留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杭州市6种常见绿化树种滞尘能力及光合特性

裘璐函 何婉璎 刘美华 陈景锋 温国胜

裘璐函, 何婉璎, 刘美华, 等. 杭州市6种常见绿化树种滞尘能力及光合特性[J]. 浙江农林大学学报, 2018, 35(1): 81-87. DOI: 10.11833/j.issn.2095-0756.2018.01.011
引用本文: 裘璐函, 何婉璎, 刘美华, 等. 杭州市6种常见绿化树种滞尘能力及光合特性[J]. 浙江农林大学学报, 2018, 35(1): 81-87. DOI: 10.11833/j.issn.2095-0756.2018.01.011
QIU Luhan, HE Wanying, LIU Meihua, et al. Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City[J]. Journal of Zhejiang A&F University, 2018, 35(1): 81-87. DOI: 10.11833/j.issn.2095-0756.2018.01.011
Citation: QIU Luhan, HE Wanying, LIU Meihua, et al. Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City[J]. Journal of Zhejiang A&F University, 2018, 35(1): 81-87. DOI: 10.11833/j.issn.2095-0756.2018.01.011

杭州市6种常见绿化树种滞尘能力及光合特性

DOI: 10.11833/j.issn.2095-0756.2018.01.011
基金项目: 

浙江省公益性技术应用研究计划项目 2015C33020

浙江省与中国林业科学研究院省院合作林业科技项目 2014SY16

详细信息
    作者简介: 裘璐函, 从事生态学研究.E-mail:qiuluhan1996@126.com
    通信作者: 刘美华, 讲师, 博士, 从事森林生态学研究.E-mail:liumeihua@163.com
  • 中图分类号: S718.4

Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City

  • 摘要: 树种滞尘能力成为城市绿化树种选择的一个重要因素。为探究能够有效减少空气中的细颗粒物数量的城市树种类型,对杭州市6种典型阔叶乔木(广玉兰Magnolia grandiflora,樟树Cinnamomum camphora,珊瑚树Viburnum odoratissinum,苦槠Castanopsis sclerophylla,木荷Schima superba和黄山栾树Koelreuteria bipinnata)的夏季滞尘能力进行了研究。夏季雨后第5天和第10天,对叶片滞尘能力,林下空气中直径小于或等于2.5 μm的颗粒物(PM2.5),空气中直径小于或等于10 μm的颗粒物(PM10)及空气负离子浓度、叶片叶绿素荧光参数进行测定。结果显示:6种树种能够有效滞尘,且滞尘能力差异显著(P < 0.05),木荷和广玉兰滞尘能力最强,与其他树种间差异极显著(P < 0.01);不同树种单位叶面积滞尘量随滞尘时间的增加而增加;雨后第5天和雨后第10天,樟树冠下PM2.5和PM10质量浓度最低,空气负离子浓度比较高,削减颗粒物(PM)能力高于其他树种;随滞尘时间增加,大部分树种叶片叶绿素相对含量、Fv/FmYield呈现下降趋势,光合特性受到抑制。根据研究结果,具有高滞尘能力同时叶绿素荧光参数受影响小的树种,如广玉兰和樟树,可以作为城市绿化的优选树种。
  • 图  1  不同树种滞尘能力变化

    不同小写字母表示不同树种在同一时间差异显著(P<0.05),*表示同一树种在不同时间差异显著(P<0.05)

    Figure  1  Dust removal ability of leaves in 6 tree species at 5 days and 10 days after the rain

    图  2  叶绿素相对含量变化

    不同小写字母表示不同树种在同一时间差异显著(P<0.05),*表示同一树种在不同时间差异显著(P<0.05)

    Figure  2  Leaf relative chlorophyll content of 6 tree species at 5 days and 10 days after the rain

    图  3  雨后第5天和第10天各树种叶片Fv/Fm(A),Yield(B)和qN(C)的变化

    不同小写字母表示不同树种在同一时间差异显著(P<0.05),*表示同一树种在不同时间差异显著(P<0.05)

    Figure  3  Changes of Fv/Fm(A), Yield(B) and qN(C) of leaves in different tree species at 5 days and 10 days after the rain

    表  1  不同树种冠下空气质量分析

    Table  1.   Air quality analysis under different tree species at 5 days and 10 days after the rain

    树种 雨后第5天 雨后第10天
    PM25/(μg·m-3) PM10/(μg-m-3) 空气负离子/(个·m-3) PM25/(μg·m-3) PM10/(μg-m-3) 空气负离子/(个·m-3)
    苦槠 44.00 92.90 1 240 30.70 71.50 1 230
    木荷 21.90 72.10 1 260 23.00 64.40 1 220
    广玉兰 33.00 71.30 1 120 5.40 65.20 1 000
    黄山栾树 20.00 56.00 1 570 24.70 58.10 1 180
    樟树 14.50 34.70 1 520 18.90 52.00 1 480
    珊瑚树 23.70 72.60 1 820 21.90 58.00 1 070
    裸地 28.50 78.50 1 150 23.00 66.80 1 210
    下载: 导出CSV

