pinus halepensisi planted in Mediterranean arid conditions:relative influence of seedling morphology and mineral nutrition[J]. New For,2009,37(3):313-331.
    [20] 郝龙飞,王庆成,张彦东,等. 指数施肥对山桃稠李播种苗生物量及养分动态的影响[J]. 林业科学,2012,48(6):33-39.

    HAO Longfei,WANG Qingcheng,ZHANG Yandong,et al. Effect of exponential fertilization on biomass and nutrient dynamics of Padus maackii seedlings[J]. Sci Silv Sin,2012,48(6):33-39.
    [21] 陈闻,吴家森,姜培坤,等. 不同施肥对雷竹林土壤肥力及肥料利用率的影响[J]. 土壤学报,2011,48(5):129-136.

    CHEN Wen,WU Jiasen,JIANG Peikun,et al. Effects of different fertilization on soil fertility quality,fertilizeruse efficiency,and bamboo shoot yields of Phyllostachys praecox stand[J]. Acta Pedol Sin,2011,48(5):129-136.
    [22] 孙宇,李国雷,刘勇,等. 水施磷肥对长白落叶松苗木生长和磷吸收的影响[J]. 浙江农林大学学报,2011,28(2):219-226.

    SUN Yu,LI Guolei,LIU Yong,et al. Growth and P-uptake for Larix olgensis seedlings with phosphorus top-dressed using fertigation[J]. J Zhejiang A & F Univ,2011,28(2):219-226.
    [23] 马嘉伟,黄其颖,程礼泽,等. 菌渣化肥配合施对红壤养分动态变化及水稻生长的影响[J]. 浙江农业学报,2013,25(1):147-151.

    MA Jiawei,HUANG Qiying,CHENG Lize,et al. Effect of edible fungus residue on dynamic changes of red soil nutrient and rice yield[J]. Acta Agric Zhejiang,2013,25(1):147-151.
    [24] 温广蝉,叶正钱,王旭东,等. 菌渣还田对稻田土壤养分动态变化的影响[J]. 水土保持学报,2012,26(3):82-86.

