-
森林群落中优势树种的种群结构及空间分布是当前森林生态学的研究热点。目前,关于种群结构和空间分布的研究大多基于样地初次调查结果,对其动态监测的研究尚不多见,由于缺少长期样地监测数据,其结果存在一定局限性[1]。生态系统的长期监测能够为研究生态系统的演替过程提供可靠的资料[2],为发展和验证现代生态学理论提供平台,对生态系统动态理论的发展具有重要意义[3]。近年来,利用永久监测样地已经成为森林动态研究的主要手段[4]。
细叶青冈Cyclobalanopsis gracilis为壳斗科Fagaceae青冈属Cyclobalanopsis常绿乔木,是中亚热带常绿落叶阔叶混交林主要建群种。木质坚韧,用途多样,具有较高的经济价值和生态效益,广泛分布于华东及湖北、湖南、广东、广西、贵州、四川、甘肃、陕西等省(自治区)。目前,关于细叶青冈的研究主要集中在生理特性、气候响应等方面[5−7],种群结构与空间分布格局的研究较少。本研究基于天目山国家级自然保护区典型常绿落叶阔叶混交林固定样地2012和2017年的调查数据,分析自然状态下常绿落叶阔叶混交林中细叶青冈种群结构和空间分布格局,探讨其动态规律及影响机制,旨在为该区域森林生态恢复、细叶青冈种群发展以及常绿落叶阔叶混交林的保护管理提供科学依据。
-
为监测中亚热带森林生态系统的动态变化,1996年在研究区选择典型常绿落叶阔叶混交林,建立了1块1 hm2(100 m×100 m)的固定监测样地。样地地理位置位为30°20′22″N ,119°25′47″E,海拔为1066.2 m。将样地划分为25个20 m×20 m的小样方,对样地内胸径(DBH)≥10.0 cm的木本植株挂牌编号,记录胸径、冠幅、树高、样方内坐标、生长状况等特征。考虑到小径级个体数量大且对生态过程较为敏感,因此在2012年对样地进行复查时将起测胸径调整为1.0 cm,对样地木本植株进行每木检尺,对新增树木(DBH≥1.0 cm)进行挂牌编号,对死亡个体的状态进行记录。
采用2012和2017年2期调查数据进行比较,分析细叶青冈种群结构与分布格局的动态特征。其中,2012年样地内共记录到木本植物4 369株,隶属44科71属121种,平均树高为3.96 m,平均胸径为5.65 cm;2017年样地内共记录到木本植物4 375株,隶属45科73属113种,平均树高为4.80 m,平均胸径为6.10 cm。样地中的主要树种有细叶青冈、交让木Daphniphyllum macropodum、大果山胡椒Lindera praecox、杉木Cunninghamia lanceolata、中国绣球Hydrangea chinensi、青钱柳Cyclocarya paliurus、短尾柯Lithocarpus brevicaudatus、缺萼枫香 Liquidambar acalycina、微毛柃Eurya hebeclados、宜昌荚蒾Viburnum erosum等。
-
采用径级结构代替年龄结构,根据样地调查数据的实际情况并参考相关文献[10],将细叶青冈胸径(DBH)划分为8个等级:Ⅰ级(1.0≤DBH<2.5 cm)、Ⅱ级(2.5≤DBH<7.5 cm)、Ⅲ级(7.5≤DBH<12.5 cm)、Ⅳ级(12.5≤DBH<17.5 cm)、Ⅴ级(17.5≤DBH<22.5 cm)、Ⅵ级(22.5≤DBH<27.5 cm)、Ⅶ级(27.5≤DBH<32.5 cm)、Ⅷ级(DBH≥32.5 cm)。根据划分的径级结构将细叶青冈种群分为幼苗(Ⅰ级)、幼树(Ⅱ级)、中树(Ⅲ~Ⅴ级)、大树(Ⅵ~Ⅷ级)4个生长阶段。
-
根据新增与死亡株数,分析细叶青冈种群的死亡率[M=(lnN0−lnSt)/T]、更新率[R=(lnNt−lnSt)/T]和种群年增长率(λ=R−M)。其中:N0为某种群在第1次调查时的个体数,Nt为该种群在第2次调查时的个体数,St为该种群在第2次调查时存活的个体数,T为2次调查时间间隔。死亡个体是指复查时死亡或无法找到的植株;新增个体是指2017年调查中新出现的胸径(DBH)≥1.0 cm的个体(将DBH≥5.0 cm的个体作为第1次调查时的漏测个体,因而不计入新增个体)。
-
空间分布格局采用Ripley提出的K(r)函数分析方法[11]:
$$ K(r)=\frac{A}{{{n}^{2}}}{\displaystyle \sum _{i=1}^{n}{\displaystyle \sum _{j=1}^{n}\frac{1}{{w}_{ij}}}}{I}_{r}({u}_{ij}),\;(i \ne {j}) 。$$ 其中:r为以目标树为圆点的取样圆半径;A为样地面积;n为样地树木株数;uij为点i和点j之间的距离,当uij≤r时,Ir(uij)=1;uij≥r时,Ir(uij)=0;wij为边界效应校正系数,是以点i为圆心,uij为半径的圆落在样地面积A中的比例,为一个点可以被观察到的概率。为了更直观地解释实际的空间格局,通常用Ripley’s L(r)函数表示:
