-
杉木Cunninghamia lanceolata是中国特有的优良速生针叶树种,也是中国亚热带地区的主要造林树种,占全国人工林面积的17.33%[1]。由于片面追求速生丰产,杉木人工林出现了生产力下降、地力衰退等问题;而且杉木林树种单一,结构不稳定,生物多样性相对较低[2],导致其应对全球变化的能力不足。酸雨是全球变化的主要表现形式之一,而中国已经是欧洲、北美后的世界第三大酸雨区。近年来,长江三角洲地区已经开始控制二氧化硫(SO2)的排放,但汽车数量的激增引起更高的氮氧化物(NOx)排放量,导致硝酸盐(NO3 −)沉淀增加[3]。2003—2010年,酸雨中硫酸根(SO4 2−)与硝酸根(NO3 −)比值从7.5降到2.0[4],预计未来会继续下降。可见,酸雨类型正逐渐由硫酸雨(SAR)转变为硝酸雨(NAR),这将对该区域生态系统带来新的威胁,尤其是遭受酸雨危害严重的中国南方地区。
杉木林土壤是生态系统中受酸沉降影响最大的部分,其中酸雨会直接改变土壤pH[5],影响土壤化学性质[6]。酸雨输入增加土壤氢离子(H+)负荷[7],并与交换络合物上的钙离子(Ca2+)、镁离子(Mg2+)或钾离子(K+)进行交换,但这些离子难以被植物吸收。此外,一些有毒重金属离子,如铝离子(Al3+)、铅离子(Pb2+)、汞离子(Hg2+)、镉离子(Cd+)等也被H+取代[8],对植物产生毒害作用。总碳、总氮、总硫、有效磷和速效钾等同样受到土壤酸化影响,造成土壤养分流失[9],引起杉木林地力衰退。土壤微生物在参与土壤养分循环和维持生态系统平衡中发挥重要作用[10],是土壤活性碳氮库的重要成分[11],也是生态系统碳氮转化进程的生物指标,可以用微生物量碳氮表示[12]。前期研究发现:土壤pH也对微生物量碳氮变化具有重要影响[13]。
酸雨胁迫是影响杉木林地力衰退的主要环境因子之一,然而关于酸雨类型转变对杉木林土壤养分流失及微生物响应机制研究相对较少,而且研究对象集中在马尾松Pinus massoniana及阔叶林[14]。因此,本研究以南方杉木人工林为研究对象,探究酸雨类型转变对杉木林土壤养分及微生物特征的影响,以期为南方酸雨胁迫地区杉木人工林可持续发展提供理论基础。
-
研究区位于南京市20 km外的国有东善桥林场铜山分场(31°37′N,118°51′E)。该区年平均降水量为1 117.2 mm,年均气温为15.1 ℃,无霜期为229.0 d,年日照时数为2 199.5 h。地形以丘陵为主,海拔为38~388 m,属北亚热带季风气候区,气候温和湿润,土壤类型以黄棕壤为主。森林类型以毛竹Phyllostachys edulis、杉木、麻栎Quercus aeutissima和马尾松等为主。本研究以杉木人工纯林为研究对象,该林分海拔为311 m,坡度为22°,西北坡向,林分密度为850株·hm−2,郁闭度为0.61,平均树高、胸径、冠幅分别为10.8 m、13.2 cm和2.4 m。
-
随机在杉木林的上、中、下坡选定长2 m,宽60 cm的样地,在树干下1 m处采样,共计120个采样点,每月进行2次酸溶液喷施,并采集样方表层0~10 cm土壤,用于土壤各项指标测定。
-
利用0.5 mol·L−1硫酸(H2SO4)与0.5 mol·L−1硝酸(HNO3)配制3种酸雨类型(SO4 2−/NO3 −的体积比分别为5∶1、1∶1和1∶5)和3种酸度(pH 4.5、pH 3.5、pH 2.5)的酸雨溶液,分别为硫酸型酸雨(S1:SO4 2−/NO3 −的体积比为5∶1,pH 4.5;S2:SO4 2−/NO3 −的体积比为5∶1,pH 3.5;S3:SO4 2−/NO3 −的体积比为5∶1,pH 2.5)、混合型酸雨(E1:SO4 2−/NO3 −的体积比为1∶1,pH 4.5;E2:SO4 2−/NO3 −的体积比为1∶1,pH 3.5;E3:SO4 2−/NO3 −的体积比为1∶1,pH 2.5)和硝酸型酸雨(N1:SO4 2−/NO3 −的体积比为1∶5,pH 4.5;N2:SO4 2−/NO3 −的体积比为1∶5,pH 3.5;N3:SO4 2−/NO3 −的体积比为1∶5,pH 2.5),同时设置对照处理(ck,山间防火池水,pH 6.6),共10个处理组。根据南京地区全年月平均降水量,分配每月喷施模拟酸雨量,模拟酸雨量占南京月均降水量的2/3,约占全年降水量的5.55%。每月月初和月中使用花洒各喷施1次[15],共计4个季度:春季(3—5月),喷施酸雨总量为12.79 mm,比例为20.62%;夏季(6—8月),喷施酸雨总量为32.35 mm,比例为52.11%;秋季(9—11月),喷施酸雨总量为9.35 mm,比例为15.08%;冬季(12月至翌年2月),喷施酸雨总量为7.57 mm,比例为12.19%。
-
采用电位法测定土壤pH;氟化氨-盐酸浸提法测定土壤有效磷(AP);乙酸铵-火焰光度法测定土壤速效钾(AK);元素分析仪测定土壤碳(TC)、氮(TN)、硫(TS)[16];使用1 mol·L−1氯化钾交换-中和滴定法测定土壤交换性H+、Al3+[17];使用氯仿熏蒸浸提法测定土壤微生物量碳氮质量分数。
-
各类型酸雨处理对土壤化学性质和微生物量碳氮的影响用单因素方差分析,酸雨pH与硝酸根离子对各因素的影响,采用双因素方差分析。利用R语言(V3.5.1)分析酸雨胁迫下各因素之间的相关性。结构平衡方程(structural equation model,SEM)来解释酸雨pH与硝酸根离子对土壤微生物量碳氮的直接和间接影响。
-
由表1可见:3种类型酸雨胁迫下,随着酸雨酸度增加,土壤pH呈显著下降趋势,且受胁迫时间的影响显著(P<0.001),但酸雨类型对土壤pH影响不显著。由图1可见:施加酸雨6个月后各处理土壤的pH显著低于其他时间(P<0.05)。与ck相比,3和12个月酸雨处理均显著降低了土壤pH (P<0.05)。
表 1 不同酸雨类型与酸雨酸度下土壤pH的方差分析
Table 1. P values of soil pH under different acid rain types and acid rain stress
影响因子 3个月 6个月 9个月 12个月 酸雨类型 0.403 0.672 0.220 0.703 酸雨酸度 <0.001*** <0.001*** <0.001*** 0.006** 酸雨类型×酸雨酸度 0.992 0.981 0.657 0.966 时间 <0.001*** 酸雨类型×酸雨酸度×时间 0.999 说明:数值为显著性P值。**P<0.01;***P<0.001 -
由图2和表2可见:随着酸雨酸度的增加,土壤交换性H+、Al3+质量摩尔浓度均呈显著上升趋势,且胁迫时间差异显著(P<0.001)。施加酸雨3个月后,酸雨类型显著影响交换性H+(P<0.001)和交换性Al3+(P<0.05)。施加酸雨9和12个月后,S1、S3处理土壤交换性H+和Al3+质量摩尔浓度均小于N1、N3处理;与对照相比,酸雨pH为2.5时,S3、E3和N3处理的土壤交换性H+质量摩尔浓度均值分别增长了275%、254%和246%,交换性Al3+质量摩尔浓度均值分别增长了240%、246%和249%。
表 2 不同酸雨类型与酸雨胁迫下土壤各指标的方差分析
Table 2. P values of soil acidity index under different acid rain types and acid rain stress
