-
近几十年来,中国人工林迅速发展,逐步替代天然林成为工业木材的主要供应源。《第8次全国森林资源清查报告》[1]显示:中国现有人工林面积6.933×107 hm2,占有林地面积的64%,林地面积居世界首位。人工林蓄积24.830×108 m3,占森林蓄积的17%。人工林面积、蓄积增量分别占有林地面积、蓄积增量的78%、37%,人工林对中国森林资源增长的贡献明显。报告指出:中国人工林年均采伐1.550×108 m3,比上次清查增加了3.221×107 m3,采伐量占全国森林采伐量的46%,比上次清查提高了7%,采伐比例持续上升。然而,由于长期的纯林化连栽和掠夺式经营,人工林生态系统的脆弱性愈加明显,接连出现了土壤退化、生物多样性减少、生产力降低、生态系统稳定性下降等复杂的生态问题,人工林土壤肥力退化问题受到广泛关注。土壤退化被首次报道是在19世纪初,又被称作“地力衰退”和“第2代效应”[2]。人工林土壤肥力退化是指营林过程中,人为不利因素干扰引起土壤属性的改变而无法实现其对人类有价值的特定功能,主要表现为土壤理化性质恶化及其环境调节能力的持续降低、土壤微生物数量减少、营养元素缺失、生物和森林生产力下降等。杉木Cunninghamia lanceolata的地理分布范围为19°30′~34°03′N,101°30′~121°53′E,遍及中国亚热带地区18个省(市、自治区),是中国主要的速生工业用材和造林灭荒优势树种,具生长快、材质好、用途广等特点。目前,栽植面积占全国人工林面积的30%以上[3],在中国林业生产和森林生态系统中发挥着重要作用。为此,本研究对近几年的杉木研究成果进行综述,阐述了杉木人工林土壤肥力质量的演变趋势及维护措施,为实现杉木人工林的可持续高产和维持人工林生态系统稳定提供参考。
-
近年来,桉树Eucalyptus、杨树Populus、落叶松Larix gmelinii、杉木等人工林在经营过程中出现土壤质量退化、生产力降低等问题,人工林土壤肥力变化受到广泛关注。本研究对1989−2018年发表的50余篇中国杉木主要产区土壤肥力相关论文数据综合分析后发现:中国杉木人工林主产区不同程度出现了土壤退化,土壤肥力朝着持续降低的方向发展(表1)。
表 1 杉木人工林主产区土壤肥力质量基本情况
Table 1. Basic situation of soil fertility in main production area of C. lanceolata plantations
省份 林龄/a 平均树高/m 平均胸径/cm 土壤类型 土壤肥力 代表性参考文献 福建 14~17 12.75 16.76 山地红壤 下降 [4] 湖南 14 11.23 12.86 山地黄壤 下降 [5] 江西 7~49 13.68 17.24 丘陵红壤 下降 [6] 浙江 9~20 8.01 9.48 山地黄壤 下降 [7] 广西 4~6 − − 赤红壤 下降 [8] 广东 15 8.11 11.20 赤红壤 下降 [9] 贵州 18 14.18 16.02 黄壤 下降 [10] 河南 12 − − 黄棕壤 下降 [11] 说明:表中土壤类型按中国农业农村部土壤分类学分类;“−”代表无数据
Research progress on evolution trends and maintenance measures of soil fertility quality in Cunninghamia lanceolata plantations
-
摘要: 近年来,人工林土壤肥力质量退化与林业生产之间的矛盾日益加剧,严重威胁林业的可持续发展,土壤肥力质量维持变得十分紧迫。针对人工林土壤肥力质量退化与维持这一热点问题,从土壤物理性质、土壤化学性质、土壤微生物、土壤酶活性、化感作用等角度系统阐述了杉木Cunninghamia lanceolata人工林经营过程中土壤肥力质量的演变趋势。众多研究表明,中国杉木人工林主要产区普遍存在土壤肥力质量退化,生产力持续降低等问题,其主要驱动因素是不可持续的营林措施。同时从轮作经营、混交复合造林、林分密度调节、肥力补偿、可持续森林管理等方面对杉木人工林土壤肥力质量维持研究成果进行了综述,并对杉木人工林土壤肥力质量维持研究进行了展望。表1参48Abstract: In recent years, the growing contradiction between degradation of soil fertility quality and forestry production has seriously threatened the sustainable development of forestry, the maintenance of soil fertility quality has become very urgent. Aiming at the hot issue of degradation and maintenance of soil fertility quality in plantations, this paper systematically elaborates the evolution trend of soil fertility quality in management of Cunninghamia lanceolata plantations from the perspectives of soil physical property, soil chemical property, soil microorganism, soil enzyme activity and allelopathy. Many studies have shown that degradation of soil fertility quality and continuous decrease of productivity are common problems in C. lanceolata plantations, and the main contributing factor is unsustainable forestry practice. The results of soil fertility maintenance in C. lanceolata plantations are reviewed from such aspects as rotation management, mixed compound afforestation, forest density adjustment, fertility compensation and sustainable forest management. The research on soil fertility quality maintenance in C. lanceolata plantations is prospected. [Ch, 1 tab. 48 ref.]
