-
土壤盐化是影响作物生产的主要环境问题之一,目前全球约有7%的陆地正在发生不同程度的盐化[1],约1/3耕地受到盐化影响[2-3]。土壤盐化可通过直接和间接的方式影响植物生长,其直接影响主要是降低土壤水势阻碍植物根系吸水以及盐离子在植物体内过量积累所造成的毒害,间接影响主要是诱导植物体内产生大量的活性氧从而引起次生胁迫伤害[2, 4-5]。在盐(氯化钠, NaCl)胁迫下,植物通过细胞内外离子的跨膜流动,从而减少盐离子在细胞内积累并达到新的离子平衡,进而提高其抵抗盐胁迫的能力[2, 6-7]。随着非损伤微测技术的出现,离子跨膜流动的研究得到迅速发展。本文主要就盐胁迫下植物细胞内外的钠离子(Na+),钾离子(K+),氢离子(H+),钙离子(Ca+)和氯离子(Cl-)等的流动变化进行综述。
Advances in plant cell ion flux with salt stress:a review
-
摘要: 土壤盐化是全球面临的最严峻的环境问题之一, 盐离子在细胞内大量积累会对植物造成毒害。在盐胁迫下, 钠离子(Na+)通过非选择性阳离子通道进入胞内并引起质膜去极化, 进而激活外向钾离子(K+)通道使钾离子外流。在耐盐植物中, 钾离子外流可被明显抑制, 从而维持胞内较高的K+/Na+以降低盐胁迫伤害。植物细胞质膜上的H+-ATP酶可将氢离子(H+)泵到胞外, 从而形成质子动力势以驱动Na+/H+反向运输体将胞内钠离子排出。钙离子(Ca2+)在盐胁迫条件下会流向胞内, 使胞内钙离子浓度升高, 进而调控钠离子和钾离子的跨膜流动。氯离子(Cl-)在盐胁迫下会流向胞外, 这种流动可能与钠离子外流相偶联。主要就这几种离子在盐胁迫下的跨膜流动及其调控机制进行综述, 以期对离子流的深入研究有所帮助。Abstract: Soil salinization, one of the severest environmental problems, results in accumulation of salt ions in cells that poisons plants. With NaCl stress, Na+ enters into the cell via non-selective cation channels leading to plasma membrane depolarization. This activates the outward K+ channel draining K+. In salt-tolerant plants, K+ efflux is inhibited, so cells maintain a higher K+/Na+ to reduce salt stress damage. In plasma membranes, H+-ATPase transports H+ out the cell, so that the H+ can form a proton inducing force to drive the Na+ efflux via an Na+/H+ antiporter. With salt stress, Ca2+ flows into the cell playing an important role in the regulation of Na+ and K+ flux. At the same time, Cl- outflow from the cell with salt stress may couple with Na+ efflux. To aid in helping the further study of ion flux, the flux of these ions and their regulation mechanism with salt stress are summarized in this paper.
-
Key words:
- botany /
- ion flux /
- salt stress /
- review /
- salt overly sensitive signal-transduction pathway /
- K+/Na+ homeostasis
-
图 2 氯化钠(NaCl)胁迫下植物细胞内的离子流[54]
Figure 2 Plant cellular ion flux in response to NaCl stress
-
[1] MUNNS R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25(2):239-250. [2] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681. [3] KRONZUCKER H J, BRITTO D T. Sodium transport in plants:a critical review[J]. New Phytol, 2011, 189(1):54-81. [4] ZHU Jiankang. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6(2):66-71. [5] WANG Ruigang, CHEN Shaoliang, ZHOU Xiaoyang, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiol, 2008, 28(6):947-957. [6] SUN Jian, CHEN Shaoliang, DAI Songxiang, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species[J]. Plant Physiol, 2009, 149(2):1141-1153. [7] LAOHAVISIT A, RICHARDS S L, SHABALA L, et al. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1[J]. Plant Physiol, 2013, 163(1):253-262. [8] SHABALA L, CUIN T A, NEWMAN I A, et al. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants[J]. Planta, 2005, 222(6):1041-1050. [9] SHI Huazhong, ISHITANI M, KIM C S, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proc Natl Acad Sci USA, 2000, 97(12):6896-6901. [10] SHABALA S. Non-invasive microelectrode ion flux measurements in plant stress physiology[G].//VOLKOV A G. Plant Electrophysiology:Theory and Methods. Berlin:Springer-Verlag, 2006, 35-71. [11] PARDO J, CUBERO B, LEIDI E, et al. Alkali cation exchangers:roles in cellular homeostasis and stress tolerance[J]. J Exp Bot, 2006, 57(5):1181-1199. [12] SHI Huazhong, LEE B H, WU S J, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nat Biotechnol, 2003, 21(1):81-85. [13] MA Dongmei, XU Weirong, LI Huiwen, et al. Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.)