影响因子 土壤指标 3个月 6个月 9个月 12个月 酸雨类型 <0.001*** 0.534 0.787 0.278 酸雨酸度 <0.001*** <0.001*** <0.001*** <0.001*** 酸雨类型×酸雨酸度 交换性H+ <0.001*** 0.855 0.816 0.605 时间 <0.001*** 酸雨类型×酸雨酸度×时间 <0.001*** 酸雨类型 0.013* 0.496 0.902 0.990 酸雨酸度 <0.001*** <0.001*** <0.001*** <0.001*** 酸雨类型×酸雨酸度 交换性Al3+ <0.001*** 0.669 0.227 0.052 时间 <0.001*** 酸雨类型×酸雨酸度×时间 <0.001*** 酸雨类型 0.805 0.721 0.531 0.635 酸雨酸度 0.371 0.306 0.070 0.710 酸雨类型×酸雨酸度 总碳 0.961 0.379 0.320 0.782 时间 0.018* 酸雨类型×酸雨酸度×时间 0.688 酸雨类型 0.517 0.896 0.704 0.861 酸雨酸度 0.333 0.315 0.344 0.924 酸雨类型×酸雨酸度 总氮 0.942 0.957 0.975 0.118 时间 0.009** 酸雨类型×酸雨酸度×时间 0.862 酸雨类型 0.783 0.840 0.496 0.907 酸雨酸度 0.232 0.900 0.190 0.904 酸雨类型×酸雨酸度 碳氮比 0.951 0.249 0.592 0.598 时间 0.513 酸雨类型×酸雨酸度×时间 0.816 酸雨类型 0.550 0.880 0.990 0.382 酸雨酸度 0.395 0.770 0.409 0.640 酸雨类型×酸雨酸度 总硫 0.986 0.708 0.987 0.675 时间 <0.001*** 酸雨类型×酸雨酸度×时间 0.995 酸雨类型 0.315 0.340 0.379 0.447 酸雨酸度 0.379 0.049* 0.430 0.121 酸雨类型×酸雨酸度 有效磷 0.768 0.012* 0.648 0.482 时间 <0.001*** 酸雨类型×酸雨酸度×时间 0.159 酸雨类型 0.058 0.246 0.274 0.481 酸雨酸度 <0.001*** 0.012* 0.492 0.104 酸雨类型×酸雨酸度 速效钾 0.809 0.029* 0.651 0.707 时间 0.276 酸雨类型×酸雨酸度×时间 0.534 酸雨类型 0.900 0.959 0.842 0.971 酸雨酸度 0.334 0.383 0.449 0.497 酸雨类型×酸雨酸度 土壤微生物量碳 0.977 0.998 0.989 0.997 时间 <0.001*** 酸雨类型×酸雨酸度×时间 1.000 酸雨类型 0.886 0.820 0.990 0.993 酸雨酸度 0.101 0.171 0.274 0.100 酸雨类型×酸雨酸度 土壤微生物量氮 0.972 0.998 0.994 0.990 时间 <0.001*** 酸雨类型×酸雨酸度×时间 1.000 说明:数值为显著性P值。*P<0.05;**P<0.01;***P<0.001 -
由图3和表2可见:随着酸雨酸度的增加,土壤总碳、总氮、总硫和有效磷质量分数存在显著的时间差异(P<0.05)。施加酸雨3和6个月后,酸雨酸度显著影响速效钾质量分数,6个月后,酸雨酸度显著影响有效磷质量分数,且酸雨酸度与酸雨类型对有效磷和速效钾的交互效应显著(P<0.05)。施加酸雨6个月后,N1处理的土壤总碳质量分数显著低于S1和ck (P<0.05)。9个月后,N1处理的土壤总碳质量分数显著高于S1和ck (P<0.05)。S3处理的有效磷质量分数显著低于ck和N3 (P<0.05)。在3、6、9和12个月,S3处理的速效钾质量分数均最低,分别为(25.03±4.17)、(25.09±3.97)、(29.47±2.57)和(27.69±4.44) mg·kg−1。
-
由图4和表2可见:随着酸雨酸度的增加,土壤微生物量碳氮呈显著下降趋势,且胁迫时间差异显著(P<0.05)。施加酸雨6个月后,对照处理组的土壤微生物量碳氮最高,分别为(748.64±136.66)和(109.28±14.88) mg·kg−1。与对照相比,S3、E3和N3处理均显著降低了土壤微生物量碳氮,其中,胁迫12月后N3处理的微生物量碳和微生物量氮质量分数达到最低值,分别为(378.89±60.69)和(38.67±4.10) mg·kg−1。
-
由图5可见:酸雨pH与土壤pH、速效钾呈显著正相关(P<0.05);总碳与碳氮比、有效磷与微生物量碳氮、微生物量碳与微生物量氮之间均表现出显著的正相关(P<0.05)。而酸雨pH与交换性H+、Al3+表现出显著的负相关(P<0.05);交换性H+、Al3+与速效钾、微生物量碳、微生物量氮之间呈显著负相关(P<0.05)。
图 5 酸雨胁迫下土壤化学性质与微生物量碳氮的相关关系
Figure 5. Correlation analysis of soil chemical properties and microbial carbon and nitrogen under acid rain stress
结构方程模型(SEM)通过AMOS软件构建。该模型卡方检验P为0.336(>0.050),近似误差均方根为0.029,拟合优度指数为0.994,参数均符合建模要求(图6)。与相关性分析结果一致,酸雨酸度对微生物量碳的直接影响要高于酸雨类型。酸雨酸度对微生物量碳和微生物量氮的间接影响系数分别为−0.412、0.025,综合影响系数分别为0.154、0.141;酸雨类型对微生物量碳和微生物量氮的间接影响系数分别为0.065和0.032,综合影响系数分别为0.025、0.009 (表3)。另外,从图6可以看出:酸雨酸度主要通过土壤pH、总碳和有效磷间接影响微生物量碳氮,而酸雨类型主要通过土壤pH、总碳和有效磷间接影响微生物量碳氮,酸雨酸度又主要通过土壤pH影响总碳和有效磷而间接影响微生物量碳氮。
图 6 不同酸雨类型和酸雨酸度对微生物量碳氮影响的SEM分析
Figure 6. SEM analysis of the effects of different acid rain types and acid rain stress on microbial carbon and nitrogen
表 3 结构方程中各因子与微生物量碳氮之间的相关性
Table 3. Correlation of parameters and microbial carbon and nitrogen
自变量 酸雨
pH值土壤酸
根离子土壤
pH有效磷 总碳 微生物
量碳总效应 微生物量碳 0.154 0.025 −0.855 0.204 0.139 间接效应 −0.412 0.065 −0.132 总效应 微生物量氮 0.141 0.009 −0.879 0.201 0.200 0.776 间接效应 0.025 0.032 −0.702 0.158 0.108 -
土壤作为森林生态系统的最终受体,对酸雨具有较强的敏感性[9]。酸雨导致土壤pH和盐基饱和度下降,溶出土壤中交换性H+、Al3+,加剧土壤酸化[18],这与本研究结果一致。表明交换性阳离子充当土壤中重要的缓冲剂作用,当土壤pH为4.2~3.8时,已经降到土壤阳离子缓冲范围内[19],土壤中矿物成分释放出充足的交换性Al3+缓冲酸沉降。本研究中,随着酸雨酸度的增加,有效磷质量分数在施加酸雨6个月后显著变化,速效钾质量分数在3和6个月后均有显著变化,同时施加酸雨6个月后,酸雨类型和酸度对有效磷和速效钾交互效应显著。这可能是因为夏季植物生长迅速,杉木林土壤表层的凋落物较少,对酸雨缓冲作用减弱,夏季雨水相比其他季节多,淋溶作用增加,进而导致土壤有效磷和速效钾的流失。然而,酸雨对土壤总碳、总氮、总硫的影响不显著[16]。表明短期的酸雨胁迫不会导致碳、氮、硫的变化,土壤养分的流失需要长时间的积累。
土壤微生物在维持全球生态系统中充当重要角色[6],土壤pH、植被类型、土壤养分、气候条件等的变化直接或间接影响土壤微生物量碳氮的活性[20]。研究发现:微生物对土壤pH有最适宜的区间,过低的土壤pH对微生物活性起到抑制作用[21-22]。本研究在模拟酸雨持续胁迫下,土壤pH呈显著下降,土壤微生物量碳氮在强酸(pH 2.5)处理下显著下降。由于土壤对酸雨的缓冲作用,pH 4.5和pH 3.5对土壤微生物量碳氮没有显著影响,随着酸度的增加及实验周期的延长,各类型酸雨处理对微生物量碳氮的影响显著,这可能是真菌和细菌对强酸更加敏感[23],也可以说明酸雨对土壤微生物量碳氮的影响是一个循序渐进的过程。有研究表明:酸雨胁迫下土壤持续酸化与土壤微生物量碳氮活性的抑制作用有关,H+的毒害作用导致土壤分解者的微生物种类、生物活性和结构均随之发生变化[24]。