$$ L(r) = \sqrt {\frac{{K(r)}}{\text{π} }} - r 。$$ 其中:当L(r)=0时,表示种群在空间尺度r内随机分布;当L(r)<0时,表示种群在空间尺度r内均匀分布;当L(r)>0时,表示种群在空间尺度r内聚集分布。
-
空间分布关联基础函数计算如下:
$$ {K}_{12}(r)=\frac{A}{{n}_{1}{n}_{2}}{\displaystyle \sum _{i=1}^{{n}_{1}}{\displaystyle \sum _{j=1}^{{n}_{2}}\frac{1}{{w}_{i,j}}}}I({u}_{i,j}),\;({i} \ne {j}) 。$$ 其中:K12(r)表示径级1 和径级2之间的K12(r)估计值,n1表示径级1的植物个体数;n2表示径级2的植物个体数。同样,用L12(r)取代K12(r),公式为:
$$ {L_{12}}(r) = \sqrt {\frac{{{K_{12}}(r)}}{\text{π} }} - r 。$$ 其中:当L12(r)= 0、L12(r)<0和L12(r)>0时,分别表示径级1与径级2在空间尺度r下无相关、负相关、正相关。
本研究使用完全空间随机模型。采用Monte-Carlo拟合检验,经过199次重复拟合得到置信度为99%的置信区间,进行结果偏离随机状态显著性检验。若L(r)和L12(r)值在置信区间之内,表示种群呈随机分布或2个径级之间无空间关联;在置信区间之上,表示种群呈聚集分布或2个径级之间呈空间正相关;若在置信区间之下,表示种群呈均匀分布或2个径级之间呈空间负相关。为减小边缘校正对数据的影响,将分析尺度限定在0~25 m,步长为1 m,数据分析过程通过生态学软件Programita[12]完成。
-
2012年样地内记录到细叶青冈共276株,2017年为291株,较2012年增加15株,种群年增长率为1.06%,种群个体总数变化不大。5 a间,样地内新增个体40株,占2012年细叶青冈种群总个体数的14.49%,死亡个体25株,占2012年细叶青冈种群总个体数的9.06%。细叶青冈种群平均胸径从10.65 cm增加到10.82 cm,胸高断面积从4.71 m2·hm−2增加到5.15 m2·hm−2(表1)。
表 1 细叶青冈种群数量特征
Table 1. Quantitative characteristics of C. gracilis population
调查年份 总个体
数/株死亡个
体数/株新增个
体数/株平均胸
径/cm胸高断面积/
(m2·hm−2)2012 276 10.65 4.71 2017 291 25 40 10.82 5.15 -
2次调查中细叶青冈种群龄级结构均呈倒“J”型(图1),低龄个体占比较高,2012和2017年细叶青冈种群幼苗、幼树(Ⅰ~Ⅱ龄级)个体数分别占总个体数的53.99%和54.64%,随着龄级的增加,个体数量逐渐减少,表明种群具有较高的更新苗木储备,属于增长型种群。2017年从Ⅰ龄级进入Ⅱ龄级的个体有20株·hm−2,从Ⅱ龄级进入Ⅲ龄级的个体有11株·hm−2,从Ⅲ龄级进入Ⅳ龄级的个体有8株·hm−2,从Ⅳ龄级进入Ⅴ龄级的个体有7株·hm−2,从Ⅴ龄级进入Ⅵ龄级的个体有6株·hm−2,从Ⅵ龄级进入Ⅶ龄级的个体有7株·hm−2,从Ⅶ龄级进入Ⅷ龄级的个体有4株·hm−2,除Ⅰ、Ⅳ龄级个体由于生长进入下一龄级的数量较多,而达到径阶的新增个体不足,导致个体数下降外,其余龄级个体数均有增加。5 a间,由于个体生长进阶补充,细叶青冈种群总个体数有一定变化,但龄级结构变化不显著,龄级结构保持随龄级升高,存活个体数减少的趋势,种群处于稳定增长的状态。
-
种群年死亡率为1.90%,年更新率为2.96%。从不同龄级死亡个体的情况看,死亡与新增个体的龄级分布均呈倒“J”型,不同龄级死亡与新增个体数差异较大(图2)。死亡个体平均胸径为6.68 cm,集中在幼苗、幼树阶段(Ⅰ~Ⅱ龄级),死亡个体数为19株,占死亡总个体数的76.00%,表明低龄级个体间竞争激烈,死亡率高;Ⅲ龄级死亡个体数为3株,占死亡总个体数的12.00%,Ⅳ、Ⅴ龄级无死亡个体,Ⅵ、Ⅶ龄级死亡个体数分别为1和2株,仅占死亡个体数的4.00%和8.00%,说明高龄级个体死亡相对较少。新增个体平均胸径2.34 cm。Ⅰ龄级的新增个体数最多,为26株,占新增个体总数的65.00%,Ⅱ龄级新增个体14株,占新增个体总数的35.00%,Ⅲ~Ⅷ龄级无新增个体。总体来看,死亡与新增个体均集中分布在低龄级,且随龄级增加总体呈下降趋势。
-