    表  2  各参数相关性分析

    Table  2.   Correlation analysis of each parameter

    叶绿素相对含量 Yield Fm РМ2.5 РМ10 空气负离子浓度 湿度
    叶绿素相对含量 1 -0.469 -0.155 0.449 0.628 0.173 0.443
    Yield 1 0.942** 0.066 0.214 -0.158 0.029
    Fm 1 0.222 0.468 -0.145 0.179
    PM2.5 1 0.868** -0.553 -0.298
    PM10 1 -0.369 0.088
    空气负离子浓度 1 0.837**
    湿度 1
    说明:*在0.05水平(双侧)上显著相关,**在0.01水平(双侧)上极显著相关。
    下载: 导出CSV
  • [1] 陈仁杰, 阚海东.雾霾污染与人体健康[J].自然杂志, 2013, 35(5): 342-344.

    CHEN Renjie, KAN Haidong. Haze/Fog and human health: a literature review [J]. Chin J Nat, 2013, 35(5): 342-344.
    [2] 吴海龙, 余新晓, 师忱, 等. PM2.5特征及森林植被对其调控研究进展[J].中国水土保持科学, 2012, 10(6): 116-122.

    WU Hailong, YU Xinxiao, SHI Chen, et al. Advances in the study of PM2.5 characteristic and the regulation of forests to PM2.5 [J]. Sci Soil Water Conserv, 2012, 10(6): 116-122.
    [3] 贺勇, 李磊, 李俊毅.北方30种景观树种净化空气效益分析[J].东北林业大学学报, 2010, 38(5): 37-39.

    HE Yong, LI Lei, LI Junyi. Air purification efficiency of thirty species of landscape trees in northern China [J]. J Northeast For Univ, 2010, 38(5): 37-39.
    [4] FREER-SMITH P H, HOLLOWAY S, GOODMAN A. The uptake of particulates by an urban woodland:site description and particulate composition [J]. Environ Pollut, 1997, 95(1): 27-35.
    [5] 王亚超. 城市植物叶面尘理化特性及源解析研究[D]. 南京: 南京林业大学, 2007.

    WANG Yachao. Study on the Source Apportionment and Physicochemical Characteristics of Foliar Dust on Urban Plants[D]. Nanjing: Nanjing Forestry University, 2007.
    [6] 王赞红, 李纪标.城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态[J].生态环境学报, 2006, 15(2): 327-330.

    WANG Zanhong, LI Jibiao. Capacity of dust uptake by leaf surface of Euonymus japonicus Thunb. and the morphology of captured particle in air polluted city [J]. Ecol Environ Sci, 2006, 15(2): 327-330.
    [7] 王会霞, 石辉, 李秧秧.城市绿化植物叶片表面特征对滞尘能力的影响[J].应用生态学报, 2010, 21(12): 3077-3082.

    WANG Huixia, SHI Hui, LI Yangyang. Relationships between leaf surface characteristics and dust-capturing capability of urban greening plant species [J]. Chin J Appl Ecol, 2010, 21(12): 3077-3082.
    [8] 吴志萍, 王成, 许积年, 等. 6种城市绿地内夏季空气负离子和颗粒物[J].清华大学学报(自然科学版), 2007, 42(12): 2153-2157.

    WU Zhiping, WANG Cheng, XU Jinian, et al. Air-borne anions and particulate matter in six urban green spaces during the summer [J]. J Tsinghua Univ Sci Technol, 2007, 42(12): 2153-2157.
    [9] 贺江华, 谭益明, 周兰芳.室内空气负离子浓度与PM2.5、PM10浓度的关系[J].中南林业科技大学学报, 2014, 34(5): 96-100.

    HE Jianghua, TAN Yiming, ZHOU Lanfang. Relationship between indoor air anion concentration and PM2.5 and PM10 [J]. J Cent South Univ For Technol, 2014, 34(5): 96-100.
    [10] 陈佳瀛, 宋永昌, 陶康华, 等.上海城市绿地空气负离子研究[J].生态环境, 2006, 15(5): 1024-1028.

    CHEN Jiaying, SONG Yongchang, TAO Kanghua, et al. Study on the air anions of the urban greenery patches in Shanghai [J]. Ecol Environ, 2006, 15(5): 1024-1028.
    [11] 黄慧娟. 保定常见绿化植物滞尘效应及尘污染对其光合特征的影响[D]. 石家庄: 河北农业大学, 2008

    HUANG Huijuan. Study on Dust Catching and Effectiveness of Dust Pollution on Photosynthetic Parameters of Common Landscape Plants in Baoding [D]. Shijiazhuang: Hebei Agricultural University, 2008.
    [12] 周瑞玲, 庄强, 李鹏, 等.徐州市故黄河风光带园林植物的滞尘效应[J].林业科技开发, 2010, 24(6): 44-47.