[J]. Protoplasma, 2014, 251(1):219-231. [14] SHABALA S. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll[J]. Plant Cell Environ, 2000, 23(8):825-837. [15] BOSE J, XIE Yanjie, SHEN Wenbiao, et al. Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots[J]. J Exp Bot, 2013, 64(2):471-481. [16] YOKOI S, QUINTERO F J, CUBERO B, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. Plant J, 2002, 30(5):529-539. [17] CUIN T A, BOSE J, STEFANO G, et al. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat:in planta quantification methods[J]. Plant Cell Environ, 2011, 34(6):947-961. [18] APASE M P, BLUMWALD E. Engineering salt tolerance in plants[J]. Curr Opin Biotechnol, 2002, 13(2):146-150. [19] OHTA M, HAYASHI Y, NAKASHIMA A, et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice[J]. FEBS Lett, 2002, 532(3):279-282. [20] GUOA K M, BABOURINAA O, RENGELA Z. Na+/H+ antiporter activity of the SOS1 gene:lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings[J]. Physiol Plantarum, 2009, 137(2):155-165. [21] SHABALA S, NEWMAN I. Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll:masking role of the cell wall[J]. Ann Bot, 2000, 85(5):681-686. [22] CUIN T A, SHABALA S. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots[J]. Plant Cell Physiol, 2005, 46(12):1924-1933. [23] SHABALA S, DEMIDCHIK V, SHABALA L, et al. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels[J]. Plant Physiol, 2006, 141(4):1653-1665. [24] CUIN T A, SHABALA S. Amino acids regulate salinity-induced potassium efflux in barley root epidermis[J]. Planta, 2007, 225(3):753-761. [25] VERA-ESTRELLA R, BARKLA B J, BOHNERT H J, et al. Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant[J]. Planta, 1999, 207(3):426-435. [26] BEILBY M J, SHEPHERD V A. Modeling the current-voltage characteristics of charophyte membranes(Ⅱ)The effect of salinity on membranes of Lamprothamnium papulosum[J]. J Membrane Biol, 2001, 181(2):77-89. [27] CHEN Zhonghua, POTTOSIN I I, CUIN T A, et al. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley[J]. Plant Physiol, 2007, 145(4):1714-1725. [28] SHABALA L, BOWMAN J, BROWN J, et al. Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotic[J]. Environ Microbiol, 2009, 11(1):137-148. [29] PANDOLFI C, POTTOSIN I, CUIN T, et al. Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants[J]. Plant Cell Physiol, 2010, 51(3):422-434. [30] SHABALA S, CUIN T A, POTTOSIN I I. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking nonselective cation channels[J]. FEBS Lett, 2007, 581(10):1993-1999. [31] JAYAKANNAN M, BOSE J, BABOURINA O, et al. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel[J]. J Exp Bot, 2013, 64(8):2255-2268. [32] LISJAK M, SRIVASTAVA N, TEKLIC T, et al. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation[J]. Plant Physiol Biochem, 2010, 48(12), 931-935. [33] CHEN Juan, WU Feihua, WANG Wenhua, et al. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinaciao leracea seedlings[J]. J Exp Bot, 2011, 62(13):4481-4493. [34] ZHANG Hua, HU Shuli, ZHANG Zejun, et al. Hydrogen sulfide acts as a regulator of flower senescence in plants[J]. Postharvest Biol Tec, 2011, 60(3):251-257. [35] 朱会朋, 孙健, 赵楠, 等.盐胁迫下硫化氢调控杨树根系的离子流[J].植物生理学报, 2013, 49(6):561-567. ZHU Huipeng, SUN Jian, ZHAO Nan, et al. Hydrogen sulfide mediates ion fluxes in root of poplars under NaCl stress[J]. Plant Physiol J, 2013, 49(6):561-567. [36] TYERMAN S D, SKERRETT I M. Root ion channels and salinity[J]. Sci Hortic, 1999, 78(1/4):175-235. [37] MAATHIUS F J M, AMTMANN A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratio[J]. Ann Bot, 1999, 84(2):123-133. [38] TESTER M, DAVENPORT R. Na+ tolerance and Na+ transport in higher plants[J]. Ann Bot, 2003, 91(5):503-527. [39] CHEN Zhonghua, ZHOU Meixue, NEWMAN I A, et al. Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance[J]. Funct Plant Biol, 2007, 34(2):150-162. [40] SHABALA S, CUIN T A. Potassium transport and plant salt tolerance[J]. Physiol Plantarum, 2008, 133(4):651-669. [41] SHABALA S, CUIN T A, PRISMALL L, et al. Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress[J]. Planta, 2007, 227(1):189-197. [42] ZHU Jiankang. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6(5):441-445. [43] CARDEN D E, WALKER D J, FLOWERS T J, et al. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance[J]. Plant Physiol, 2003, 131(2):676-683. [44] AMTMANN A, SANDERS D. Mechanisms of Na+ uptake by plant cells[J]. Adv Bot Res, 1999, 29:76-112. [45] WHITE P J, DAVENPORT R J. The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis[J]. Plant Physiol, 2002, 130(3):1386-1395. [46] TYERMAN S D, SKERRETT M, GARRILL A, et al. Pathway for the permeation of Na+ and Cl-into protoplasts derived from the cortex of wheat roots[J]. J Exp Bot, 1997, 48(spec):459-480. [47] MURATA Y, FUJITA M, NAKATANI T, et al. Effect of Na+ on Ca2+-binding on the plasma membrane of barley mesophyll cells:an electrophoretic study[J]. Plant Cell Physiol, 1998, 39(4):452-457. [48] KINRAIDE T B. Interactions among Ca2+, Na+, and K+ in salinity toxicity:quantitative resolution of multiple toxic and ameliorative effects[J]. J Exp Bot, 1999, 50(338):1495-1505. [49] LIU Jiping, ZHU Jiankang. A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998, 280(5371):1943-1945. [50] PARDO J M, REDDY M P, YANG Shuli, et al. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants[J]. Proc Natl Acad Sci USA, 1998, 95(16):9681-9686. [51] LYNCH J, POLITO V S, LÄUCHLI A. Salinity stress increases cytoplasmic Ca2+ activity in maize root protoplasts[J]. Plant Physiol, 1989, 90(4):1271-1274. [52] GAO Dongjie, KNIGHT M R, TREWAVAS A J, et al. Self-reporting Arabidopsis expressing pH and[Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress[J]. Plant Physiol, 2004, 134(3):898-908. [53] LAOHAVISIT A, SHANG Z, RUBIO L, et al. Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells[J]. Plant Cell, 2012, 24(4):1522-1533. [54] SUN Jian, WANG Meijuan, DING Mingquan, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J]. Plant Cell Environ, 2010, 33(6):943-958. [55] DEMIDCHIK V, SHANG Z, SHIN R, et al. Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane[J]. Plant Physiol, 2011, 156(3):1375-1385. [56] SUN Jian, CHEN Shaoliang, DAI Songxiang, et al. Ion flux profiles and plant ion homeostasis control under salt stress[J]. Plant Signal Behav, 2009, 4(4):261-264. [57] LORENZEN I, ABERLE T, PLIETH C. Salt stress-induced chloride flux:a study using transgenic Arabidopsis expressing a fluorescent anion probe[J]. Plant J, 2004, 38(3):539-544. [58] CHEN Shaoliang, LI Jinke, FRITZ E, et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress[J]. Forest Ecol Manag, 2002, 168(1/3):217-230. [59] CHEN Shaoliang, LI Jinke, WANG Shasheng, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa[J]. Can J For Res, 2003, 33(6):967-975. [60] SHABALA S, LEW R R. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells:direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements[J]. Plant Physiol, 2002, 129(1):290-299. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.05.023