对天目山细叶青冈种群进行点格局分析发现(图3):不同生长阶段细叶青冈种群的空间分布格局有所差异。2012年,细叶青冈种群整体在0~21 m空间尺度内呈显著的聚集分布,在22~25 m空间尺度内呈随机分布,其最高聚集强度为3.013,对应空间尺度为1 m;幼苗在0~18 m空间尺度呈显著的聚集分布,在19~25 m空间尺度呈随机分布,其最高聚集强度为4.425,对应空间尺度为3 m;幼树在0~11 m空间尺度呈聚集分布,在12~16 m空间尺度呈随机分布,随着空间尺度的增加在17~25 m空间尺度又转为聚集分布,其最高聚集强度为3.621,对应空间尺度为1 m;中树在0~25 m空间尺度均呈显著聚集分布,其最高聚集强度为4.231,对应空间尺度为23 m;大树仅在0~1、4~5 m空间尺度呈聚集分布,2~25 m空间尺度呈随机分布,其最高聚集强度为2.327,对应空间尺度为5 m。2017年细叶青冈幼苗聚集程度较2012年有所降低,在0~12 m空间尺度呈聚集分布,在13~25 m空间尺度呈随机分布;幼树聚集程度有所提高,在0~25 m空间尺度均呈聚集分布;中树空间分布较2012年小尺度范围聚集强度减弱,大尺度范围聚集强度增强,具体表现为在0~5 m空间尺度呈聚集分布,在6 m空间尺度呈随机分布,13~25 m空间尺度呈聚集分布;大树随机分布强度较2012年有所增强。总体来看,细叶青冈种群整体呈聚集分布,且随着龄级的增加逐渐转为随机分布。
-
种群各生长阶段之间的空间关联能够直观体现种内关系的变化趋势,对了解不同林层之间的相互作用和种群稳定性变化具有重要意义[13−14]。对细叶青冈种群不同生长阶段的空间关联性进行分析发现(图4):2012年,幼苗与幼树在1~11 m空间尺度呈正相关,12~22 m空间尺度为无相关,23~25 m空间尺度为负相关;幼苗与中树在1~4 m空间尺度为正相关,5~25 m空间尺度为无相关;幼苗与大树在1~2、4~5 m空间尺度为正相关,3、6~25 m空间尺度为无相关;幼树与中树在1~10、21~25 m空间尺度为正相关,11~20 m空间尺度为无相关;幼树与大树在1~6 m空间尺度为正相关,7~25 m空间尺度为无相关;中树与大树在1~3 m空间尺度为正相关,4~21 m空间尺度为无相关,22~25 m空间尺度为负相关。2017年,细叶青冈种群各生长阶段两两空间关联趋势与2012年保持一致,幼苗与幼树、幼苗与大树、幼树与中树、中树与大树空间正相关较2012年有所增强。2017年,幼苗与幼树在0~11、13~18 m空间尺度呈显著正相关,幼苗与大树在0~8 m空间尺度呈显著正相关,幼树与中树除了11、14~15 m空间尺度外,在其他空间尺度均呈显著正相关。从整体来看,细叶青冈种群各生长阶段之间的空间关联均在小尺度呈正相关,随着尺度的增加过渡到无相关或负相关。
-
种群龄级结构能清晰地反映种群的生存状态,对预测种群动态具有重要意义[15]。由2次调查结果可知:2012—2017年细叶青冈种群总个体数上升,平均胸径增大。龄级结构无显著变化,均表现为倒“J”型。随着龄级的增大,个体数呈下降趋势,各径级无个体缺失,是典型的增长型种群。5 a间细叶青冈种群死亡个体共25株,年死亡率为1.90%,新增个体共40株,年更新率为2.96%,新增个体的平胸径均较小,说明群落更新状况良好。种群年更新率高于死亡率,种群年增长率为1.06%,表明细叶青冈种群目前处于稳定发展状态,在未来短时间内个体数量不会发生较大幅度的变化。
种群个体的更新和死亡是种群结构变化的重要方式,体现种群种内竞争及其对环境的适应。细叶青冈种群不同龄级死亡个体数量差异明显,死亡个体多以小径级为主,这可能与低龄个体的生存竞争及环境筛选有关。细叶青冈虽为耐阴树种,但随着幼苗、幼树对光照、养分的需求不断增加,除了低龄个体间的相互竞争,还要与大树及其他树种个体争夺空间和养分,一定程度上阻碍了幼苗、幼树顺利进入林冠层[16];中树阶段由于个体处于生长旺盛期,在竞争中处于优势地位,同时因为达到林冠层,光照需求不再受到抑制,死亡率相对较小[17];进入生长末期后,细叶青冈接近生理死亡年龄,种群死亡率随之升高。
-
种群分布格局既受自身生物学特性和外部环境影响,同时与空间尺度密切相关[18−19]。通常在小尺度范围种群的空间分布主要受到种群自身生物学特性的影响,而在较大尺度上则更多受到生境异质性的影响[20]。本研究对细叶青冈种群各龄级的空间分布格局进行分析表明:2次调查的空间分布格局类似,均在幼苗、幼树、中树阶段呈聚集分布,而在大树阶段呈随机分布,与蔡飞[21]对青冈Cyclobalanopsis glauca种群空间分布格局的研究结果一致,表明青冈属植物具有相似特性。这主要与细叶青冈自身的生物学特性及种群发育过程中因密度制约因素引起的种内种间竞争有关。一方面,由于根系萌蘖和种子的散布特点,细叶青冈幼苗基本聚集在母树周围,所以低龄阶段多呈聚集分布。另一方面,聚集分布能更好地改变微气候和小生境,有利于幼苗、幼树个体间的相互庇护,增强种群对不良环境的抗性[22],因此低龄个体常聚集分布。随着龄级的增大,密度制约引起种内竞争加剧,导致种群个体死亡增加,密度下降,故中树转变为大树后趋向随机分布。这种空间分布格局有利于将有限的环境资源的最大化利用,使植物个体满足自身的生存和发展,体现种群生长过程中对环境适应的生存策略及适应机制[23−24]。