    WEN Guangchan,YE Zhengqian,WANG Xudong,et al. Effect of edible fungus residue on dynamic changes of soil nutrient in paddy field[J]. J Soil Water Conserv,2012,26(3):82-86.
  • [1] 周水灯, 孙健, 江建铭, 邵将炜, 邓惠敏, 邵清松, 王志安.  不同生育期施肥对浙贝母产量和品质的影响 . 浙江农林大学学报, 2023, 40(4): 756-764. doi: 10.11833/j.issn.2095-0756.20220613
    [2] 赵铭臻, 王利艳, 刘静, 邹显花, 郑宏, 范福金, 马祥庆, 林开敏, 李明.  间伐和施肥对杉木成熟林生长和材种结构的影响 . 浙江农林大学学报, 2022, 39(2): 338-346. doi: 10.11833/j.issn.2095-0756.20210226
    [3] 邓波, 燕李鹏, 刘桂华, 徐梦媛.  遮光和施肥对桢楠苗期生长和氮素积累的影响 . 浙江农林大学学报, 2020, 37(3): 489-495. doi: 10.11833/j.issn.2095-0756.20190399
    [4] 何姗, 刘娟, 姜培坤, 周国模, 王会来, 李永夫, 吴家森.  经营管理对森林土壤有机碳库影响的研究进展 . 浙江农林大学学报, 2019, 36(4): 818-827. doi: 10.11833/j.issn.2095-0756.2019.04.023
    [5] 国靖, 汪贵斌, 曹福亮.  施肥对银杏叶片光合作用及营养元素质量分数的影响 . 浙江农林大学学报, 2016, 33(6): 969-975. doi: 10.11833/j.issn.2095-0756.2016.06.007
    [6] 欧建德.  福建闽楠人工幼林氮磷钾施肥效应与施肥模式 . 浙江农林大学学报, 2015, 32(1): 92-97. doi: 10.11833/j.issn.2095-0756.2015.01.013
    [7] 邵兴华, 王爱斌.  施肥对水田和旱地有机碳和黑碳的影响 . 浙江农林大学学报, 2014, 31(4): 554-559. doi: 10.11833/j.issn.2095-0756.2014.04.010
    [8] 王东, 龚伟, 胡庭兴, 陈宏志, 王景燕, 李小平.  施肥对巨桉幼树生长及生物固碳量的影响 . 浙江农林大学学报, 2011, 28(2): 207-213. doi: 10.11833/j.issn.2095-0756.2011.02.006
    [9] 王宏, 金晓春, 金爱武, 宋艳冬, 柴红玲, 吴林森.  施肥对毛竹生长量和秆形的影响 . 浙江农林大学学报, 2011, 28(5): 741-746. doi: 10.11833/j.issn.2095-0756.2011.05.009
    [10] 李梅, 吴江, 吴家胜, 吴家森.  杨桐苗期施磷效应研究 . 浙江农林大学学报, 2010, 27(2): 223-227. doi: 10.11833/j.issn.2095-0756.2010.02.010
    [11] 金晓春, 金爱武, 宋艳冬, 娄金飞, 梅舒敏.  施肥对毛竹林换叶期冠层形成及光合能力的影响 . 浙江农林大学学报, 2010, 27(1): 57-62. doi: 10.11833/j.issn.2095-0756.2010.01.009
    [12] 宋艳冬, 金爱武, 金晓春, 胡元斌, 杜亮亮, 江志友.  施肥对毛竹叶片光合生理的影响 . 浙江农林大学学报, 2010, 27(3): 334-339. doi: 10.11833/j.issn.2095-0756.2010.03.003
    [13] 李修鹏, 俞慈英, 汪成林, 盛成芬, 陈叶平, 赵颖.  普陀樟强化育苗技术 . 浙江农林大学学报, 2009, 26(3): 384-388.
    [14] 俞慈英, 陈叶平, 袁燕飞, 李万兴, 袁峥峥.  舟山海岛普陀樟等3种特有树种种质资源清查 . 浙江农林大学学报, 2007, 24(4): 413-418.
    [15] 楼崇, 唐二春, 汪贵斌, 张往祥, 曹福亮.  施肥对苗期银杏叶黄酮质量分数的影响 . 浙江农林大学学报, 2006, 23(1): 61-64.
    [16] 杨斌, 赵文书, 姜远标, 王发忠.  思茅松造林苗木选择及施肥效应 . 浙江农林大学学报, 2005, 22(4): 396-399.
    [17] 姜培坤, 徐秋芳.  雷竹笋硝酸盐含量及其与施肥的关系 . 浙江农林大学学报, 2004, 21(1): 10-14.
    [18] 谢国阳, 林思祖, 张文富, 林开敏, 许泽煌.  不同施肥处理对杉木针叶生理特性的影响 . 浙江农林大学学报, 1999, 16(2): 119-122.
    [19] 康志雄, 陈顺伟, 金民赞, 许以强, 王侠剑, 朱志明, 张汝忠.  叶用银杏不同施肥处理效应 . 浙江农林大学学报, 1999, 16(3): 265-269.
    [20] 江志标, 俞勤民.  施肥对杉木实生苗某些生理特性和土壤养分的影响 . 浙江农林大学学报, 1999, 16(4): 365-368.
  • 期刊类型引用(3)

    1. 王娇娇,田歌,王巧华,曹芮,欧超斌. 一体式禽蛋呼吸检测装置设计与试验. 食品科技. 2023(01): 50-55 . 百度学术
    2. 叶文兴,孔令琪. 基于氧传感技术测定燕麦种子活力的初步研究. 草地学报. 2023(06): 1714-1719 . 百度学术
    3. 王军利,千小绵,周佳,孙越赟,李乐,高潮,冯树林. 低温冷藏对卷丹百合珠芽呼吸强度与萌发生根的影响. 贵州农业科学. 2023(10): 92-99 . 百度学术

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.03.005

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2014/3/358

图(1) / 表(5)
计量
  • 文章访问数:  3590
  • HTML全文浏览量:  682
  • PDF下载量:  543
  • 被引次数: 5
出版历程
  • 收稿日期:  2013-07-12
  • 修回日期:  2013-10-22
  • 刊出日期:  2014-06-20

施肥对普陀樟苗木生长及养分吸收利用的影响

doi: 10.11833/j.issn.2095-0756.2014.03.005
    基金项目:

    浙江省重大科学技术专项 2010C12024

    舟山市科技计划项目 2011C13029

    作者简介:

    陈闻,助理工程师,从事水土保持与土壤肥料研究。E-mail:chenwen1019@163.com

    通信作者: 王国明,高级工程师,从事植物资源研究与开发。E-mail:km521@163.com
  • 中图分类号: S718.4

摘要: 为了解不同施肥水平对普陀樟Cinnamomum japonicum var. chenii苗木生长及养分吸收利用情况的影响,设置了3个水平的田间试验,即不施肥(ck),常规施肥(T50,50 g·m-2)和增量施肥(T100,100 g·m-2),于2012年6月至9月观测苗高和地径,定期采集分析土壤和植物样品。结果表明:普陀樟苗木的苗高、地径、根部和茎部生物量均随施肥量的增加而增加(P<0.05);而叶生物量和总生物量在6月时随施肥量增加而升高(P<0.05),到9月时则呈先升后降的趋势(P<0.05)。苗木体内养分质量分数和单株养分含量随施肥量的增加而增加(P<0.05),不同处理均以叶片养分质量分数最高;养分吸收及利用率随着施肥的增加而降低(P<0.05),T50和T100处理各元素的吸收利用效率均为氮> 磷> 钾。到试验结束时,T50处理土壤养分质量分数与试验开始时持平,T100 处理钾积累,ck引起钾亏缺。从移栽成活来看,T50苗木体内养分积累,有利于移栽成活,保持土壤养分平衡;而T100养分浪费。综合判断,普陀樟苗木最适需养量应为50 g·m-2到100 g·m-2,且较接近50 g·m-2

English Abstract

高璐, 李香格, 祁亨年, 等. 种子呼吸检测方法及其应用研究进展[J]. 浙江农林大学学报, 2022, 39(5): 1133-1143. DOI: 10.11833/j.issn.2095-0756.20210748
引用本文: 陈闻, 王晶, 叶正钱, 等. 施肥对普陀樟苗木生长及养分吸收利用的影响[J]. 浙江农林大学学报, 2014, 31(3): 358-365. DOI: 10.11833/j.issn.2095-0756.2014.03.005
GAO Lu, LI Xiangge, QI Hengnian, et al. Advances in seed respiration detection and its application[J]. Journal of Zhejiang A&F University, 2022, 39(5): 1133-1143. DOI: 10.11833/j.issn.2095-0756.20210748
Citation: CHEN Wen, WANG Jing, YE Zhengqian, et al. Responses of Cinnamomum japonicum var. chenii growth and nutrient uptake to fertilization[J]. Journal of Zhejiang A&F University, 2014, 31(3): 358-365. DOI: 10.11833/j.issn.2095-0756.2014.03.005
  • 苗木质量是影响造林效果的首要因子,选择质量高的苗木不仅能提高造林成活率,而且能达到良好的造林效果[1]。施肥是苗木质量构建中一项十分重要的培育措施[2],有关苗木施肥研究的报道也颇多。蒋云东等[3]对南酸枣Choerospondias axillaris等7种热带阔叶树种的研究表明:复合肥能明显提高各树种苗木的苗高、地径和生物量,其中以施用1.0%复合肥的效果最佳,一般以0.5%~1.0%为宜,尿素对苗木的生长也有促进作用,以0.3%~0.5%为宜。郑辉等[4]研究认为:氮肥、磷施肥用量配比为184 kg·hm-2(氮),120 kg·hm-2(五氧化二磷)时,有利于刺槐Robinia pseudoacacia苗木体内氮素营养物质转化和积累,苗木地径和生物量较好。有关苗木最佳施肥量的研究也时有报道,例如吴俊杰等[5]研究认为:氮肥对白蜡树Fraxinus chinensis的胸径和树高增长贡献最大,其次为磷肥,钾肥最低,白蜡树的最佳经济效益施肥量分别为0.091 kg·株-1(氮),0.023 kg·株-1(五氧化二磷),0.056 kg·株-1(氧化钾)。吴家胜等[6]研究发现,银杏Ginkgo biloba苗木的合理养分元素施用量,氮肥(氮)为2.79~3.47 g·盆-1、磷肥(五氧化二磷)为2.44~2.59 g·盆-1、钾肥(氧化钾)为1.51~1.98 g·盆-1。科学合理的施肥不仅能提高苗木对养分的吸收利用效率,促进苗木高径生长和生物量积累,而且还能避免肥料浪费造成环境污染[7-8]。为此,施肥技术作为培育优质苗木的重要途径也逐渐受到人们的关注和重视。普陀樟Cinnamomum japonicum var. chenii系樟科Lauraceae樟属Cinnamomum常绿乔木,属国家二级重点保护植物,天然分布处往往在临海坡面上,形成了抗风、抗海雾、耐干旱等优良性状,是舟山海岛的主要造林树种。舟山海岛地区土壤贫瘠,尤其困难地所在土壤以粗骨土为主,有机质、养分含量普遍较低,保水保肥性差,造林成活率甚低,生长状况并不理想。普陀樟苗木造林后,本身由于苗体小,竞争力低下,加之造林地的竞争影响和肥力低下等问题广泛存在,在传统施肥技术下的苗木造林效果始终较差。目前,有关普陀樟苗木施肥技术的研究,几乎处于空白,生产中一直沿用施无机肥的施肥方式,并且多数是定植前施基肥,之后很少追肥,至于施肥量、施肥时间及肥料种类也没有统一的标准,传统的养分管理方式不仅没有起到提高苗木质量的作用,反而极大地浪费了肥料。因此,如何科学施肥成为普陀樟苗木培育的研究重点之一。本研究通过设置不同施肥处理,旨在揭示普陀樟苗木生长期养分分配积累状况及吸收利用率,为普陀樟育苗合理施肥技术提供可靠依据,同时也为提高普陀樟苗木的养分库水平作初步的探索。