土壤微生物量碳氮随着酸雨时间的递增,发生着动态、复杂的变化过程,这也是森林生态系统的研究重点[25]。本研究的土壤微生物存在着显著的月份差异,6—8月土壤微生物量碳氮质量分数最高,12月至翌年2月出现最低值。这可能是因为春季气温回升后,春坝作用[26]使得植物生长恢复,6月土壤微生物活性增强,7—8月达到高峰。而后因为植物和微生物生长对养分的大量需求产生养分物质的竞争[27],导致微生物量碳氮降低。而冬季因为天气寒冷潮湿,使得真菌和细菌数量减少,土壤呼吸作用减弱,导致微生物量碳氮质量分数达到最低值。由于秋冬季大量凋落物掉落,为春季微生物提供较多的代谢物而使得春季微生物量碳氮质量分数相比冬季而言有较大的提升。
酸雨类型变化不仅对土壤养分影响显著,也对土壤微生物影响显著。混合型和硝酸型酸雨减缓了土壤碳氮和磷的矿化,降低了土壤微生物量[28]。本研究中,不同酸雨类型之间对杉木林影响并没有显著区分,NO3 −与SO4 2−没有显著的区别。这可能与试验时间有关,因本研究时间仅1 a,周期较短,导致NO3 −对杉木林影响没有显著表现出来。早期研究发现:硝酸雨对土壤pH和微生物活性的抑制作用比硫酸雨大[15],硝酸雨减缓了土壤碳、氮、磷的矿化作用[29]。
-
1 a的短期酸雨胁迫后,土壤pH随着酸雨酸度的增加而显著降低,硝酸根对土壤pH影响大于硫酸根。酸雨对土壤有效磷和速效钾质量分数影响显著,对土壤总碳、总氮和总硫质量分数影响较小。酸雨酸度和酸雨类型均对微生物量碳氮质量分数影响显著,酸雨酸度对微生物碳氮的影响一方面直接影响,另一方面通过对土壤化学性质的间接影响完成。酸雨类型的转变加剧了酸雨酸度对杉木林土壤特性的抑制作用。
Effects of acid rain type change on soil nutrient characteristics and microbial C and N in the Cunninghamia lanceolata plantation
-
摘要:
目的 探究酸雨类型转变对杉木Cunninghamia lanceolata林土壤养分及微生物量碳氮的影响,为不同类型酸雨区杉木人工林可持续经营提供理论依据。 方法 以南京市东善桥林场杉木人工林为研究对象,在对照处理(ck,山间防火池水,pH 6.6)、不同酸雨类型[包括酸雨类型(硫酸型、硝酸型和混合型)和酸雨酸度(模拟溶液pH 4.5、3.5和2.5)]胁迫1 a后,探究酸雨类型转变对杉木林土壤养分及微生物的影响。 结果 随着酸雨酸度增加,不同类型酸雨处理土壤pH呈显著下降趋势(P<0.05),而土壤交换性氢离子(H+)和铝离子(Al3+)呈显著上升趋势(P<0.05);与对照相比,酸雨pH为2.5时,土壤交换性H+、Al3+均在硫酸型酸雨处理下分别增长了275%和240%,在混合型酸雨处理下分别增长了254%和246%,在硝酸型酸雨处理下分别增长了246%和249%。此外,酸雨胁迫时间显著影响土壤总碳、总氮、总硫、有效磷和微生物量碳氮(P<0.05),但酸雨类型对土壤微生物量碳氮影响不显著;酸雨胁迫1 a后,pH 2.5硝酸型酸雨处理下土壤微生物量碳氮质量分数最低,分别为(378.89±60.69)和(38.67±4.10) mg·kg−1。通过结构方程模型可知:酸雨酸度对杉木林土壤微生物量碳氮的影响强于酸雨类型,其主要通过影响土壤pH、有效磷和总碳间接影响微生物量碳氮。 结论 1 a的短期酸雨胁迫后,酸雨酸度仍然是影响杉木林土壤特性的主要因子,而酸雨类型转变将会加剧酸雨酸度对杉木林土壤特性的抑制作用。图6表3参29 Abstract:Objective The purpose of this study is to investigate the effects of acid rain type change on soil nutrients and microbial C and N of the Cunninghamia lanceolata plantation, with a view to providing a theoretical basis for sustainable management of the C. lanceolata plantation in areas with different types of acid rain. Method Taking C. lanceolata plantation in Dongshanqiao Forest Farm in Nanjing as the research object, a control treatment (ck, mountain fire pool water, pH 6.6) was set. After 1 year of stress of different types of acid rain (sulfuric acid type, nitric acid type and mixed type) and acid rain acidity (simulated solution pH 4.5, 3.5 and 2.5), the effects of acid rain type change on soil nutrients and microorganisms in the C. lanceolata plantation were explored. Result With the increase of acid rain acidity, soil pH value of different types of acid rain treatment decreased significantly (P<0.05), while soil exchangeable hydrogen ions (H+) and aluminum ions (Al3+) increased significantly (P<0.05). Compared with the control (ck), when the pH value of acid rain was 2.5, the mean values of soil exchangeable H+ and Al3+ increased by 275% and 240% under sulfuric acid rain treatment, 254% and 246% under mixed acid rain treatment, and 246% and 249% under nitric acid rain treatment, respectively. In addition, the time of acid rain stress significantly affected the contents of soil total carbon, total nitrogen, total sulfur, available phosphorus and microbial C and N (P<0.05), but the type of acid rain had no significant effect on soil microbial C and N. After acid rain stress for 1 year, soil microbial C and N contents were the lowest under the treatment of pH 2.5 nitric acid rain, which were (378.89±60.69) and (38.67±4.10) mg·kg−1 respectively. According to the structural equation model, the effect of acid