-
同一物种不同生长阶段间的空间正关联来源于对环境的共同适应性,负关联来源于个体间的相互竞争排斥。细叶青冈种群各生长阶段均在小尺度范围内呈显著的正相关,随着尺度的增加过渡到无相关或负相关。种群空间格局与空间尺度的这种联系,可能与种内关系对空间尺度的依赖性有关[25]。同时,种群不同龄级间的空间关联性与龄级的差距有关。在小尺度范围内,种群个体间龄级差距越小,正关联性越强。细叶青冈幼苗与幼树的空间正相关大于幼苗与中树、大树,幼树与中树的空间正相关大于幼树与大树,说明幼苗与幼树对环境资源的选择具有一致性,所以在小尺度空间分布上表现为相互依存的关系。中树、大树可以为耐阴幼苗的生长提供较好的生存环境,因此幼苗与幼树、中树、大树在一定尺度范围内表现为空间正相关。然而这种空间关联可能会随着演替进程而发生变化,随着个体继续生长,细叶青冈个体抵御外界的胁迫能力增强,对空间资源及养分需求随之增加,导致竞争关系逐渐加强,使得中树与大树在大尺度表现为空间负相关。
-
本研究基于2012和2017年天目山常绿落叶阔叶混交林1 hm2固定监测样地2期调查资料,分析了细叶青冈种群结构和空间分布格局的动态变化。研究发现:天目山常绿落叶阔叶混交林中细叶青冈种群自然更新良好,处于稳定增长状态;2次调查种群的空间分布格局类似,整体呈聚集分布,随着龄级的增加,种群的空间格局由聚集分布转为随机分布。各生长阶段间的空间关联在小尺度空间呈正关联,且在小尺度一定范围内,龄级差越小,正关联性越强。这是细叶青冈种子散布特性、种内种间竞争及环境等多种因素共同作用的结果,体现细叶青冈种群生长过程中的一种生存策略和适应机制。种群在生长过程中对环境干扰较为敏感,低龄个体因聚集分布受密度制约而竞争激烈,幼苗幼树阶段死亡率较高。为维持种群的长期稳定,必要时可以分阶段进行人工调控。5 a间,种群中虽然有部分个体死亡与新增,但种群结构与空间分布格局没有发生显著变化,说明自然状态下细叶青冈种群结构与空间分布格局的变化是一个漫长的过程,研究其种群结构和空间分布格局动态需要更长的观测周期,对其进行持续性监测研究。同时,因为生态过程受多种因素影响,不仅与种群本身生物学特性有关,还可能与群落区域小生境、种间竞争、演替进程等因素有关,需要对这些方面进一步深入分析,以更好地掌握细叶青冈种群结构与空间分布的动态变化规律。
Population structure and spatial distribution pattern of Cyclobalanopsis gracilis in the evergreen and deciduous broad-leaved forest in Mount Tianmu
-
摘要:
目的 细叶青冈Cyclobalanopsis gracilis是中亚热带森林主要构成树种,也是天目山国家级自然保护区常绿落叶阔叶混交林的优势树种之一。研究自然状态下天目山常绿落叶阔叶混交森林群落中细叶青冈种群结构和空间分布格局,探讨其动态规律及其影响机制,对该区域森林生态恢复、细叶青冈种群发展以及常绿落叶阔叶混交林的保护管理等具有重要意义。 方法 基于天目山常绿落叶阔叶混交林1 hm2 (100 m×100 m)固定监测样地2012和2017年2期调查数据,从种群数量特征、龄级结构及空间分布等方面分析细叶青冈种群结构与分布格局的动态变化特征。 结果 ①2012—2017年细叶青冈种群个体从276株增加到291株,死亡个体共25株,新增个体共40株,种群年增长率为1.06%。种群平均胸径从10.65 cm增加到10.82 cm,胸高断面积从4.71 m2·hm−2增加到5.15 m2·hm−2。②细叶青冈种群年龄结构呈倒“J”型,种群自然更新良好,种群结构稳定。③细叶青冈种群新增与死亡个体集中分布在幼苗幼树阶段 (Ⅰ~Ⅱ龄级),且随龄级增加总体呈下降趋势。④细叶青冈整体呈聚集分布,随着龄级的增加转为随机分布。相比2012年,2017年幼苗聚集强度有所减弱,幼树、中树聚集强度稍有增强。⑤各生长阶段间的空间关联均在小尺度表现为正相关,随着尺度的增加过渡到无相关或负相关,2017年除幼树与中树、幼树与大树外,其余生长阶段间的空间正相关稍有增强。 结论 天目山常绿落叶阔叶混交林中细叶青冈种群属于稳定增长型种群,种群整体呈聚集分布,各生长阶段间的空间关联在小尺度空间呈正关联,体现细叶青冈生长发育过程中的一种生存策略和适应机制。5 a间种群结构及空间分布格局变化不显著,幼龄个体因聚集分布受密度制约而竞争激烈。为维持种群的长期稳定,必要时可分阶段进行人工调控。