    • 供试苗木为普陀樟1年生苗,平均株高为6.08 cm,地径2.76 mm,生物量1.44 g。试验用土壤为普通圃地土。试验地土壤pH 6.17,有机质为21.23 g·kg-1,碱解氮95.89 mg·kg-1,有效磷44.17 mg·kg-1,速效钾105.50 mg·kg-1

    • 试验于舟山市林业科学研究院试验基地进行,设置3个施肥处理:不施肥(对照)、常规施肥(50 g·m-2)和增量施肥(100 g·m-2),分别用ck,T50和T100表示,完全随机区组设计,3次重复。于2012年5月中旬开始整地,划分小区,各个小区面积为1.0 m×1.0 m,小区四周用预制水泥板隔开,水泥板埋入土壤深度为50 cm,随后将普陀樟苗木定植于小区内,16株·小区-1,株行距为30 cm × 30 cm。试验所用肥料为氮磷钾复合肥[m(氮):m(五氧化二磷):m(氧化钾)=15:15:15],在5月底和7月底分2次施入,并结合施肥进行浅翻、浇水,每次的施肥量各占总用量的50%。各处理具体肥料用量见表 1

      表 1  不同施肥处理肥料用量

      Table 1.  Fertilizer rate of different treatments

      处理施肥量/(g·m-2)总养分量/(g·m-2)
      5月7月总计五氧化二磷氧化钾
      ck000000
      T502525507.57.57.5
      T100505010015.015.015.0
      说明:复合肥m(氮):m(五氧化二磷):m(氧化钾)=15:15:15.
    • 根据普陀樟苗木生长规律分别在定植后1个月(生长初期)、2个月(速生期)、3个月(速生后期)时测量苗木高度和地径,于6月和9月2次随机挑选4株·小区-1长势均一的苗木进行收获取样,同时采集表层(0~20 cm)土壤样品。植物样品用清水将泥土洗净后,分为根、茎和叶3部分,放置烘箱内于65 ℃烘干至恒量,测定各部分生物量,9月份试验结束时的样品在测定生物量后再进行营养元素的测定。土壤和植物样品的分析参照《土壤农业化学分析方法》[9]

    • 本试验采用以下参数,计算营养元素的吸收利用效率,以根和茎作为养分库[8, 10]。表观吸收率(apparent use efficiency,EAU)=(施肥处理养分增量-对照养分增量)/纯养分量×100%,氮、磷、钾的表观吸收率分别用EAUNEAUPEAUK表示;施肥效率(fertilization efficiency,EF)=(施肥结束后的总生物量-施肥前的总生物量)/供养总量;生物量收获指数(biomass harvest index,IBH)=施肥结束后的总生物量/供养总量;养分收获指数,以氮为例,氮收获指数(nitrogen harvest index,INH)=施肥结束后的含氮量/纯氮量×100%,磷、钾收获指数分别用IPHIKH表示。