rain acidity on soil microbial C and N in the C. lanceolata plantation was stronger than that of acid rain type, which indirectly influenced microbial C and N mainly by affecting soil pH, available phosphorus and total carbon. Conclusion After 1 year of short-term acid rain stress, acid rain acidity is still the main factor affecting soil characteristics of C. lanceolata, and the change of acid rain type will intensify the inhibition effect of acid rain acidity on soil characteristics of C. lanceolata plantation. [Ch, 6 fig. 3 tab. 29 ref.] -
植物进行光合作用的主要器官是叶片,研究发现不仅植物叶片能够进行光合作用,其他绿色非叶器官也能够进行光合作用[1-3]。NILSEN[3]发现植物绿色茎秆具有与叶片相似的光合能力;MANETAS[4]研究发现大量的光照(10%~50%)是被树干吸收的;SUN等[5]研究表明:树干木质部和韧皮部纤维以及管胞管壁对不同方向照射光线具有良好的茎向导光特性。HIBBERD等[6]发现:C3植物烟草Nicotiana tabacum和芹菜Apium graveliens茎中具有C4光合途径。NILSEN[3]认为虽然景天酸代谢途径(CAM)植物叶片多为C3途径,但其茎秆多为CAM途径,其他植物茎秆光合为C3途径。占东霞等[7]对棉花Gossypium hirsutum叶片和非同化器官的研究证明了非同化器官对光合作用的贡献。类囊体是叶绿体中光能向化学能转化的主要场所,一直是光合作用研究的热点[8]。类囊体膜又称光合膜,光合作用的4个多亚基蛋白复合体——光系统Ⅱ(PSⅡ)、光系统Ⅰ(PSⅠ)、ATP合成酶(ATP-ase)和细胞色素b6f复合体(Cytb6f)都定位在类囊体膜上[9-10],这些蛋白复合体和许多其他辅助因子共同完成光合电子传递和光合磷酸化的过程[11]。高荣孚等[12]用含有聚乙二醇(PEG)的提取液提取和分离了油松Pinus tabulaeformis和豌豆Pisum sativum的类囊体膜,并得到完整的PSⅠ,证明存在2种PSⅠ,而且这种存在具有一定普遍性。蔡霞等[13]在低温(83 K)下利用稳态荧光光谱技术对PSⅡ核心复合物中激发能的传递进行了研究,发现最大峰所在位置没有因激发波长的不同而发生改变;在不同波长光的激发下,核心复合物中能量传递的途径不同。周伟等[14]利用蓝绿温和胶电泳(BN-PAGE)、结合质谱鉴定对条斑紫菜Porphyra yezoensis类囊体膜蛋白复合物进行了研究,检测到PSⅡ核心复合物中D2、D1、CP47、CP43和Cytochrome f等蛋白。在分子水平上揭示各种膜蛋白复合体的结构与功能,对于揭示光能转化的机理具有重要意义[15]。毛竹Phyllostachys edulis是江浙地区极富经济和生态价值的竹种。目前,对毛竹的研究主要在毛竹光合生理特性[16]、茎叶绿素荧光特征和光合酶活性[17-18]、碳水化合物代谢[19-20]、蛋白组学[21]和基因组学[22]等方面。关于毛竹茎秆类囊体膜蛋白复合物、快速生长期毛竹茎秆光合特性的研究未见报道。本研究通过分析毛竹茎秆快速生长期叶片和茎秆的光合色素含量、77 K低温荧光发射光谱、蓝绿温和胶电泳来揭示类囊体膜蛋白复合物的变化,为阐明毛竹茎秆光合作用机理提供理论依据。
1. 材料与方法
1.1 材料
2018年5月初,在浙江省杭州市临安区现代毛竹示范园内,选取生境条件一致、生长状况良好、株高(6.0±0.2) m、基径约15 cm、自然状态下的当年生毛竹笋竹,从茎秆基部将其伐倒,将节间按照从基部至顶部的顺序编号,1~6节(笋衣完全脱落)为茎秆基部,7~13节(笋衣开始脱落,茎秆呈现绿色)为茎秆中部,13节以上(笋衣包裹完好,茎秆为黄色)为茎秆顶部,取茎秆外层表皮,厚度为<3 mm。6月初,选择枝条梢部下3~4位无病斑的当年生叶片,取样时间为10: 00−12: 00。取样后直接进行发射荧光的测定;用于光合色素和电泳样品取下后,迅速将样品放进液氮中冷冻,存于−80 ℃备用。
1.2 方法
1.2.1 色素测定
采用ARNON[23]的方法略做修改。称取毛竹叶片和茎秆0.5 g,剪碎后置于带盖的试管中,加体积分数为80%丙酮溶液5 mL,在暗处浸提48 h,分别在470、645和663 nm处测定其光密度D(λ),参考LICHTENTHALER[24]的方法,计算叶绿素a(Chl a)、叶绿素b(Chl b)和类胡萝卜素(Car)质量分数。选取5株笋竹和5株成竹,每株作为1个独立实验,共5次重复。
1.2.2 77 K低温荧光发射光谱测定
利用AvaSpec-HS-TEC超高灵敏型光纤光谱仪(北京爱万提斯科技有限公司),在液氮(77 K)中测量活体状态下毛竹叶片和茎秆荧光发射光谱。采用陈登举等[25]方法稍作修改,以AvaLight-LED为激发光源(480 nm),光照强度控制在3 000 μmol·m−2·s−1,发射波长范围为600~900 nm,发射步长为1 nm,扫描速度为500 nm·s−1。测量前先用标准白板校对调0,每个样品选择无病斑毛竹叶片和各部位茎秆材料各20片,每片采集数据1次。
1.2.3 类囊体膜的提取
采用SCHÄGGER等[26]方法稍作修改。称取毛竹叶片10 g和笋竹茎秆50 g,加入100 mL预冷的提取液(0.1 mol·L−1蔗糖,0.2 mol·L−1氯化钠,50 mmol·L−1 pH 7.4磷酸缓冲液,质量浓度为2.5%聚乙二醇6000)中,用50 g多功能粉碎机(上海市蒲恒信息科技有限公司)粉碎至匀浆中无明显碎片为止(大约1 min),将匀浆通过4层过滤,滤液3 000×g离心10 min (4 ℃),收集沉淀。将沉淀用10倍体积预冷后的清洗液(不含聚乙二醇的提取液)悬浮起来,3 000×g离心10 min (4 ℃),收集沉淀。再用5倍体积的冷清洗液将沉淀悬浮起来,500×g离心5 min,弃沉淀,将上层悬液3 000×g离心10 min (4 ℃),收集沉淀,并用悬浮液(0.3 mol·L−1蔗糖,50 mmol·L−1氯化钠,50 mmol·L−1磷酸缓冲液,pH 6.9)悬浮。得到的悬液即为类囊体膜蛋白制备液,测定叶绿素质量分数后储藏于−20 ℃冰箱中。
1.2.4 BN-PAGE电泳
电泳样品制备:取类囊体膜蛋白制备液1 000 μL (约含10 000 μg蛋白和1 000 μg叶绿素),3 000×g离心10 min(4 ℃),取沉淀,用1 000 μL上样缓冲液[ACA缓冲液:750 mmol·L−1氨基己酸,50 mmol·L−1 pH 7.0双(2-羟乙基)氨基(三羟甲基)甲烷(Bis-Tris),0.5 mmol·L−1乙二胺四乙酸(EDTA)]悬浮,再加入0.05 g毛地黄皂苷,混匀使之完全溶解,在冰浴中用JY88-IIN超声波细胞粉碎机(宁波新芝生物科技股份有限公司)处理混合液1 min,4 ℃下放置30 min,然后8 780×g离心30 min,取上清液,加入5 μL考马斯亮蓝染液(质量浓度为5%考马斯亮蓝G250,750 mmol·L−1氨基己酸),混匀后上样。第1向电泳:胶体由质量浓度为4%浓缩胶和5%~13%梯度分离胶组成,上样量为30 μL。加入阳极缓冲液(50 mmol·L−1Bis-Tris-HCl,pH 7.0)和阴极缓冲液A [15 mmol·L−1 Bis-Tris,50 mmol·L−1 N-三(羟甲基)甲基甘氨酸(Tricine),质量浓度为0.02%考马斯亮蓝G250],80 V恒压电泳,当样品完全进入浓缩胶后,吸出阴极缓冲液A,换阴极缓冲液B (15 mmol·L−1 Bis-Tris,50 mmol·L−1 Tricine),120 V恒压直到电泳完成。整个电泳过程在4 ℃下完成。第2向电泳:将经蓝绿温和胶分离的类囊体膜蛋白复合物胶条切下,在室温下经样品处理液(质量分数为5%十二烷基硫酸钠(SDS),体积分数为20%甘油,体积分数为10%巯基乙醇,50 mmol·L−1 Tris-HCl,pH 6.8)处理30 min后,置于50 ℃水浴锅中加热5 min,然后用去离子水洗去巯基乙醇。把胶条放置在准备好的第2向胶体上,进行第2向电泳。电泳在室温条件下进行,25 mA恒流,阴极缓冲液:100 mmol·L−1 Tris-HCl,100 mmol·L−1 Tricine,质量浓度为0.1%SDS,pH 8.25,阳极缓冲液:100 mmol·L−1 Tris-HCl,pH 8.9。