图4表1参25 Abstract:Objective Cyclobalanopsis gracilis is the main tree species in central subtropical forests and one of the dominant tree species in the evergreen deciduous broad-leaved mixed forest in National Nature Reserve of Mount Tianmu. The purpose is to investigate the population structure and spatial distribution pattern of C. gracilis in forest communities under natural conditions, as well as its dynamic law and impact mechanism, which is of great significance for forest ecological restoration, development of C. gracilis population, and conservation and management of the evergreen deciduous broad-leaved mixed forest in the study area. Method Based on the survey data in the fixed monitoring sample plots of 1 hm2(100 m×100 m) of the evergreen deciduous broad-leaved mixed forest in Mount Tianmu in 2012 and 2017, the dynamic variation characteristics of population structure and distribution pattern of C. gracilis were analyzed from the aspects of population quantity characteristics, age class structure and spatial distribution. Result (1) From 2012 to 2017, the individual population of C. gracilis increased from 276 to 291, with 25 dead individuals and 40 new individuals. The annual population growth rate was 1.06%. The average diameter at breast height (DBH) of the population increased from 10.65 cm to 10.82 cm, and the basal area increased from 4.71 m2·hm−2 to 5.15 m2·hm−2. (2) The age structure of C. gracilis population showed an inverted “J”shape, with a good natural regeneration and stable population structure. (3) The new and dead individuals of C. gracilis population were concentrated in the seedling and young stage (Ⅰ−Ⅱ age classes ), and showed a downward trend with the increase of age class. (4) The distribution of C. gracilis population was aggregated as a whole, and changed to random distribution with the increase of age class. The aggregation intensity of seedlings in 2017 decreased compared with 2012, while the aggregation intensity of young and middle trees was slightly enhanced. (5) The spatial correlation between each growth stage was positively correlated at a small scale, and transitioned to no correlation or negative correlation with