      所得试验数据采用Excel和SPSS软件进行统计分析。

    • 图 1可知:随着施肥量的增加,普陀樟苗木的株高和地径均增加。可见,增加施肥量促进了普陀樟苗木的高、径生长。从高生长来看(图 1A),T50处理在定植后1,2,3个月分别比对照(ck)增加了25.40%,14.33%和9.48%;T100分别比ck高出48.23%,34.29%和19.39%;T100分别较T50增加了18.20%,17.54%和9.05%。从方差分析的结果来看,T50和ck之间以及T50和T100之间始终没有显著差异。而T100和ck之间,在定植后1个月和2个月,两者差异性达到显著水平(P<0.05),到第3个月时,两者的苗高没有显著差异。从地径变化来看(图 1B),T100处理在定植后1,2,3个月较ck增加,分别达26.06%,16.62%和20.17%;T50增幅分别为19.70%,6.34%和12.95%;T100较T50的增幅分别为5.32%,9.66%和6.39%。方差分析显示,3种处理间在定植后1个月时出现显著差异(P<0.05),之后各处理间差异均不显著。

      图  1  不同施肥对普陀樟苗木株高、地径生长的影响

      Figure 1.  Effects of different treatments on height and diameter of Cinnamomum japonicum var. chenii seedlings

    • 不同施肥处理对普陀樟苗木生物量的影响结果表明(表 2):普陀樟苗木生物量随施肥量的增加而增加。其中,6月T50根、茎、叶和总生物量分别高出对照(ck)36.00%,58.82%,71.77%和61.06%,且两者叶片和总生物量达显著差异(P<0.05);T100各器官和总生物量分别较ck显著增加78.00%,85.29%,79.03%和79.81%(P<0.05);9月T50和T100的叶片和总生物量均显著高出对照(ck)(P<0.05),而根、茎两部分的生物量虽依旧高于ck,但差异并不显著。从T50和T100这2个处理对比来看,6月T100各器官及总生物量始终高于T50,增幅分别达30.88%,16.67%,4.23%和11.64%;而到9月份试验结束时,T100叶片和总生物量分别比T50下降7.56%和1.82%,整个试验过程,T50和T100之间未表现出显著差异。

      表 2  不同施肥对普陀樟苗木生物量的影响

      Table 2.  Effects of different treatments on biomass of Cinnamomum japonicum var. chenii seedlings

      处理植物各器官生物量/g
      总生物量
      6月9月6月9月6月9月6月9月
      ck1.24±0.06 b3.60±0.14 b0.34±0.09 b1.19±0.20 a0.50±0.13 b1.12±0.26 a2.08±0.28 b5.91±0.33 b
      T502.13±0.13 a5.42±0.02 a0.54±0.02ab1.78±0.36 a0.68±0.02ab1.57±0.25 a3.35±0.16 a8.77±0.17 a
      T1002.22±0.15 a5.01±0.26 a0.63±0.07 a1.88±0.09 a0.89±0.01a1.72±0.07 a3.74±0.20 a8.61±0.37 a
      说明:表中数据为平均值±标准误) 同一列数后注有不同英文字母者为达到新复极差检验5%(显著水平).
    • 表 3可以看出:随着施肥量的增加,苗木各器官养分质量分数及单株养分质量分数均增加。至生长结束时,T100的养分库和全株氮质量分数分别较T50高出3.76%和16.80%;单株含氮量分别高出20.19%和15.09%。T100养分库磷质量分数及单株含磷量分别较T50增幅为11.81%和30.10%;全株分别为14.40%和11.83%。钾质量分数和单株含钾量表现出与氮和磷类似的规律,T100养分库钾质量分数及单株含钾量较T50增加19.40%和40.96%;全株增幅分别为16.29%和13.93%。从养分分配规律来看,各营养元素更多地在叶片中积累,其中氮素表现出叶>根>茎的趋势,而磷素和钾素表现出叶>茎>根的趋势。

      从方差分析结果来看,3个处理间的叶片及全株的氮质量分数和单株含量呈显著差异(P<0.05);不同处理间磷质量分数差异性并不显著,但T50和T100叶片及全株磷含量要显著高于ck(P<0.05);T100处理下,叶片、养分库及全株钾质量分数显著高于T50和ck(P<0.05),而T50和T100之间钾含量差异性并不显著。

      表 3  不同施肥对普陀樟苗木养分质量分数的影响

      Table 3.  Effects of different treatments on nutrients contents and concentrations of C. japonicum var. chenii seedlings