1.3 数据处理
荧光光谱采集得到的数据经Multispec 5.1初步处理,用Origin 9统计软件进行统计分析,经卷积平滑消除噪音后,经归一处理,采用高斯函数对荧光发射光谱进行拟合,肩峰数目和峰位置通过四阶导数光谱确认,多次拟合使残差最小。所有数据均为5次重复的平均值±标准误差。利用Origin 9进行统计分析和作图,统计方法采用One-way ANOVA,进行Turkey多重比较(P<0.01)。
2. 结果与讨论
2.1 光合色素质量分数
毛竹叶片和茎秆之间光合色素存在极显著差异(表1),在茎秆顶部,叶绿素和类胡萝卜素的质量分数最低,比叶片分别低了93.4%和96.3% (P<0.01)。随着茎秆的发育成熟,叶绿素和类胡萝卜素开始大量累积,在茎秆基部达到最高,比叶片分别低了30.6%和47.6%(P<0.01)。茎秆叶绿素a/b均比叶片小,在茎秆成熟过程中,叶绿素a/b逐渐升高。茎秆基部和中部叶绿素a/b与叶片之间无显著差异,茎秆顶部叶绿素a/b比叶片高46.5% (P<0.01)。
表 1 毛竹叶和茎秆的光合色素质量分数Table 1 Pigment content in leaves and stems of Ph. edulis位置 质量分数/(μg·g−1) 叶绿素a/类胡萝卜素 叶绿素a/b 叶绿素a 叶绿素b 总叶绿素 类胡萝卜素 叶 311.60±0.07 A 89.30±0.01 A 400.90±0.08 A 96.00±0.01 A 3.23±0.25 A 3.46±0.27 B 茎秆基部 158.00±1.09 B 52.10±0.20 B 210.10±1.28 B 66.60±0.48 B 2.37±0.06 B 3.03±0.10 B 茎秆中部 64.90±0.29 C 17.00±0.09 C 81.90±0.23 C 28.90±0.17 C 2.25±0.15 B 3.83±0.35 B 茎秆顶部 12.50±0.01 D 2.50±0.01 D 15.00±0.01 D 6.30±0.09 D 2.02±0.31 B 5.07±0.23 A 说明:同列不同大写字母表示差异极显著(P<0.01) 2.2 凝胶电泳结果
采用非变性BN-PAGE电泳技术分析了毛竹叶片和茎秆类囊体膜蛋白复合物(图1)。毛竹叶片BN凝胶中蛋白复合物包括2种LHCⅡ-PSⅡ超复合物、约600 kDa的PSⅡ核心二聚体和PSⅠ、不同分子量的ATP合酶(ATP-synthase)组件、约290 kDa的PSⅡ核心单体、缺少CP43亚基的PSⅡ核心单体、约140 kDa的游离LHCⅡ三聚体和游离LHCⅡ单体。通过对比叶片类囊体膜蛋白复合物,茎秆BN凝胶中明显的条带有LHCⅡ-PSⅡ超复合物、PSⅡ核心二聚体几乎与PSⅠ相连、ATP合酶、PSⅡ核心单体和LHCⅡ单体。在叶片BN凝胶中,最丰富的捕光色素蛋白复合物是LHCⅡ三聚体;而在茎秆BN凝胶中,最多的则是LHCⅡ单体。茎秆基部PSⅡ单体和二聚体与叶片相似,而缺少CP43亚基的PSⅡ单体的颜色明显比叶片淡。随着茎秆的成熟,PSⅡ单体和二聚体越显著。
为了更好地比较两者差异,将第1向分离的胶条切下,进行第2向Tricine-SDS-PAGE电泳。BN-PAGE第1向电泳分离了类囊体膜大分子蛋白复合物,经第2向电泳分离得到各小亚基(图2),参考RANTALA等[27]的研究结果,比较光系统发育情况。经过考马斯亮蓝染液的染色补充,显示了与CP47、CP43、D2、D1和LHCⅡ亚基对应的位置。蛋白复合物对应于:LHCⅡ-PSⅡ超复合物、PSⅡ核心二聚体、PSⅡ核心单体、LHCⅡ三聚体和LHCⅡ单体。ATP合酶在第2向电泳中分离得到57 kDa的ATPα和55 kDa的ATPβ。毛竹叶片和茎秆基部PSⅠ经第2向电泳分离得到PsaA/B和PsaD,茎秆中部得到PsaA/B,但在茎秆顶部的胶体中没有明显地显示出PsaA/B。
2.3 77 K低温荧光发射光谱
如图3A所示:以毛竹叶片光谱为参考,毛竹叶片77 K荧光发射光谱呈典型的M型,分别对应于PSⅡ (685 nm)和PSⅠ(745 nm)。茎秆荧光发射光谱被归一化为最大值,以便于茎秆相互之间的比较以及与毛竹叶片的比较。茎秆基部光谱与毛竹叶片的基本一致,茎秆中部在685 nm对应PSⅡ,荧光强度比毛竹叶片高;在745 nm对应PSⅠ,荧光强度最低。茎秆顶部在680 nm处出现蓝移现象。此外,荧光强度与茎秆中部一致;在745 nm处荧光强度比毛竹叶片低且主峰不明显。
对毛竹叶片和茎秆的77 K荧光发射光谱进行四阶导数处理(图3B)。红光区毛竹叶片与茎秆基部以及中部的四阶导数光谱基本一致,主峰均在685 nm处,各有1个肩峰均在653 nm处;茎秆顶部的四阶导数光谱出现明显的蓝移现象。主峰在680 nm处,在650 和710 nm处有2个肩峰。毛竹叶片和茎秆的四阶导数光谱在远红光区差异很大,毛竹叶片和茎秆基部及中部主峰在745 nm处,在725和765 nm处有2个肩峰;茎秆顶部的主峰在741 nm处,在725 和750 nm处有2个肩峰。
在77 K荧光发射光谱范围内,通过高斯函数解析出2个高斯光谱组分(表2,图4)。在红光区,毛竹叶片和茎秆的荧光峰都在685 nm左右;在远红光区,毛竹叶片和中下部茎秆的荧光峰在740 nm左右,但茎秆顶部荧光峰在756 nm处,出现明显红移。基部和顶部的2个解析峰面积比(A1/A2)、峰高比值(H1/H2)和2个荧光峰的半峰宽比(W1/W2)分别比毛竹叶片低46.7%和9.9%、30.8%和41.1%、22.1%和35.6% (P<0.01);中部的A1/A2、H1/H2、W1/W2分别比毛竹叶片高191.1%、40.4%和109.3% (P<0.01)。
表 2 毛竹叶和茎秆的77 K荧光发射光谱高斯解析结果Table 2 Results of Gaussian decomposition of 77 K fluorescence spectra for leaves and stems of Ph. edulis峰 主峰1 主峰2 峰面积1 峰面积2 半峰宽1 半峰宽2 峰高1 峰高2 峰面积比 峰高比 半峰宽比 叶 687 741 18.94 42.20 26.38 50.87 0.57 0.66 0.45 0.52 0.86 茎秆基部 685 738 12.29 51.10 23.89 66.76 0.41 0.61 0.24 0.36 0.67 茎秆中部 688 768 31.39 23.92 30.32 41.30 0.83 0.46 1.31 0.73 1.80 茎秆顶部 684 756 20.09 61.85 28.09 130.48 0.57 0.38 0.32 0.22 1.50 3. 讨论
光在植物生长中具有特殊作用,除了作为一种能源控制着光合作用,还作为一种触发信号影响着植物生长[28]。ALEXANDER等[29]研究发现:樟子松Pinus sylvestris var. mongolica针叶和树皮中叶绿素a/b和类胡萝卜素组成相似。本研究结果显示:茎秆受到光照后,色素大量形成。茎秆基部和中部叶绿素a/b相似,但茎秆顶部叶绿素a/b显著高于毛竹叶片。这可能因为中上部有笋衣包裹,受到光照强度随着茎秆节间的升高而减弱,为了适应这种环境,茎秆叶绿体中会有较高的叶绿素a/b。