the increase of scale. In 2017, the spatial positive correlation between the other growth stages was slightly enhanced except for seedlings and middle trees, young and big trees. Conclusion The population of C. gracilis in the evergreen and deciduous broad-leaved mixed forest of Mount Tianmu belongs to the stable growth type, and is clustered as a whole. The spatial correlation between different growth stages is positively correlated in small-scale space, reflecting a survival strategy and adaptive mechanism in the development of C. gracilis population. There is no significant change in population structure and spatial distribution pattern during the five years. The aggregation distribution of young individuals is restricted by density and the competition among young individuals is intense. To maintain long-term stability of the population, artificial control can be carried out in stages if necessary. [Ch, 4 fig. 1 tab. 25 ref.] -
放牧是草地的主要利用方式之一,主要通过牲畜的采食、践踏、卧息和排泄粪便等方式对地表植被、土壤养分以及土壤微生物产生影响[1]。土壤微生物在有机质的分解、养分循环与转化等方面具有重要作用[2],其数量和群落功能多样性能够在一定程度上指示土壤质量及其可持续利用性[3]。研究放牧与土壤微生物的关系,有助于揭示过度放牧导致草场沙漠化的机制。根际是植物、土壤、微生物之间进行物质和能量交换的关键区域,是植物和土壤相互作用的重要界面,诸多学者对植物根际与非根际土壤的养分、微生物数量及群落组成的差异性开展了大量的研究[4-7]。邱权等[8]综合比较了4种人工灌木丛根际和非根际土壤的特性,发现土壤酶活性和微生物数量呈现出根际高于非根际;对宁夏宁南山区猪毛蒿Artemisia scoparia,百里香Thymus mongolicus等9种典型植物[9]和内蒙古羊草Leymus chinensis,大针茅Stipa grandis和冷蒿Artemisia frigida等典型植物[10]进行研究,表明大多数植物的根际土壤微生物数量、活性及多样性等均高于非根际土壤,是由于植物物种差异所引起。冷蒿是菊科Compositae蒿属Artemisia植物,多年生小半灌木,是退化草场的典型植物,具有强烈的耐牧生存能力,高强度放牧干扰后仍能够生长繁殖并维持一定的生产力,这与其自身的生物学特性[11]及根系代谢产物[12]对土壤微环境的调控密切相关。目前,关于放牧干扰对冷蒿根际土壤微生物群落多样性影响的研究尚未报道。本研究拟采用微生物传统培养法和Biolog-ECO板技术,对不同放牧强度下冷蒿根际土壤化学性质、微生物数量及其群落功能多样性进行研究,分析冷蒿根际土壤微生物数量及代谢功能多样性对放牧干扰的响应,探讨冷蒿耐牧性与土壤微生物群落多样性之间的关系,为揭示冷蒿成为草场退化阻击者提供土壤生态学方面的理论依据。
1. 材料与方法
1.1 研究地区概况
本研究依托内蒙古锡林浩特市毛登牧场(内蒙古大学草地生态学研究基地)进行,其地理位置为44°10′02.4″ N,116°28′56.8″ E,海拔1 160 m,属半干旱大陆性气候,冬季寒冷干燥,夏季在一定程度上受海洋季风气候影响。全年平均气温为-0.4 ℃,最冷月(1月)平均气温-22.3 ℃,最热月(7月)平均气温18.8 ℃,≥0 ℃年积温为2 410 ℃,≥10 ℃积温为1 597.9 ℃,无霜期91 d,草场植物生长期为150 d左右。全年平均降水量为365.6 mm,集中于6-9月,占年降水量的80%左右,但年度间的变幅较大,多雨和少雨的年份降水量相差1倍以上。该地雨热同期,有利于植物的生长,土壤为栗钙土。本研究区域主要草原植物为羊草,糙隐子草Cleistogenes squarrosa,克氏针茅Stipa krylovii,大针茅,防风Saposhnikovia divaricata,冷蒿,瓣蕊唐松草Thalictrum petaloideum,阿尔泰狗哇花Heteropappus altaicus等。