-
Key words:
- soil science /
- Cunninghamia lanceolata /
- plantation /
- soil fertility quality /
- maintenance /
- review
-
表 1 杉木人工林主产区土壤肥力质量基本情况
Table 1. Basic situation of soil fertility in main production area of C. lanceolata plantations
省份 林龄/a 平均树高/m 平均胸径/cm 土壤类型 土壤肥力 代表性参考文献 福建 14~17 12.75 16.76 山地红壤 下降 [4] 湖南 14 11.23 12.86 山地黄壤 下降 [5] 江西 7~49 13.68 17.24 丘陵红壤 下降 [6] 浙江 9~20 8.01 9.48 山地黄壤 下降 [7] 广西 4~6 − − 赤红壤 下降 [8] 广东 15 8.11 11.20 赤红壤 下降 [9] 贵州 18 14.18 16.02 黄壤 下降 [10] 河南 12 − − 黄棕壤 下降 [11] 说明:表中土壤类型按中国农业农村部土壤分类学分类;“−”代表无数据 -
[1] 国家林业局. 第8次全国森林资源清查结果[J]. 林业资源管理, 2014, 13(1): 1 − 2. [2] EVANS J. Long-term productivity of forest plantation-status in 1990[C]//The International Union of Forest Research Organizations. The 19th World Congress Proceedings. Montreal: [n. s.], 1990, 1: 165 − 180. [3] YU Yuanchun, YANG Jingyu, ZENG Shucai, et al. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China [J]. J Soils Sediment, 2017, 17(9): 2230 − 2238. [4] 唐健, 覃祚玉, 王会利, 等. 广西杉木主产区连栽杉木林地土壤肥力综合评价[J]. 森林与环境学报, 2016, 36(1): 30 − 35. TANG Jian, QIN Zuoyu, WANG Huili, et al. Assessment of soil fertility of continuous plantation of Cunninghamia lanceolata in main producing regions in Guangxi [J]. J For Environ, 2016, 36(1): 30 − 35. [5] 王丹, 戴伟, 王兵, 等. 杉木人工林不同发育阶段土壤性质变化的研究[J]. 北京林业大学学报, 2010, 32(3): 59 − 63. WANG Dan, DAI Wei, WANG Bing, et al. Changes of soil properties at different developmental stages of Chinese fir plantations [J]. J Beijing For Univ, 2010, 32(3): 59 − 63. [6] 胡慧蓉, 郭安, 邓光葵. 杉木种植对土壤理化性质的影响[J]. 云南林业科技, 2001(3): 21 − 23. HU Huirong, GUO An, DENG Guangkui. Effect of Cunninghamia lanceolata plantation on physical and chemical properties of soil [J]. Yunnan For Sci Technol, 2001(3): 21 − 23. [7] 俞新妥, 张其水. 杉木连栽林地混交林土壤酶的分布特征的研究[J]. 福建林学院学报, 1989, 9(3): 256 − 262. YU Xintuo, ZHANG Qishui. Distributive regularities of soil enzyme activities in the woodland of various mixtures after Chinese fir replanting [J]. J Fujian For Coll, 1989, 9(3): 256 − 262. [8] WU Zeyan, LI Jianjuan, ZHENG Jie, et al. Soil microbial community structure and catabolic activity are significantly degenerated in successive rotations of Chinese fir plantations[J]. Sci Rep, 2017, 7(1): 6691. doi: 10.1038/s41598-017-06768-x. [9] 张志才. 第1代与第2代9年生杉木林分生产力及土壤肥力比较[J]. 福建林业科技, 2012, 39(3): 83 − 87. ZHANG Zhicai. Comparison of productivity and soil properties between the first and second generations of 9-year-old Cunninghamia lanceolata plantations [J]. J Fujian For Sci Tech, 2012, 39(3): 83 − 87. [10] 陈龙池, 廖利平, 汪思龙. 香草醛对杉木幼苗养分吸收的影响[J]. 植物生态学报, 2003, 27(1): 41 − 46. CHEN Longchi, LIAO Liping, WANG Silong. Effect of vanillin on nutrient absorbency of Chinese fir seedlings [J]. Acta Phytecol Sin, 2003, 27(1): 41 − 46. [11] 陈龙池, 廖利平, 汪思龙, 等. 酚类物质对杉木幼苗15N养分吸收、分配的影响[J]. 植物生态学报, 2002, 26(5): 525 − 532. CHEN Longchi, LIAO Liping, WANG Silong, et al. Effect of phenolics on 15N nutrient absorption and distribution of Cunninghamia lanceolata [J]. Actav Phytecol Sin, 2002, 26(5): 525 − 532. [12] 俞元春, 邓西海, 盛炜彤, 等. 