    ZHOU Ruiling, ZHUANG Qiang, LI Peng, et al. Study on dust-retention effect of garden plants along the Old Yellow River scenic zone of Xuzhou City [J]. China For Sci Technol, 2010, 24(6): 44-47.
    [13] 范舒欣, 晏海, 齐石茗月, 等.北京市26种落叶阔叶绿化树种的滞尘能力[J].植物生态学报, 2015, 39(7): 736-745.

    FAN Shuxin, YAN Hai, QI Shimingyue, et al. Dust capturing capacities of twenty-six deciduous broad-leaved trees in Beijing [J]. Chin J Plant Ecol, 2015, 39(7): 736-745.
    [14] 杨佳, 王会霞, 谢滨泽, 等.北京9个树种叶片滞尘量及叶面微形态解释[J].环境科学研究, 2015, 28(3): 384-392.

    YANG Jia, WANG Huixia, XIE Binze, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing [J]. Res Environ Sci, 2015, 28(3): 384-392.
    [15] 张伏, 张亚坤, 毛鹏军, 等.植物叶绿素测量方法研究现状及发展[J].农机化研究, 2014(4): 238-241.

    ZHANG Fu, ZHANG Yakun, MAO Pengjun, et al. Status and development of measuring method in plant chlorophyll content [J]. J Agric Mechan Res, 2014(4): 238-241.
    [16] 马锦丽, 江洪, 舒海燕, 等.竹炭有机肥对有机卷心菜叶绿素荧光特性和相对叶绿素含量的影响[J].东北农业大学学报, 2015, 46(3): 29-36.

    MA Jinli, JIANG Hong, SHU Haiyan, et al. Effect of bamboo charcoal organic fertilizer on chlorophyll fluorescence characteristics and relative chlorophyll content of organic cabbage [J]. J Northeast Agric Univ, 2015, 46(3): 29-36.
    [17] 刘悦秋, 孙向阳, 王勇, 等.遮荫对异株荨麻光合特性和荧光参数的影响[J].生态学报, 2007, 27(8): 371-378.

    LIU Yueqiu, SUN Xiangyang, WANG Yong, et al. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica [J]. Acta Ecol Sin, 2007, 27(8): 371-378.
    [18] WOOD T, BORMANN F H. Short-term effects of simulated acid rain upon the growth and nutrient relations of Pinus strobus [J]. Water Air Soil Poll, 1977, 6(4): 479-488.
    [19] 柴一新, 祝宁, 韩焕金.城市绿化树种的滞尘效应:以哈尔滨市为例[J].应用生态学报, 2002, 13(9): 1121-1126.