1.2 样地设置及土样采集
1.2.1 试验设计
于2012年5月至2014年7月连续2 a对草场进行不同放牧强度处理,每年放牧时间为5-9月。试验按照放牧强度设置不放牧为对照(ck),5月和7月每月21日放牧1 d为轻度放牧(light grazing,LG),5-9月每月21日放牧1 d为重度放牧(heavy grazing,HG),3个处理;受天气因素的影响,每次放牧时间延后。分别设置重复3个·处理-1,面积为33.3 m × 33.3 m·小区-1。试验用羊为当年生乌珠穆沁羊Capra hircus ‘Ujimqin’,各个放牧季节羊放牧率为6只·小区-1。
1.2.2 土壤样品的采集与保存
土壤样品采集于2014年7月冷蒿生长高峰期,在各个小区采用5点取样法。随即选取4~5丛冷蒿,以冷蒿株丛为中心,将冷蒿纯植株丛完整挖起(0~10 cm),轻轻抖动根系并去除粘附在根系上的较大颗粒土,作为冷蒿非根际土壤(NRS),采集粘附在根际上根系表面的土壤作为冷蒿根际土壤(ARS)。各个小区采集的土壤混合在一起作为该小区样地的土样,各个小区用5点取样法采样2次以获得同一小区的2份土样。将土壤装入无菌封口塑料袋,带回实验室。土样分成2份,1份于4 ℃保存,用于可培养微生物的分离、计数及Biolog-ECO板测定,另1份风干过2 mm筛,用于测定土壤理化性质。
1.2.3 微生物分离与记数
土壤可培养微生物数量(colony forming units,cfu)用稀释平板法分离计数。细菌采用牛肉膏蛋白胨固体培养基;真菌采用马丁培养基;放线菌采用高氏1号培养基,30 ℃恒温培养,细菌培养1 d后计数,真菌、放线菌培养3 d后计数。
1.2.4 微生物代谢功能多样性测定
土壤微生物代谢功能多样性采用Biolog-ECO板方法进行分析。称取新鲜土样1 g于9 mL磷酸缓冲液中,在摇床上震荡30 min,在接种前按10倍稀释法制成10-4土壤稀释液,使用8通道移液器,从V型槽中吸取150 μL稀释液至ECO板的微孔中,接种后的板置于30 ℃恒温培养,每隔24 h在Biolog读板仪上用Biolog Reader 4.2软件(Biolog,Hayward,CA,美国)读取590 nm波长的吸光度D(590),培养时间为168 h。
1.3 土壤理化性质测定
测定参照鲁如坤[13]的土壤农化分析方法进行。有机质(organic matter,OM)采用重铬酸钾容量法;全氮(total nitrogen,TN)采用半微量凯氏定氮法;碱解氮(hydrolysis nitrogen,HN)采用碱解扩散法;全磷(total phosphorus,TP)采用氢氧化钠碱溶-钼锑抗比色法;速效磷(available phosphorus,AP)采用碳酸氢钠浸提钼锑抗比色法;全钾(total potassium,TK)采用氢氧化钠碱溶-火焰光度法;速效钾(available potassium,AK)采用乙酸氨浸提-火焰光度法;pH值采用酸度计法,土壤悬液为水土比为m(水): m(土)=5:1。
1.4 数据处理
土壤微生物群落利用碳源的整体能力(即代谢活性)用平均孔颜色变化率(average well color development,AWCD)表示。AWCD=[∑(Ci-R)]/n,其中:Ci为测定的31个碳源孔吸光值,R为对照孔吸光值,n为碳源数目。土壤微生物群落功能多样性采用Shannon指数、Simpson指数、丰富度指数和McIntosh指数进行分析。
所有的数据均为5次重复的平均值±标准误差,利用Origin 8软件(美国Origin Lab公司)对96 h的AWCD值进行统计分析和作图。统计方法采用单因素方差分析(one-way ANOVA)进行检验,并进行Fisher最小显著差数法(LSD)多重比较(P<0.05)。采用双因素方差分析(two-way ANOVA)分析土壤×放牧处理之间相互作用的影响,利用SPSS 16.0进行主成分分析[14]。
2. 结果与分析
2.1 不同放牧强度下土壤部分化学性质的变化
由表 1可知:放牧对2种土壤中的有机质、全磷、碱解氮、速效钾和pH值具有极显著影响,对全氮和全钾具有显著影响。放牧特别是重度放牧后,NRS土壤中各养分质量分数均显著增加,pH值显著下降;ARS土壤中有机质和其他养分质量分数均显著增加,重度放牧后,有机质、全氮、全磷、碱解氮、速效磷和速效钾与对照相比分别增加20.0%,29.1%,17.7%,13.0%,3.4%和6.7%,但pH值显著降低,重度放牧后呈弱碱性;相同放牧处理下ARS土壤各养分质量分数均显著高于NRS土壤,pH值明显低于NRS土壤。