杉木连栽对土壤物理性质的影响[J]. 南京林业大学学报, 2000, 24(6): 36 − 40. YU Yuanchun, DENG Xihai, SHENG Weitong, et al. Effects of continuous plantation of Chinese fir on soil physical properties [J]. J Nanjing For Univ, 2000, 24(6): 36 − 40. [13] 王刚. 杉木人工林土壤肥力指标及其评价[D]. 南京: 南京林业大学, 2008. WANG Gang. Index of Soil Fertility and Evaluation of Chinses Fir Plantation[D]. Nanjing: Forestry University, 2008. [14] 盛炜彤, 杨承栋, 范少辉. 杉木人工林的土壤性质变化[J]. 林业科学研究, 2003, 16(4): 377 − 385. SHENG Weitong, YANG Chengdong, FAN Shaohui. Variation of soil properties of Chinese fir plantation [J]. For Res, 2003, 16(4): 377 − 385. [15] 高志强, 朱启红. 杉木林地土壤理化性质研究[J]. 农机化研究, 2007(6): 143 − 145. GAO Zhiqiang, ZHU Qihong. The soil physic-chemistry properties for Chinese fir plantations [J]. J Agric Mech Res, 2007(6): 143 − 145. [16] 陈欣凡, 林国伟, 洪滔, 等. 不同林龄杉木千年桐混交林与纯林土壤理化性质特征比较[J]. 热带作物学报, 2017, 38(9): 1660 − 1665. CHEN Xinfan, LIN Guowei, HONG Tao, et al. Soil physical and chemical properties of Cunninghamia lanceolata-Aleurittes montana mixed forest and Cunninghamia lanceolata pure forest with different age [J]. Chin J Trop Crops, 2017, 38(9): 1660 − 1665. [17] 李晨晨, 周再知, 梁坤南, 等. 不同林药复合经营模式对杉木生态公益林土壤理化性质的改良效果[J]. 浙江农林大学学报, 2018, 35(1): 51 − 59. LI Chenchen, ZHOU Zaizhi, LIANG Kunnan, et al. Physical and chemical properties of ecological forest soils using different agroforestry patterns of Chinese fir with medicinal plants [J]. J Zhejiang A&F Univ, 2018, 35(1): 51 − 59. [18] 田大伦, 沈燕, 康文星, 等. 连栽第1代和第2代杉木人工林养分循环的比较[J]. 生态学报, 2011, 31(17): 5027 − 5032. TIAN Dalun, SHEN Yan, KANG Wenxing, et al. Characteristics of nutrient cycling in first and second rotations of Chinese fir plantations [J]. Acta Ecol Sin, 2011, 31(17): 5027 − 5032. [19] MA Xiangqing, HEAL K V, LIU Aiqin, et al. Nutrient cycling and distribution in different-aged plantations of Chinese fir in southern China [J]. For Ecol Manage, 2007, 243(1): 61 − 74. [20] 王清奎, 汪思龙, 冯宗炜. 杉木人工林土壤可溶性有机质及其与土壤养分的关系[J]. 生态学报, 2005, 25(6): 1329 − 1305. WANG Qingkui, WANG Silong, FENG Zongwei. A study on dissolved organic carbon and nitrogen nutrients under Chinese fir plantation relationships with soil nutrients [J]. Acta Ecol Sin, 2005, 25(6): 1329 − 1305. [21] 刘爱琴, 范少辉, 林开敏, 等. 不同栽植代数杉木林养分循环的比较研究[J]. 植物营养与肥料学报, 2005, 11(2): 273 − 278. LIU Aiqing, FAN Shaohui, LIN Kaimin, et al. Comparison on nutrient cycling in different generation plantations of Chinese fir [J]. J Plant Nutr Fert, 2005, 11(2): 273 − 278. [22] 刘丽, 徐明恺, 汪思龙, 等. 杉木人工林土壤质量演变过程中土壤微生物群落结构变化[J]. 生态学报, 2013, 33(15): 4692 − 4706. LIU Li, XU Mingkai, WANG Silong, et al. Effect of different Cunninghamia lanceolata plantation soil qualities on soil microbial community structure [J]. Acta Ecol Sin, 2013, 33(15): 4692 − 4706. [23] 李延茂, 胡江春, 张晶, 等. 杉木连栽土壤微生物多样性的比较研究[J]. 应用生态学报, 2005, 16(7): 1275 − 1278. LI Yanmao, HU Jiangchun, ZHANG Jing, et al. Microbial diversity in continuously planted Chinese fir soil [J]. Chin J Appl Ecol, 2005, 16(7): 1275 − 1278. [24] YANG Yusheng, LIU Chunjiang, KUTSCH W L, et al. Impact of continuous Chinese fir monoculture on soil [J]. Pedosphere, 2004, 14(1): 117 − 124. [25] 杜国坚, 黄天平, 张庆荣, 等. 