      指标处理养分库全株
      ck14.25±0.33 b7.16±0.89 a11.44±0.22 a9.20 ± 0.43 a12.27 ± 0.18 b
      氮/(mg·g-1)T5015.74±0.55 b8.30±1.65 a12.88 ± 0.84 a10.37 ± 1.01 a13.69 ± 0.71 b
      T10019.65±1.15 a8.38±1.05 a13.44±0.89 a10.76 ± 0.59 a15.99 ± 0.88 a
      单株含氮量/ck51.21±3.32 c8.43±3.50 a12.66 ± 3.12 a21.09 ± 6.66 a72.30 ± 4.95 c
      (mg·株-1)T5085.03 + 2.08 b14.15 + 2.43 a20.35 ± 3.88 a32.35 ± 6.57 a119.53 ± 2.48 b
      T10098.52±3.98 a16.09±1.07 a22.97 ± 0.50 a38.88 ± 0.61 a137.57 ± 4.52 a
      ck2.92±0.41a3.18±0.99 a4.24 ± 0.35 a3.69 ± 0.10 a3.23 ± 0.23 b
      磷/(mg.g-1)T503.70±0.15 a3.78±0.40 a3.82 ± 0.29 a3.64 ± 0.61 a3.68 ± 0.10ab
      T1004.29±0.38 a4.17±0.14 a3.97 ± 0.51 a4.07 ± 0.23 a4.21 ± 0.24 a
      单株含磷量/ck10.49±2.35 b3.80±1.50 a4.79 ± 1.33 a8.59 ± 2.41 b19.08 ± 0.91 b
      (mg·株-1)T5020.10 + 1.64 a6.43 + 0.55 a5.75 ± 0.27 a11.13 ± 1.48 ab32.28 ± 1.90 a
      T10021.57±1.32 a7.63±0.36 a6.90 ± 0.67 a14.48 ± 1.03 a36.10 ± 1.46 a
      ck4.93±0.18 b4.50±0.35 a4.81 ± 0.23 a4.64 ± 0.13 b4.81 ± 0.10 b
      钾/(mg.g-1)T504.95±0.10 b4.59±0.42 a5.06 ± 0.71 a4.69 ± 0.11 b4.85 ± 0.09 b
      T1005.65±0.10 a5.37±0.43 a5.90 ± 0.44 a5.60 ± 0.31 a5.64 ± 0.17 a
      ck17.73±1.52 b5.31±1.31a5.31 ± 1.18 b10.62 ± 2.53 b28.35 ± 0.96 b
      单/(mg·株-1)T5026.85±1.82 a8.06±1.46 a7.66 ± 0.77 ab14.21 ± 1.49 b42.57 ± 2.66 a
      T10028.38±0.31a10.10±0.42 a10.02 ± 0.17 a20.03 ± 0.25 a48.50 ± 0.14 a
    • 表 4中各参数用来表征苗木对养分吸收利用的情况,其中EAU反映了苗木对营养元素的吸收情况,而EFIBHINHIPHIKH可反映养分元素的利用情况。由表 4可知:养分元素的表观吸收率、施肥效率、收获指数均随着施肥的增加而降低。2种施肥处理下,T100全株氮、磷、钾素的EAU分别较T50下降30.88%,35.47%和29.16%;T100全株的EF比T50下降51.16%。 IBHINHIPHIKH降幅分别达50.91%,42.47%,44.09%和42.99%。比较3种营养元素的表观吸收率和收获指数可以发现,其大小排序为氮>磷>钾。方差分析结果表明:2种施肥处理的养分库仅IBH和IPH出现显著差异(P<0.05);而T100全株各参数均显著高于T50(P<0.05)。

      表 4  不同施肥对普陀樟苗木养分吸收及利用的影响

      Table 4.  Effects of different treatments on nutrient uptake and utilization of Cinnamomum japonicum var. chenii seedlings