    CHAI Yixin, ZHU Ning, HAN Huanjin. Dust removal effect of urban tree species in Harbin [J]. Chin J Appl Ecol, 2002, 13(9): 1121-1126.
    [20] BECKETT K P, FREER-SMITH P H, TAYLOR G. The capture of particulate pollution by trees at five contrasting urban sites[J]. Arboric J, 2000, 24(2/3): 209-230.
    [21] DEMMIG-ADAMS B, ADAMS Ⅲ W W. Photoprotection and other responses of plants to high light stress [J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 599-626.
  • [1] 冯蕊, 周琪, 吴令上, 朱玉球, 高燕会.  PEG 6000模拟干旱胁迫对铁皮石斛幼苗生理和叶绿素荧光特性的影响 . 浙江农林大学学报, 2024, 41(1): 132-144. doi: 10.11833/j.issn.2095-0756.20230301
    [2] 陈勇.  红豆杉生长特征的影响因素研究进展 . 浙江农林大学学报, 2023, 40(6): 1366-1375. doi: 10.11833/j.issn.2095-0756.20230495
    [3] 王东, 杨新元, 赵燕昊, 叶晨洋, 黄振兴, 甘毅.  油料作物与根际微生物相互作用研究进展 . 浙江农林大学学报, 2023, 40(5): 1139-1148. doi: 10.11833/j.issn.2095-0756.20230139
    [4] 贺丹, 李海涛, 原江琴, 汪安印, 王翼飞, 李永华, 刘艺平.  郑州市7种园林植物滞尘能力与叶片生理及光合响应 . 浙江农林大学学报, 2023, 40(6): 1205-1214. doi: 10.11833/j.issn.2095-0756.20230160
    [5] 钟玉婷, 张瑛, 赵冰.  6种丁香属植物滞尘能力评价及叶表微形态学解释 . 浙江农林大学学报, 2022, 39(5): 1052-1058. doi: 10.11833/j.issn.2095-0756.20210587
    [6] 周哲宇, 徐超, 胡策, 王海湘, 梁谢恩, 张汝民, 温国胜.  毛竹快速生长期的叶绿素荧光参数特征 . 浙江农林大学学报, 2018, 35(1): 75-80. doi: 10.11833/j.issn.2095-0756.2018.01.010
    [7] 张洁, 尹德洁, 关海燕, 屈琦琦, 董丽.  景天属植物研究综述 . 浙江农林大学学报, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [8] 陈闻, 王晶, 吴海平, 张玲, 叶正钱.  5种海岛典型园林绿化植物的耐盐性 . 浙江农林大学学报, 2017, 34(2): 283-293. doi: 10.11833/j.issn.2095-0756.2017.02.012
    [9] 李国栋, 田曼青, 沈仁芳.  拟南芥独脚金内酯突变体叶绿素荧光特性分析 . 浙江农林大学学报, 2017, 34(1): 36-41. doi: 10.11833/j.issn.2095-0756.2017.01.006
    [10] 王金平, 张金池, 岳健敏, 尤炎煌, 张亮.  油菜素内酯对氯化钠胁迫下樟树幼苗光合色素和叶绿素荧光参数的影响 . 浙江农林大学学报, 2017, 34(1): 20-27. doi: 10.11833/j.issn.2095-0756.2017.01.004
    [11] 张宇鹏, 周国模, 周宇峰, 施拥军, 李翀, 李梦, 吕玉龙, 何莹.  5个常见绿化树种对极端高温的光合响应特征 . 浙江农林大学学报, 2017, 34(2): 301-309. doi: 10.11833/j.issn.2095-0756.2017.02.014
    [12] 吴君, 李因刚, 罗修宝, 柳新红, 石从广, 何云核.  白花树种子生物学特性 . 浙江农林大学学报, 2014, 31(1): 9-13. doi: 10.11833/j.issn.2095-0756.2014.01.002
    [13] 刘志梅, 蒋文伟, 杨广远, 黄建荣.  干旱胁迫对3种金银花叶绿素荧光参数的影响 . 浙江农林大学学报, 2012, 29(4): 533-539. doi: 10.11833/j.issn.2095-0756.2012.04.008
    [14] 段爱国, 杨文忠, 张建国, 张俊佩, 何彩云.  苗木离体叶片水分状况的叶绿素荧光参数定量诊断 . 浙江农林大学学报, 2010, 27(4): 529-537. doi: 10.11833/j.issn.2095-0756.2010.04.009
    [15] 刘昊, 余树全, 江洪, 方江保.  模拟酸雨对山核桃叶绿素荧光参数、叶绿素和生长的影响 . 浙江农林大学学报, 2009, 26(1): 32-37.
    [16] 王利英, 楼炉焕, 王超, 黄奇, 顾敏.  3种冬青属植物气体交换参数及叶绿素荧光特性 . 浙江农林大学学报, 2009, 26(1): 27-31.
    [17] 杜国坚, 缪宇明, 陈卓梅, 张跃仙, 陈亚飞.  37种园林绿化植物苗木对氯气的抗性及吸收能力 . 浙江农林大学学报, 2009, 26(4): 503-510.
    [18] 缪宇明, 陈卓梅, 陈亚飞, 杜国坚.  浙江省38种园林绿化植物苗木对二氧化氮气体的抗性及吸收能力 . 浙江农林大学学报, 2008, 25(6): 765-771.
    [19] 陈卓梅, 杜国坚, 缪宇明.  浙江省38种园林绿化植物对氟化氢气体的抗性及吸收能力 . 浙江农林大学学报, 2008, 25(4): 475-480.
    [20] 吴根良, 何勇, 王永传, 孙瑶, 朱祝军.  不同光照强度下卡特兰和蝴蝶兰光合作用和叶绿素荧光参数日变化 . 浙江农林大学学报, 2008, 25(6): 733-738.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.01.011

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2018/1/81

图(3) / 表(2)
计量
  • 文章访问数:  3213
  • HTML全文浏览量:  742
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-02
  • 修回日期:  2017-01-25
  • 刊出日期:  2018-02-20

杭州市6种常见绿化树种滞尘能力及光合特性

doi: 10.11833/j.issn.2095-0756.2018.01.011
    基金项目:

    浙江省公益性技术应用研究计划项目 2015C33020

    浙江省与中国林业科学研究院省院合作林业科技项目 2014SY16

    作者简介:

    裘璐函, 从事生态学研究.E-mail:qiuluhan1996@126.com

    通信作者: 刘美华, 讲师, 博士, 从事森林生态学研究.E-mail:liumeihua@163.com
  • 中图分类号: S718.4

摘要: 树种滞尘能力成为城市绿化树种选择的一个重要因素。为探究能够有效减少空气中的细颗粒物数量的城市树种类型,对杭州市6种典型阔叶乔木(广玉兰Magnolia grandiflora,樟树Cinnamomum camphora,珊瑚树Viburnum odoratissinum,苦槠Castanopsis sclerophylla,木荷Schima superba和黄山栾树Koelreuteria bipinnata)的夏季滞尘能力进行了研究。夏季雨后第5天和第10天,对叶片滞尘能力,林下空气中直径小于或等于2.5 μm的颗粒物(PM2.5),空气中直径小于或等于10 μm的颗粒物(PM10)及空气负离子浓度、叶片叶绿素荧光参数进行测定。结果显示:6种树种能够有效滞尘,且滞尘能力差异显著(P < 0.05),木荷和广玉兰滞尘能力最强,与其他树种间差异极显著(P < 0.01);不同树种单位叶面积滞尘量随滞尘时间的增加而增加;雨后第5天和雨后第10天,樟树冠下PM2.5和PM10质量浓度最低,空气负离子浓度比较高,削减颗粒物(PM)能力高于其他树种;随滞尘时间增加,大部分树种叶片叶绿素相对含量、Fv/FmYield呈现下降趋势,光合特性受到抑制。根据研究结果,具有高滞尘能力同时叶绿素荧光参数受影响小的树种,如广玉兰和樟树,可以作为城市绿化的优选树种。

English Abstract

裘璐函, 何婉璎, 刘美华, 等. 杭州市6种常见绿化树种滞尘能力及光合特性[J]. 浙江农林大学学报, 2018, 35(1): 81-87. DOI: 10.11833/j.issn.2095-0756.2018.01.011
引用本文: 裘璐函, 何婉璎, 刘美华, 等. 杭州市6种常见绿化树种滞尘能力及光合特性[J]. 浙江农林大学学报, 2018, 35(1): 81-87. DOI: 10.11833/j.issn.2095-0756.2018.01.011
QIU Luhan, HE Wanying, LIU Meihua, et al. Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City[J]. Journal of Zhejiang A&F University, 2018, 35(1): 81-87. DOI: 10.11833/j.issn.2095-0756.2018.01.011
Citation: QIU Luhan, HE Wanying, LIU Meihua, et al. Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City[J]. Journal of Zhejiang A&F University, 2018, 35(1): 81-87. DOI: 10.11833/j.issn.2095-0756.2018.01.011
  • 近年来,随着城市化、工业化进程的加快,城市空气污染日益严重,强雾霾频繁发生。杭州作为南方城市的典型代表,自2003年开始,年霾日基本都在150 d以上。大气中直径小于或等于2.5 μm的颗粒物(PM2.5)质量浓度连续超标是引发雾霾的直接原因。PM2.5又称可入肺颗粒物,能长期悬浮在空气中,不易沉降,影响范围较广,因而难以控制和治理,可导致居民呼吸道疾病发病率增加30%以上,严重影响人们的日常生活,极大危害居民的身体健康[1]。目前,中国城市中PM2.5的主要污染源是燃煤和汽车尾气排放造成的单一型或混合型污染[2]。由于当前尚不能完全消除污染源,因此借助自然界的清除机制是缓解城市PM2.5污染压力的有效途径。树木能有效吸附和清除空气中的细颗粒物,加速颗粒物的沉降过程[3-7],提高空气负离子含量[8-10],改善大气质量,因此,植物滞尘能力成为城市绿化树种选择的一个重要指标。近几年,中国已有十多个城市开展了绿化树种滞尘能力的研究[6-7, 11-14],多从树种滞尘量的时间变化规律或影响因素等方面进行相关研究,但鲜见树种生理生态变化与净化空气和滞尘能力之间相互关系的综合研究。本实验针对杭州市的气候地理因素以及树种的多样性和代表性,选取广玉兰Magnolia grandiflora,樟树Cinnamomum camphora,珊瑚树Viburnum odoratissinum,苦槠Castanopsis sclerophylla,木荷Schima superba和黄山栾树Koelreuteria bipinnata等6种杭州市常见阔叶树种为代表进行研究,通过比较这6种常见树种的滞尘量、林下空气质量和叶片光合特性变化等差异,分析细颗粒物对各树种的影响。研究结果能间接反映不同树种叶片对雾霾胁迫的抗性强弱,对于了解不同树种对尘污染环境的适应能力及对空气的改善作用, 科学指导城市绿化树种配置建设具有重要借鉴意义。

    • 研究样地位于杭州市临安区浙江农林大学植物园内(30°16′N,119°44′E),属中亚热带季风气候区,全年日照时数为1 847.3 h,全年平均气温为17.8 ℃,平均相对湿度为70.3%,年降水量为1 454.0 mm。

      杭州市独特的三面环山地形使得城市大气污染物扩散条件弱,易形成城市雾霾,并且杭州位于杭—金—衢和杭—绍—宁2条雾霾多发带的交叉点上,易受到其他地区的雾霾天气影响。研究样地位于杭州市区西部,季风气候易将杭州市区的大气颗粒物吹向研究区,此外研究区三面环山,向东呈马蹄形缺口的地形导致研究区内大气颗粒物聚集,难以扩散。因此,研究区颗粒物主要来源于杭州城区的空气污染物,对颗粒物进行研究具有代表意义。