在芒果Mangifera indica等绿色肉质水果中,PSⅡ的效率普遍较高,与叶片的效率相当[30-31]。FERRONI等[32]研究发现,成熟果实中CP43-less PSⅡ核心单体含量比叶片高,成熟果实中LHCⅡ-PSⅡ超复合物的含量比叶片低。BONORA等[33]发现类囊体在成熟早期发生,随后在成熟后期大量积累类胡萝卜素。PSⅡ反应中心由蛋白D1和D2组成[34],两侧是内周捕光天线蛋白CP47和CP43[35],大多数与PSⅡ相关的叶绿素都存在于外周捕光天线(LHCⅡ)复合体中[36]。BARSAND等[37]发现番茄Solanum lycopersicon叶绿体向色质的转变与光系统发生机制的破坏(囊泡运输、为类囊体生物合成提供材料、光系统组装)是一致的,会导致光反应蛋白的减少。毛竹叶片PSⅡ经分离得到了反应中心蛋白D2、D1、内周天线蛋白CP47、CP43以及大量外周捕光天线蛋白,叶片PSⅡ发育完全;茎秆PSⅡ经分离也得到了D2、D1、CP47、CP43蛋白,但外周捕光天线蛋白明显比叶片少,从茎秆基部到顶部外周捕光天线蛋白数量显著减少。表明毛竹茎秆中PSⅡ核心复合物已形成,随着茎秆发育,笋衣逐渐脱落,茎秆受到光照加强,色素大量形成,捕光天线蛋白逐渐增多,使得PSⅡ复合体发育更完整。
SMART等[38]发现:psaA或psaB基因失活都将导致PSⅠ复合物在类囊体中缺失,表明PsaA或PsaB不能单独形成二聚体,而PsaA/B异二聚体的存在是整个PSⅠ复合物组装所必需的。PSⅠ的外周蛋白PsaD和PsaE位于类囊体基质侧形成一个凸点。有研究[39]显示:PsaD、PsaE和Fd之间有互作关系,普遍认为PsaD通过与带负电荷Fd之间的静电互作而为Fd提供必要的结合位点,同时PsaD也是PSⅠ中PsaC和PsaE正确组装所必需的。毛竹叶片PSⅠ经分离得到了PsaA/B和PsaD小亚基,叶片PSⅠ已发育完全;茎秆基部发现了PsaA/B和PsaD亚基,PSⅠ核心复合物已形成,小亚基正在整合到PSⅠ核心复合物上;茎秆中部发现PsaA/B,但未发现其他小亚基,这可能是因为茎秆中部PSⅠ核心复合物在组装过程中,小亚基都呈现游离状态,在提取类囊体膜蛋白复合物时,这些小亚基未能够完整提取;茎秆顶部未发现PsaA/B和小亚基,PSⅠ核心复合物还未组装。这表明茎秆PSⅠ的发育是从基部开始的,随着笋衣脱落,裸露的茎秆受到光照,色素大量形成,PSⅠ核心复合物开始组装完整。
植物叶绿体内不同的色素蛋白复合物发射的荧光构成了叶绿体的荧光发射光谱[40],而这些蛋白复合物具有不同的发射荧光峰位[41]。茎秆基部在红光区的77 K荧光发射光谱与毛竹叶片基本一致,这说明光照不足对毛竹叶片与成熟茎秆PSⅡ核心复合物的组成无显著影响。红光区内的肩峰主要是CP47、CP43和LHCⅡ引起的[42];远红光区附近的肩峰是由PSⅠ反应中心和LHCⅠ引起的[43]。在红光区内茎秆顶部的最大峰出现了蓝移现象,这可能是由于茎秆顶部被笋衣包裹,光照不足会导致CP47等亚基含量减少[44];也可能是因为PSⅡ中的CP47、D1、D2等色素蛋白的二级结构以及色素分子的空间位置发生了改变,导致蓝移现象[45]。毛竹叶片的叶绿素a和类胡萝卜素远远高于茎秆,而毛竹叶片荧光强度比茎秆低。这可能是因为PSⅡ核心复合物只结合有叶绿素a和β-胡萝卜素(β-Car),当激发光激发PSⅡ核心复合物时,稳态发射光谱显示随着β-胡萝卜素分子吸收强度的增加,向叶绿素a分子进行能量传递的荧光耗散就越少,其发射荧光强度就降低[13]。远红光区内的光谱特征可能只由于毛竹叶片和茎秆基部叶绿体中的PSⅠ核心复合物基本都已形成,但茎秆中部和顶部 PSⅠ核心复合物还未完全形成,还有较多的的LHCⅠ和PSⅠ-LHCⅠ,所以光谱中出现肩峰。
综上所述,在毛竹茎秆成熟早期,PSⅡ核心复合体已形成,随着茎秆发育,笋衣逐渐脱落,色素大量合成,内周天线蛋白CP47和CP43以及外周捕光天线蛋白逐渐形成,PSⅡ的77 K发射光谱荧光强度逐渐减小;同时,茎秆受到光照后PSⅠ核心蛋白PsaA和PsaB开始形成,逐渐组装合成PSⅠ核心复合体,PSⅠ的77 K发射峰荧光强度逐渐增大。
-
表 1 不同酸雨类型与酸雨酸度下土壤pH的方差分析
Table 1. P values of soil pH under different acid rain types and acid rain stress
影响因子 3个月 6个月 9个月 12个月 酸雨类型 0.403 0.672 0.220 0.703 酸雨酸度 <0.001*** <0.001*** <0.001*** 0.006** 酸雨类型×酸雨酸度 0.992 0.981 0.657 0.966 时间 <0.001*** 酸雨类型×酸雨酸度×时间 0.999 说明:数值为显著性P值。**P<0.01;***P<0.001 表 2 不同酸雨类型与酸雨胁迫下土壤各指标的方差分析
Table 2. P values of soil acidity index under different acid rain types and acid rain stress
影响因子 土壤指标 3个月 6个月 9个月 12个月 酸雨类型 <0.001*** 0.534 0.787 0.278 酸雨酸度 <0.001*** <0.001*** <0.001*** <0.001*** 酸雨类型×酸雨酸度 交换性H+ <0.001*** 0.855 0.816 0.605 时间 <0.001*** 酸雨类型×酸雨酸度×时间 <0.001*** 酸雨类型 0.013* 0.496 0.902 0.990 酸雨酸度 <0.001*** <0.001*** <0.001*** <0.001*** 酸雨类型×酸雨酸度 交换性Al3+ <0.001*** 0.669 0.227 0.052 时间 <0.001*** 酸雨类型×酸雨酸度×时间 <0.001*** 酸雨类型 0.805 0.721 0.531 0.635 酸雨酸度 0.371 0.306 0.070 0.710 酸雨类型×酸雨酸度 总碳 0.961 0.379 0.320 0.782 时间 0.018* 酸雨类型×酸雨酸度×时间 0.688 酸雨类型 0.517 0.896 0.704 0.861 酸雨酸度 0.333 0.315 0.344 0.924 酸雨类型×酸雨酸度 总氮 0.942 0.957 0.975 0.118 时间 0.009** 酸雨类型×酸雨酸度×时间 0.862 酸雨类型 0.783 0.840 0.496 0.907 酸雨酸度 0.232 0.900 0.190 0.904 酸雨类型×酸雨酸度 碳氮比 0.951 0.249 0.592 0.598 时间 0.513 酸雨类型×酸雨酸度×时间 0.816 酸雨类型 0.550 0.880 0.990 0.382 酸雨酸度 0.395 0.770 0.409 0.640 酸雨类型×酸雨酸度 总硫 0.986 0.708 0.987 0.675 时间 <0.001*** 酸雨类型×酸雨酸度×时间 0.995 酸雨类型 0.315 0.340 0.379 0.447 酸雨酸度 0.379 0.049* 0.430 0.121 酸雨类型×酸雨酸度 有效磷 0.768 0.012* 0.648 0.482 时间 <0.001*** 酸雨类型×酸雨酸度×时间 0.159 酸雨类型 0.058 0.246 0.274 0.481 酸雨酸度 <0.001*** 0.012* 0.492 0.104 酸雨类型×酸雨酸度 速效钾 0.809 0.029* 0.651 0.707 时间 0.276 酸雨类型×酸雨酸度×时间 0.534 酸雨类型 0.900 0.959 0.842 0.971 酸雨酸度 0.334 0.383 0.449 0.497 酸雨类型×酸雨酸度 土壤微生物量碳 0.977 0.998 0.989 0.997 时间 <0.001*** 酸雨类型×酸雨酸度×时间 1.000 酸雨类型 0.886 0.820 0.990 0.993 酸雨酸度 0.101 0.171 0.274 0.100 酸雨类型×酸雨酸度 土壤微生物量氮 0.972 0.998 0.994 0.990 时间 <0.001*** 酸雨类型×酸雨酸度×时间 1.000 说明:数值为显著性P值。*P<0.05;**P<0.01;***P<0.001 表 3 结构方程中各因子与微生物量碳氮之间的相关性