      器官处理EAUN/%EAUP/%EAUK/%EF/(g·g-1)IBH/(g·g-1)INH/%IPH/%IKH/%
      养分T503.71 ±0.42a2.87 ±0.87a1.26 ±0.04a2.41 ±0.11a3.15± 0.11a6.90 ±1.40a5.40 ±0.72a3.67 ±0.39 a
      T1001.89 ±0.71a2.08 ±1.46a1.21 ±0.32a1.32 ±0.21a1.69± 0.21b4.15 ±0.71a3.51 ±0.58b2.58 ±0.33 a
      全株T5010.07 ±0.53a6.40 ±1.53a3.67 ±0.71a6.90 ±0.35a8.25± 0.35a25.50 ±0.91a15.65 ±0.92a10.98±0.68a
      T1006.96 ±0.39b4.13 ±0.24b2.60 ±0.11b3.37 ±0.15b4.05± 0.15b14.67 ±0.91b8.75 ±0.22b6.26 ±0.12 b
    • 表 5可以看出:试验地土壤总体呈弱酸性,最高pH 6.33,最低为pH 5.62,且随着时间的推移和施肥量的增加,土壤pH值持续下降,T50和T100的降幅分别为4.12%和8.62%。2种施肥处理的土壤有机质、碱解氮、有效磷和速效钾质量分数均高于对照(ck),到9月试验结束时,ck和T100的碱解氮质量分数分别下降13.22%和13.59%,T50增加3.16%; ck和T100的有效磷增幅分别为19.85%和21.25%,T50则下降20.29%;3个处理的速效钾均表现为下降趋势,降幅分别为40.00%,28.02%和12.83%。方差分析结果表明:增加施肥量使各处理间pH值和速效钾质量分数产生显著差异(P<0.05),6月T100碱解氮质量分数要显著高于T50(P<0.05),有效磷显著高于ck(P<0.05),但增加施肥量并未对土壤有机质质量分数产生显著影响。

      表 5  不同施肥对土壤养分的影响

      Table 5.  Effects of different treatments on soil nutrient

      月份处理pH有机质/(g·kg-1)碱解氮/(mg·kg-1)有效磷/(mg·kg-1)速效钾/(mg·kg-1)
      ck6.33 ± 0.12 a22.51 ± 6.57 a106.35 ± 1.87 ab40.30 ± 3.32 b106.67 ± 12.94 c
      6T506.07 ± 0.01 b30.65 ± 5.26 a102.74 ± 0.42 b58.56 ± 8.73 ab144.83 ± 5.67 b
      T1006.15 ± 0.04 ab29.35 ± 6.12 a113.20 ± 3.12 a60.06 ± 1.19 a181.83 ± 4.70 a
      ck6.27 ± 0.16 a19.90 ± 8.94 a92.29 ± 6.97 a48.30 ± 1.11 a64.00 ± 8.61 c
      9T505.82 ± 0.09 b24.84 ± 5.49 a105.99 ± 1.25 a46.68 ± 12.03 a104.25 ± 0.43 b
      T1005.62 ± 0.26 c25.40 ± 0.75 a97.82 ± 1.25 a72.82 ± 3.03 a158.50 ± 2.89 a
    • 普陀樟苗木的高、径生长量随着施肥量的增加而增加。定植后1月至2月,由于施肥的缘故,土壤养分增加,此时苗木正处于速生期,对养分需求较大,因此T50和T100处理下养分供应充足,苗木生长速度加快,3个处理间的株高和地径出现显著差异。到了第3个月,处理间的显著差异消失,这主要是因为此时苗木进入速生后期,生长速度减缓,对养分的需求量也减少。从试验地土壤养分本底值可以看出,有效养分并不低,虽然初期对照(ck)处理下苗木生长较缓慢,但后期生长速度逐渐加快,施肥对株高和地径生长的影响在苗木生长后期并不明显,不同处理间产生的差异随着时间的推移逐渐被土壤本底养分值所掩盖,此外,整个试验过程处于雨水频繁时期,降雨会造成养分大量流失[11]。这点从2个施肥处理的养分吸收利用率上也得到了体现。

      试验初(6月),普陀樟苗木各部位的生物量均随着施肥量的增加而增加,而到试验结束时(9月),T100叶片和总生物量分别较T50下降7.56%和1.82%。从分配上看,苗木的生物量主要集中在叶片,以对照(ck)为例,试验结束时(9月),叶片生物量分别为茎和根的3.03倍和3.21倍。通过方差分析也得到相同的结论,T100的根、茎生物量只在6月份时与ck产生显著差异(P<0.05),而T100叶片的生物量始终显著高于ck(P<0.05)。本试验在T100处理下苗木的生物量开始下降,但还未达到显著水平,其原因可能是T100的施肥量(100 g·m-2)已经超出普陀樟的最佳施肥量,苗木受到轻微的毒害作用,从而导致生物量下降[12],这也与李国雷等[13]和魏红旭等[14]的研究结论相一致。因此,普陀樟苗木最适供养量应为50 g·m-2到100 g·m-2