    • 根据杭州市的植被类型,选择杭州城市森林最有代表性的6种阔叶乔木树种开展监测:广玉兰、樟树、珊瑚树、苦槠、木荷和黄山栾树。一般选择10年生以上大树,各样地中研究树种树高相似(广玉兰、苦槠、樟树、木荷树高6 m左右,黄山栾树树高8 m左右,珊瑚树为绿篱,树高2 m)。尽量选择实验树种比较单一的样地,各树种种群样地面积10 m × 10 m以上,选择位于样地中间的实验树木进行测量,去除其他树种对实验结果的干扰。

    • 一般认为15 mm的降水量能洗清植物叶片上的滞尘[13]。于2015年夏季(7-8月)15 mm雨后的第5天及第10天对各样地实验树种进行测量。每种植物依据其自身特点从下层树冠四周与内部随机采集生长状态良好且具有代表性的叶片,采集过程中应避免抖动,叶片采摘后立即封存于干净塑封袋中带回实验室,放置于4 ℃冰箱内保存。实验叶片数量与叶片面积大小有关,其中单叶较大者为15~20片,其他为30片[14]。滞尘量的测定采用浸泡称量法[8]。样品用蒸馏水浸泡4 h,浸洗叶片上的附着物,然后用镊子将叶片小心夹出, 浸洗液用已称量(W1)的滤纸过滤,滤后将滤纸置于60 ℃温箱下烘12 h,天平称量(W2),2次质量之差(W2-W1)即采集样品上所附着的降尘颗粒物质量。用LI-3000A便携式叶面积测定仪测叶面积S。单位叶面积滞尘量=(W2-W1)/ S,单位为mg·cm-2

    • 在雨后第5天和第10天(滞尘实验进行的同时),从9:00-11:00对不同实验树种下层树冠四周及内部随机选取生长状态良好的5~7片叶片进行测量。利用便携式叶绿素含量测定仪(SPAD-502,日本)测定叶片叶绿素相对含量[15],测定10次取其平均值。用便携式调制叶绿素荧光仪(PAM-2100,德国)测定叶片的叶绿素荧光参数:光系统Ⅱ(PSⅡ)的最大光化学效率(Fv/Fm);最大量子产量(Yield)以及非光化学猝灭系数(qN)。测量5次,取5次数据的平均值。

    • 在雨后第5天及第10天9:00-11:00,测量生理指标的同时,在实验树种下层树冠(近地面1.5 m处)用空气负离子检测仪测定空气负离子浓度;用温度、湿度测量仪测定温度、湿度;同时用手持PM2.5检测仪测量PM2.5及PM10质量浓度(以空旷地为对照)。

    • 采用SPSS 18.0软件对各树种第5天和第10天的数据进行差异显著性分析,并比较不同树种之间的各参数的差异显著性;对数据进行多因素方差分析,分析滞尘量、PM2.5质量浓度对叶绿素相对含量和荧光参数的影响。

    • 本次测量时间为2015年7-8月。实验树种生长良好,叶片肉质柔软,新陈代谢能力强,在自然状况下能够充分发挥吸附PM2.5等细颗粒物、改善空气状况的能力。雨后第5天及第10天各树种的单位面积滞尘量如图 1所示。雨后第5天,6种树种的单位叶面积滞尘量为0.019~0.102 mg·cm-2,树种间差异显著(P<0.05),其中木荷单位叶面积滞尘量最多,是其他5种树种的2.601~5.475倍(樟树的5.475倍;黄山栾树的4.760倍;珊瑚树的4.349倍),与其他树种间差异极显著(P<0.01);其次为广玉兰,单位叶面积滞尘量为其他4种树种的1.130~2.105倍(樟树的2.105倍),与其他树种间差异极显著(P<0.01);单位叶面积滞尘量最少的为樟树,仅0.019 mg·cm-2,与其他树种(黄山栾树除外)间差异极显著(P<0.01)。雨后第10天木荷的单位叶面积滞尘量达到0.135 mg·cm-2,是其他树种的1.660~5.237倍(是樟树的5.237倍,是珊瑚树的4.650倍),与其他树种间差异极显著(P<0.01);其次为广玉兰,单位叶面积滞尘量是樟树和珊瑚树的3.156倍和2.357倍,与其他树种间差异极显著(P<0.01);珊瑚树最少,仅为0.029 mg·cm-2,与其他树种(苦槠除外)间差异极显著(P<0.01)。

      图  1  不同树种滞尘能力变化

      Figure 1.  Dust removal ability of leaves in 6 tree species at 5 days and 10 days after the rain