Table 3. Correlation of parameters and microbial carbon and nitrogen
自变量 酸雨
pH值土壤酸
根离子土壤
pH有效磷 总碳 微生物
量碳总效应 微生物量碳 0.154 0.025 −0.855 0.204 0.139 间接效应 −0.412 0.065 −0.132 总效应 微生物量氮 0.141 0.009 −0.879 0.201 0.200 0.776 间接效应 0.025 0.032 −0.702 0.158 0.108 -
[1] 徐雪蕾. 间伐对杉木人工林的生长调控作用研究[D]. 北京: 北京林业大学, 2020. XU Xuelei. Regulation of Thinning on the Tree Growth in Chinese Fir Plantations[D]. Beijing: Beijing Forestry University. 2020. [2] 盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1): 1 − 14. SHENG Weitong. On the maintenance of long-term productivity of plantation in China [J]. For Res, 2018, 31(1): 1 − 14. [3] ZHAO Yu, DUAN Lei, JIA Xing, et al. Soil acidification in China: is controlling SO2 emissions enough? [J]. Environ Sci Technol, 2009, 43(21): 8021 − 8026. [4] TU Jun, WANG Hesheng, ZHANG Zifang, et al. Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003 [J]. Atmos Res, 2005, 73(3/4): 283 − 298. [5] LIU Xin, LI Chong, MENG Miaojing, et al. Comparative effects of the recovery from sulfuric and nitric acid rain on the soil enzyme activities and metabolic functions of soil microbial communities [J/OL]. Sci Total Environ, 714: 136788[2022-01-10]. doi: 10.1016/j.scitotenv.2020.136788. [6] HAMER U, POTTHAST K, MAKESCHIN F. Urea fertilisation affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador [J]. Appl Soil Ecol, 2009, 43(2/3): 226 − 233. [7] LIU Xingmei, ZHOU Jian, LI Wanlu, et al. The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure [J]. Environ Sci Pollut Res Int, 2014, 21(10): 6623 − 6631. [8] QIU Qingyan, WU Jianping, LIANG Guohua, et al. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China[J/OL]. Environ Monit Assess, 2015, 187(5): 272[2022-01-11]. doi: 10.1007/s10661-015-4492-8. [9] LING Dajiong, HUANG Qianchun, YING Ouyang. Impacts of simulated acid rain on soil enzyme activities in a latosol [J]. Ecotoxicol Environ Saf, 2010, 73(8): 1914 − 1918. [10] 刘源月, 江洪, 李雅红, 等. 模拟酸雨对杉木幼苗-土壤复合体系土壤呼吸的短期效应[J]. 生态学报, 2010, 30(8): 2010 − 2017. LIU Yuanyue, JIANG Hong, LI Yahong, et al. A short-term effect of simulated acid rain on the soil respiration of the compound system of Chinese fir seedling-soil [J]. Acta Ecol Sin, 2010, 30(8): 2010 − 2017. [11] 周正虎, 王传宽. 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化[J]. 植物生态学报, 2016, 40(12): 1257 − 1266. ZHOU Zhenghu, WANG Chuankuan. Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession [J]. Chin J Plant Ecol, 2016, 40(12): 1257 − 1266. [12] 何容, 汪家社, 施政, 等. 武夷山植被带土壤微生物量沿海拔梯度的变化[J]. 生态学报, 2009, 29(9): 5138 − 5144. HE Rong, WANG Jiashe, SHI Zheng, et al. Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi Mountains, China [J]. Acta Ecol Sin, 2009, 29(9): 5138 − 5144. [13] 漆良华, 张旭东, 周金星, 等. 湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征[J]. 林业科学, 2009, 45(8): 14 − 20. QI Lianghua, ZHANG Xudong, ZHOU Jinxing, et al. Soil microbe quantities microbial carbon and nitrogen and fractal characteristics under different vegetation restoration patterns in watershed northwest Hunan [J]. Sci Silv Sin, 2009, 45(8): 14 − 20. [14] DU Enzai, DONG Dan, ZENG Xuetong, et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China [J]. Sci Total Environ, 2017, 605/606: 764 − 769. [15] 王轶浩, 陈展, 周建岗, 等. 