杉木混交林土壤微生物及生化特征和肥力[J]. 浙江林学院学报, 1995, 12(4): 347 − 352. DU Guojian, HUANG Tianping, ZHANG Qingrong, et al. Studies on soil microorganisms and biochemical properties in mixed forests of Chinese fir [J]. J Zhejiang For Coll, 1995, 12(4): 347 − 352. [26] 石丽娜, 林开敏, 陈梦瑶, 等. 近自然杉木林经营对土壤微生物量碳氮特征的影响[J]. 土壤通报, 2018, 49(1): 112 − 118. SHI Lina, LIN Kaimin, CHEN Mengyao, et al. Effect of near-natural management of Chinese fir plantation on characteristics of soil microbial biomass carbon and nitrogen [J]. Chin J Soil Sci, 2018, 49(1): 112 − 118. [27] 秦国宣, 方晰, 田大伦, 等. 湖南会同第2代杉木人工林地土壤酶活性[J]. 中南林业科技大学学报, 2008, 28(2): 1 − 7. QIN Guoxuan, FANG Xi, TIAN Dalun, et al. Soil enzyme activity of the second-generation Chinese fir plantation in Huitong County, Hunan Province [J]. J Central South Univ For Technol, 2008, 28(2): 1 − 7. [28] 罗飞, 谢书妮, 张海燕, 等. 酸雨区不同林龄杉木林土壤酶活性季节动态[J]. 福建林学院学报, 2014, 34(2): 131 − 137. LUO Fei, XIE Shuni, ZHANG Haiyan, et al. Seasonal dynamics of the soil enzyme activities under Cunninghamia lanceolata plantations with different tree ages in acid rain area [J]. J Fujian For Coll, 2014, 34(2): 131 − 137. [29] 胡亚林, 汪思龙, 颜绍馗, 等. 杉木人工林取代天然次生阔叶林对土壤生物活性的影响[J]. 应用生态学报, 2005, 16(8): 1411 − 1416. HU Yalin, WANG Silong, YAN Shaokui, et al. Effects of replacing natural secondary broad-leaved forest with Cunninghamia lanceolata plantation on soil biological activities [J]. Chin J Appl Ecol, 2005, 16(8): 1411 − 1416. [30] 丁波, 丁贵杰, 赵熙州, 等. 间伐对杉木人工林土壤酶活性及微生物的影响[J]. 林业科学研究, 2017, 30(6): 1059 − 1065. DING Bo, DING Guijie, ZHAO Xizhou, et al. Impacts of thinning on soil enzymes activity and microorganisms in Cunninghamia lanceolata plantation [J]. For Res, 2017, 30(6): 1059 − 1065. [31] XIA Zhichao, KONG Chuihua, CHEN Longchi, et al. Allelochemical-mediated soil microbial community in long-term monospecific Chinese fir forest plantations [J]. Appl Soil Ecol, 2015, 96: 52 − 59. [32] HUANG Zhiqun, LIAO Liping, WANG Silong, et al. Allelopathy of phenolics from decomposing stump-roots in replant Chinese fir woodland [J]. J Chem Ecol, 2000, 26(9): 2221 − 2219. [33] 张鼎华, 叶章发, 李宝福. 杉木、马尾松轮作对林地土壤肥力和林木生长的影响[J]. 林业科学, 2001, 37(5): 10 − 15. ZHANG Dinghua, YE Zhangfa, LI Baofu. The effects of rotating plantation on the soil fertility of forest land and the growth of stand [J]. Sci Silv Sin, 2001, 37(5): 10 − 15. [34] 张剑, 汪思龙, 隋艳晖, 等. 不同经营措施对杉木人工林土壤碳库的影响[J]. 资源开发与市场, 2010, 26(9): 826 − 830. ZHANG Jian, WANG Silong, SUI Yanhui, et al. Effects of different management practices on soil organic carbon pool under Chinese fir plantation [J]. Resour Dev Mark, 2010, 26(9): 826 − 830. [35] 曹小玉, 李际平, 闫文德. 杉木林改造前后的土壤肥力对比分析及综合评价[J]. 土壤通报, 2016, 47(5): 1231 − 1237. CAO Xiaoyu, LI Jiping, YAN Wende. Comprehensive evaluation and variation of soil fertility before and after reconstruction with broadleaved trees in Cunninghamia lanceolata plantations [J]. Chin J Soil Sci, 2016, 47(5): 1231 − 1237. [36] 田晓, 刘苑秋, 魏晓华, 等. 