      不同树种单位叶面积滞尘量随滞尘时间的增加而增加。与雨后第5天相比,雨后第10天各树种单位叶面积滞尘量增加极显著(P<0.01)(苦槠除外),其中,黄山栾树增加最快,雨后第10天为雨后第5天的3.205倍;其次为广玉兰,雨后第10天为雨后第5天的2.082倍;再次为樟树(1.389倍)、木荷(1.328倍)和珊瑚树(1.242倍),苦槠增加最慢,雨后第10天仅为雨后第5天的1.067倍。

    • 植物叶绿素相对含量能够表明植物光合产物积累的情况,并与其光合能力大小呈正相关[16]。雨后第5天,珊瑚树叶片叶绿素相对含量最高,与其他树种间差异显著(P<0.05);广玉兰叶片叶绿素相对含量较高,与其他树种间差异极显著(P<0.01),樟树叶片叶绿素相对含量最低,与其他树种间差异显著(P<0.05)。雨后第10天,广玉兰叶片叶绿素相对含量最高,樟树叶片叶绿素相对含量最低,与其他树种间差异极显著(P<0.01)。黄山栾树和广玉兰的叶片叶绿素相对含量在雨后第10天比雨后第5天时增加(差异不显著,P>0.05);其他树种的叶绿素相对含量随滞尘时间增加呈现大致相同的变化趋势(图 2),即随滞尘时间增加,叶片叶绿素相对含量反而呈现下降趋势,其中珊瑚树(P<0.05)和木荷(P<0.01)变化显著。结果表明随滞尘时间增长,大部分植物叶片光合能力受到一定的影响。

      图  2  叶绿素相对含量变化

      Figure 2.  Leaf relative chlorophyll content of 6 tree species at 5 days and 10 days after the rain

      叶绿素荧光参数是研究植物光合生理状态的重要参数[17]。PSⅡ原初光能转化效率(Fv/Fm)的变化代表PSⅡ光化学效率的变化,且逆境胁迫的轻重与Fv/Fm参数值被抑制程度之间存在正相关,可作为植物逆指标,常根据其变化趋势来判断植物是否受到了光抑制[18]。随滞尘时间增加,不同树种叶片Fv/Fm值(图 3A)呈现下降趋势,表明原初光能转化效率均降低,但差异不显著(P>0.05)。雨后第10天大部分树种的光系统Ⅱ实际光化学量子产量(Yield)均呈现下降趋势,其中,木荷、广玉兰、樟树和苦槠的Yield值随滞尘时间增长呈现下降趋势,差异显著(P<0.05)(樟树差异不显著,P>0.05),表明这几个树种电子传递途径受到破坏(图 3B)。珊瑚树、黄山栾树、广玉兰、木荷、苦槠等的非光学猝灭系数(qN)值随滞尘时间增长呈现上升规律(图 3C)(木荷变化显著,P<0.05;其他树种变化不显著,P>0.05),而樟树的qN值反而呈现下降趋势(变化不显著,P>0.05)。

      图  3  雨后第5天和第10天各树种叶片Fv/Fm(A),Yield(B)和qN(C)的变化

      Figure 3.  Changes of Fv/Fm(A), Yield(B) and qN(C) of leaves in different tree species at 5 days and 10 days after the rain

    • 雨后第5天及第10天,6种树种林冠下以及裸地的PM2.5和PM10质量浓度及空气负离子浓度如表 1所示。结果表明:不同树种释放的空气负离子浓度存在差异。比较表 1可知:在相同空气质量条件下,雨后第5天各树种释放空气负离子的能力顺序为珊瑚树>黄山栾树>樟树>木荷>苦槠>广玉兰。雨后第5天除苦槠和广玉兰外,研究区内其余树种林冠下PM2.5质量浓度均小于对照组(裸地),苦槠冠下PM10质量浓度高于其他树种样地,同时释放空气负离子的能力较弱,樟树林冠下PM2.5及PM10质量浓度均低于其他树种,空气负离子浓度为1 520个·cm-3,明显高于背景值(裸地),雨后第10天不同样地空气中固体颗粒物质量浓度变化规律与雨后第5天基本一致。

      表 1  不同树种冠下空气质量分析

      Table 1.  Air quality analysis under different tree species at 5 days and 10 days after the rain

      树种 雨后第5天 雨后第10天
      PM25/(μg·m-3) PM10/(μg-m-3) 空气负离子/(个·m-3) PM25/(μg·m-3) PM10/(μg-m-3) 空气负离子/(个·m-3)
      苦槠 44.00 92.90 1 240 30.70 71.50 1 230
      木荷 21.90 72.10 1 260 23.00 64.40 1 220
      广玉兰 33.00 71.30 1 120 5.40 65.20 1 000
      黄山栾树 20.00 56.00 1 570 24.70 58.10 1 180
      樟树 14.50 34.70 1 520 18.90 52.00 1 480
      珊瑚树 23.70 72.60 1 820 21.90 58.00 1 070
      裸地 28.50 78.50 1 150 23.00 66.80 1 210
    • 利用SPSS 18.0对实验数据进行相关性分析(表 2),可知YieldFm具有显著正相关(P<0.01),空气质量指标间具有较强的相关性,PM2.5与PM10具有显著正相关(P<0.05),与空气负离子浓度和湿度呈负相关,但相关性不显著(P>0.05),湿度与空气负离子浓度具有显著正相关(P<0.05)。