重庆酸雨区马尾松纯林改造对土壤酸化特征及团聚体稳定性的影响[J]. 生态学报, 2021, 41(13): 5184 − 5194. WANG Yihao, CHEN Zhan, ZHOU Jiangang, et al. Effects of transformation of Masson pine forest on characteristics of soil acidification and aggregate stability within polluted areas of Chongqing [J]. Acta Ecol Sin, 2021, 41(13): 5184 − 5194. [16] LIU Xin, ZHANG Bo, ZHAO Wenrui, et al. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region [J]. Sci Total Environ, 2017, 601/602: 669 − 678. [17] 刘鑫. 长三角区域典型林分土壤及树木细根对酸雨的响应[D]. 南京: 南京林业大学, 2018. LIU Xin. Effects of Acid Rain on Soil and Fine Root of Typical Plantation in Yangtze Delta Region[D]. Nanjing: Nanjing Forestry University, 2018. [18] LI Junhui, JIA Chongjian, LU Yin, et al. Multivariate analysis of heavy metal leaching from urban soils following simulated acid rain [J]. Microchem J, 2015, 122: 89 − 95. [19] 房焕英, 肖胜生, 潘萍, 等. 湿地松林土壤生化特性和酶活性对模拟硫沉降的响应[J]. 水土保持学报, 2019, 33(6): 318 − 325. FANG Huanying, XIAO Shengsheng, PAN Ping, et al. Effects of sulphur deposition on soil biochemical properties and enzymes activities in Pinus elliottii plantation [J]. J Soil Water Conserv, 2019, 33(6): 318 − 325. [20] 胡波, 张会兰, 王彬, 等. 重庆缙云山地区森林土壤酸化特征[J]. 长江流域资源与环境, 2015, 24(2): 300 − 309. HU Bo, ZHANG Huilan, WANG Bin, et al. Characteristics of forest soil acidification in Jinyun Mountain area of Chongqing [J]. Resour Environ Yangtze Basin, 2015, 24(2): 300 − 309. [21] 刘俐, 宋存义, 李发生. 模拟酸雨对红壤中硅铝铁释放的影响[J]. 环境科学, 2007(10): 2376 − 2382. LIU Li, SONG Cunyi, LI Fasheng. Release of Si, Al and Fe in red soil under simulated acid rain [J]. Environ Sci, 2007(10): 2376 − 2382. [22] JOERGENSEN R G, ANDERSON T H, WOLTERS V. Carbon and nitrogen relationships in the microbial biomass of soils in beech (Fagus sylvatica L. ) forests [J]. Biol Fertil Soils, 1995, 19(2/3): 141 − 147. [23] 王国兵, 郝岩松, 王兵, 等. 土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J]. 北京林业大学学报, 2006, 28(增刊 2): 73 − 79. WANG Guobing, HAO Yansong, WANG Bing, et al. Influence of land-use change on soil respiration and soil microbial biomass [J]. J Beijing For Univ, 2006, 28(suppl 2): 73 − 79. [24] RAMIREZ K S, CRAINE J M, FIERER N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes [J]. Global Change Biol, 2012, 18(6): 1918 − 1927. [25] 周世兴, 邹秤, 肖永翔, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林土壤微生物生物量碳和氮的影响[J]. 应用生态学报, 2017, 28(1): 12 − 18. ZHOU Shixing, ZHOU Cheng, XIAO Yongxiang, et al. Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the rainy area of west China [J]. Chin J Appl Ecol, 2017, 28(1): 12 − 18. [26] 李素新, 覃志杰, 刘泰瑞, 等. 模拟氮沉降对华北落叶松人工林土壤微生物碳和微生物氮的动态影响[J]. 水土保持学报, 2020, 34(1): 268 − 274. LI Suxin, TAN Zhijie, LIU Tairui, et al. Effects of simulated nitrogen deposition on soil microbial carbon and nitrogen dynamics of Larix principis-rupprechtii plantation [J]. J Soil Water Conserv, 2020, 34(1): 268 − 274. [27] 王宁, 王美菊, 李世兰, 等. 降水变化对红松阔叶林土壤微生物生物量生长季动态的影响[J]. 应用生态学报, 2015, 26(5): 1297 − 1305. WANG Ning, WANG Meiju, LI Shilan, et al. Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest [J]. Chin J Appl Ecol, 2015, 26(5): 1297 − 1305. [28] POTILA H, SARJALA T. Seasonal fluctuation in microbial biomass and activity along a natural nitrogen gradient in a drained peatland [J]. Soil Biol Biochem, 2004, 36(7): 1047 − 1055. [29] LÜ Yanna, WANG Congyan, JIA Yanyan, et al. Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China [J]. Appl Soil Ecol, 2014, 79: 1 − 9. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220132