模拟楠木杉木人工混交林不同混交比例对净生产力和碳储量的影响[J]. 江西农业大学学报, 2014, 36(1): 122 − 130. TIAN Xiao, LIU Yuanqiu, WEI Xiaohua, et al. Simulation of the effects of various mixing proportions on NPP and carbon storage in the mixedwood plantations of Phoebe bournei with Chinese fir [J]. Acta Agric Univ Jiangxi, 2014, 36(1): 122 − 130. [37] WANG Qingkui, WANG Silong. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations [J]. J For Res, 2008, 19(2): 131 − 135. [38] 黄云鹏. 杉木与红锥混交林生长量及混交比例的研究[J]. 福建林学院学报, 2008, 28(3): 271 − 275. HUANG Yunpeng. Study on growth increment and mixed ratio of a mixed forest of Cunninghamia lanceolata and Castanopsis hystrix [J]. J Fujian For Coll, 2008, 28(3): 271 − 275. [39] CHENG Xiangrong, YU Mukui, WANG G G. Effects of thinning on soil organic carbon fractions and soil properties in Cunninghamia lanceolata stands in eastern China [J]. Forests, 2017, 8(6): 198. [40] ZHOU Lili, CAI Liping, HE Zongming, et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China [J]. Environ Sci Pollut Res, 2016, 23(23): 24135 − 24150. [41] 杨洋, 王继富, 张心昱, 等. 凋落物和林下植被对杉木林土壤碳氮水解酶活性的影响机制[J]. 生态学报, 2016, 36(24): 8102 − 8110. YANG Yang, WANG Jifu, ZHANG Xingyu, et al. Mechanism of litter and understory vegetation effects on soil carbon and nitrogen hydrolase activities in Chinese fir forests [J]. Acta Ecol Sin, 2016, 36(24): 8102 − 8110. [42] FANG Xiangmin, ZHANG Xiulan, ZONG Yingying, et al.Soil phosphorus functional fractions and tree tissue nutrient concentrations influenced by stand density in subtropical Chinese fir plantation forests[J]. PLoS One, 2017, 12(10): e0186905. doi: 10.1371/journal.pone.0186905. [43] 马亚娟. 施肥对杉木养分吸收特性及其碳、氮、磷生态化学计量规律的影响[D]. 杨凌: 西北农林科技大学, 2015. MA Yajuan. Effects of Fertilization on Nutrient Absorption Characteristics and the Law of C, N, P Ecological Stoichiometry of Cunninghamia lanceolata[D]. Yanglin: Northwest A&F University, 2015. [44] 牛宁. 优良杉木半同胞家系配方施肥与营养诊断研究[D]. 福州: 福建农林大学, 2013. NIU Ning. Research on Excellent Half Sibs Family of Chinese Fir About Formulated Fertilization and Nutrient Diagnosis[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. [45] WANG Qingkui, ZHANG Weidong, SUN Tao, et al. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest [J]. Agric For Meteorol, 2017, 232: 66 − 73. [46] 陈胜进, 叶代全, 吕红翠, 等. 铜锌肥对不同林龄杉木生长及土壤养分的影响[J]. 森林与环境学报, 2017, 37(2): 155 − 162. CHEN Shenjin, YE Daiquan, LÜ Hongcui, et al. Effects of Cu and Zn fertilizers on the growth of Cunninghamia lanceolata at different forest age and soil nutrients [J]. J For Environ, 2017, 37(2): 155 − 162. [47] ZHOU Lili, SHALOM A D, WU Pengfei, et al. Biomass production, nutrient cycling and distribution in age-sequence Chinese fir (Cunninghamia lanceolate) plantations in subtropical China [J]. J For Res, 2016, 27(2): 357 − 368. [48] von GADOW K, PUKKALA T, TOMÉ M. Sustainable Forest Management[M].[s.l.]: Kluwer Academic Publishers, 2000: 11 − 12. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190478