    • 增加施肥量能提高苗木养分库和全株养分质量分数及单株养分含量。有研究认为[15-17],自身载有更高养分含量的苗木在后期造林应用中有更好的生长表现和抵御逆境胁迫的能力。本试验中,在T50和T100处理下,各部位含氮量和含钾量高低排序为叶>根>茎;单株含磷量为叶>茎>根;这表明氮、磷、钾营养元素主要在叶片中积累。苗木在生长后期,养分供应充足,吸收增加,养分库吸收的营养元素转移至叶片中,使得叶营养元素不断积累,但叶片生物量和总生物量开始下降。比较同一部位不同营养元素的积累情况发现,氮、磷、钾元素高低排序为氮>钾>磷,说明苗木对氮素的吸收利用率最高、钾素次之、磷素最低,这主要跟苗木在生长期间对氮素的需求量较大有关,被吸收的氮素进而转化为苗木生物量,因此叶片生物量比茎和根要大[18-20]。因此,在苗木施肥时要注重平衡施肥,磷、钾肥施用要少量多次,提高其利用率,氮肥要适量,避免肥料浪费。

    • 养分表观吸收率反映了苗木对营养元素的吸收情况,而施肥效率、收获指数反映的是养分的利用情况。2种不同施肥处理的养分库和全株对氮、磷、钾元素的吸收利用率均不高[8],施肥量更大的T100养分吸收利用率反而小于T50,T100的施肥效率和生物量收获指数仅为T50的48.88%和49.09%,说明过量施肥并不能提高苗木对营养元素的吸收利用,反而会造成大量肥料浪费[20]。比较各养分元素的吸收利用情况发现,3个施肥处理均为氮>磷>钾,这是由于苗木在生长期对氮素的需求量较大,而对磷和钾的需求较小,但从用量上来看,3种营养元素的吸收利用率都偏低,这可能是由于养分元素挥发、淋失,被土壤固定等因素所致[21-22]

    • 随着施肥量的增加和时间的推移,土壤pH值显著下降,呈弱酸性。同一时期不同处理之间土壤有机质相差5~8 g·kg-1,但统计结果显示没有差异,表明土壤有机质存在一定的空间差异。从6月到9月土壤有机质下降3~7 g·kg-1,各处理土壤有机质都略有下降,可能与气温上升、植物生长有关,特别是经过翻耕后移栽的土壤[23-24]。到试验结束时,对照(ck)和T100的碱解氮质量分数分别下降13.22%和13.59%,T100处理土壤中减少的有效氮素并未被植物利用,而是以不同方式损失掉。有研究表明[11],氮素的流失量随施肥量的增加而增加。ck和T100的有效磷质量分数增幅分别为19.85%和21.25%,T50则下降20.29%,这可能是磷素易被土壤当中的铁、铝等元素固定,导致磷素有效性低,适量施肥能促进土壤磷素的释放,增加植物对磷素的吸收,而过量施肥只会导致磷素的大量积累。到9月试验结束时,T50处理土壤氮、磷、钾与试验开始时持平,T100 处理钾积累,ck引起钾亏缺。从移栽成活来看,T50苗木体内养分积累,有利于移栽成活,保持土壤养分平衡;而T100养分浪费。

    • 本研究结果显示,增量施肥(T100)处理下普陀樟苗木表现出更大的高径生长量、根茎生物量以及养分质量分数和单株含量,但叶生物量和总生物量开始下降,养分元素吸收及利用率要明显小于T50。T100(100 g·m-2)处理的施肥量已经超出普陀樟苗木的最适供养量,造成肥料极大浪费,并且对苗木产生轻微毒害;而T50处理土壤养分与试验开始时持平,苗木体内养分积累,有利于移栽成活。综合生物量变化和养分吸收利用率分析,普陀樟苗木最适需养量应为50 g·m-2~100 g·m-2,且接近50 g·m-2。本研究设置的施肥梯度较大,未能得出具体的最适供养量,而今后还将进一步细化施肥梯度并结合不同的施肥方式对普陀樟苗木的最佳施肥量进行研究。

参考文献 (24)

目录

/

返回文章
返回