      表 2  各参数相关性分析

      Table 2.  Correlation analysis of each parameter

      叶绿素相对含量 Yield Fm РМ2.5 РМ10 空气负离子浓度 湿度
      叶绿素相对含量 1 -0.469 -0.155 0.449 0.628 0.173 0.443
      Yield 1 0.942** 0.066 0.214 -0.158 0.029
      Fm 1 0.222 0.468 -0.145 0.179
      PM2.5 1 0.868** -0.553 -0.298
      PM10 1 -0.369 0.088
      空气负离子浓度 1 0.837**
      湿度 1
      说明:*在0.05水平(双侧)上显著相关,**在0.01水平(双侧)上极显著相关。
    • 柴一新等[19]对哈尔滨市28个树种进行滞尘测定的结果表明:树种之间的滞尘能力可相差2~3倍。本研究表明:6种杭州乡土树种间滞尘能力差异显著,其顺序为木荷>广玉兰>黄山栾树>苦槠>珊瑚树>樟树。木荷是滞尘的优势树种,其滞尘量远高于其他树种。广玉兰的滞尘能力仅次于木荷,但林分对空气净化效益较差。黄山栾树具有良好滞尘能力,同时能有效地清洁样地空气。樟树与珊瑚树的滞尘能力显著小于其他树种。随滞尘时间的增加,各树种叶片滞尘量均增加。杨佳等[14]的研究证明:不同树种叶片对空气中颗粒物的滞留能力与其表面特性密切相关。树冠结构、枝叶密度及叶面倾角等因素会导致植物滞尘能力的差异[20]。樟树与珊瑚树的单位叶面积滞尘量较低可能与其叶表面革质、较为光滑、不易保存滞留的固体颗粒物有关。珊瑚树林下空气中颗粒物含量高,滞尘效果不明显,与其树冠结构也有一定的关系。

      不同胁迫环境对植物的光合作用产生不同的影响。目前,对雾霾胁迫下植物叶片荧光参数变化的研究较少。叶面滞尘作为一种环境胁迫,会减少光合有效面积,影响叶片对光能的吸收、传递和利用,从而引起植物光合特征参数的变化。已有研究表明,在逆境环境下,PSⅡ反应中心失活将严重影响光化学连锁反应[21]。本实验中各树种随滞尘时间增加,植物叶片荧光参数YieldFv/FmqN值的变化幅度随树种种类不同而异,这3个指标可间接反映出植物对雾霾胁迫的抗性强弱。其中木荷叶片Yield值下降最为显著,叶片在光下用于电子传递的能量减少,qN值上升,即PSⅡ反应中心吸收的光能中以热形式耗散掉的光能增加,其光合作用减弱,受到滞尘胁迫剧烈,可知滞尘能力大的树种对尘污染胁迫的抗性不一定强。广玉兰Yield值下降显著,电子传递途径受到一定的破坏,但其他荧光参数值并无明显变化,对叶面滞尘具有较好的抗性。苦槠叶片雨后第10天相较于雨后第5天叶绿素荧光参数qN上升,YieldFv/Fm均显著下降,说明其叶片受到严重的光抑制。其他树种均受到不同程度的光抑制。因此,广玉兰和樟树对颗粒物污染生境抗性良好,黄山栾树和珊瑚树居中,苦槠和木荷最差。

      综合叶片滞尘量、光合参数和释放空气负离子、吸收空气中细颗粒物的能力,结果表明:广玉兰滞尘能力较强,对叶面滞尘胁迫具有良好的抗性,但林分对空气净化效益较差;樟树削减空气中颗粒物能力较强且改善空气效益较好,对空气中颗粒物胁迫具有良好的抗性,但其滞尘效应较弱;木荷、黄山栾树和珊瑚树滞尘能力较强,但是受滞尘的影响,其光合作用受到一定的抑制;苦槠滞尘能力较弱,改善空气效益较差,随滞尘时间增长,光合作用受到一定抑制。

      本研究对2015年7-8月的6种杭州市常见树种的滞尘量、叶片光合特性和改善空气效益进行试验,从部分方面反映了不同树种对雾霾生境的适应能力,全面了解城市树种的滞尘能力和净化空气效益仍需大量的研究。在选择行道树树种时,应优先选择滞尘能力比较强、净化空气能力较好、对雾霾生境适应性强的树种,优化植被配置。

参考文献 (21)

目录

    /

    返回文章
    返回