表 1 不同放牧强度下土壤化学性质Table 1. Soil chemical properties under different grazing intensity2.2 不同放牧强度下土壤微生物的组成
不同放牧强度下2类土壤中微生物的总量、主要类群数量差异显著(图 1),微生物总量以LG-ARS和ck-ARS最高,分别为24.6×106个(cfu)·g-1和20.4×106个(cfu)·g-1,显著高于其他处理组。三大类异养微生物数量在各土壤微生物组成中均以细菌类群占绝对优势,但细菌、真菌、放线菌间的组成比例差异较大,其中细菌占微生物总数88%~95%,放线菌其次,占微生物总数的3%~12%,真菌最少。放牧后NRS土壤中细菌、真菌数量显著下降,而ARS土壤中真菌数量增加显著,且显著高于NRS,细菌数量在轻度放牧后显著增加,重度放牧后下降。
2.3 土壤微生物群落代谢活性的变化
图 2为土壤微生物群落代谢活性(AWCD)随培养时间的变化曲线:在培养初始的24 h内土壤微生物活性较低,24 h后AWCD值快速增长,168 h时各处理的AWCD值均达到最大,利用碳源能力的顺序为LG-ARS>ck-ARS>ck-NRS>LG-NRS>HG-ARS>HG-NRS,平均值分别为0.999,0.918,0.861,0.769,0.695,0.310;相同牧压下ARS土壤微生物的AWCD值均显著高于NRS,对照、轻度和重度放牧后AWCD值分别是NRS的1.07倍、1.30倍和2.24倍。
2.4 土壤微生物对不同类型碳源利用强度分析
放牧强度不同,土壤微生物对不同种类碳源利用强度存在显著差异(表 2);冷蒿根际土壤中,轻度放牧可增加微生物对不同种类碳源的利用能力,碳源代谢的优势群落与对照相同,依次为糖类>氨基酸>羧酸>聚合物>胺类>酚酸代谢群落,土壤微生物群落结构稳定;重度放牧后,微生物对各类碳源的利用率显著下降,优势群落发生改变;冷蒿非根际土壤中,放牧强度增强,土壤微生物对不同种类碳源利用率变化较大,未显示一定的规律性,土壤微生物群落功能多样性变化很大,不稳定。
表 2 不同放牧强度下土壤微生物群落对6类碳源的利用(96 h)Table 2. Effect of soil microbial on the ability to utilize six types carbon source under different grazing intensity (96 h)2.5 土壤微生物群落功能多样性指数分析
随放牧强度的增加,冷蒿根际和非根际土壤微生物的4种指数均显著降低(表 3)。Shannon指数和碳源利用丰富度指数表明放牧降低微生物群落功能多样性,减少碳源的利用数目,而冷蒿根际土壤微生物种类多且较均匀,利用的碳源数量较多;冷蒿根际土壤的Simpson指数显著高于非冷蒿根际,表明冷蒿能够显著提高优势菌的数量,削弱放牧对常见微生物物种的不良影响;LG-ARS和HG-ARS的McIntosh指数显著高于LG-NRS和HG-NRS,说明LG-ARS和HG-ARS的土壤微生物种类更为丰富,碳源利用程度较高;重度放牧后McIntosh指数最低,表明过度放牧会降低土壤微生物种类丰富度和碳源利用程度。
表 3 不同放牧强度下土壤微生物群落功能多样性指数比较(96 h)Table 3. Functional diversity indices for soil microbial community under different grazing intensity (96 h)2.6 不同放牧强度下土壤微生物碳源利用的主成分分析
运用SPSS软件对培养96 h测定的AWCD数据进行主成分分析,得到2个与土壤微生物利用碳源多样性相关的主成分,累计贡献率达到69.3%。其中第1主成分(PC1)的方差贡献率为52.1%,权重最大,第2主成分(PC2)贡献率为17.2%。因其他主成分贡献率较小,因此只用PC1和PC2得分作图来表征微生物群落碳源代谢特征(图 3)。由图 3可知:不同处理在PC轴上出现明显的分布差异,HG-ARS位于PC1负方向,得分系数为-0.308,其他处理均位于PC1正方向,得分系数为0.160~1.030;HG-NRS位于PC2负方向,得分系数为-0.357,其他处理位于PC2正方向,得分系数范围为0.300~0.950。可见,提取的2个主成分基本上能够区分不同放牧强度ARS和NRS土壤类别的微生物群落功能多样性。另外,将主成分PC1和PC2的得分系数与31种单一碳源做相关性分析,其中与PC1相关的碳源有16种,其中11个呈负相关,主要是糖类、羧酸类和聚合物,肝糖与PC1显著负相关;5个呈正相关,主要是氨基酸类和胺类。与PC2相关的碳源有17种,其中15种呈正相关,主要是糖类和羧酸类碳源,L-苯丙氨酸与其相关性显著。可见羧酸类和氨基酸类碳源在主成分分离中具有主要贡献作用。
3. 讨论
3.1 放牧对冷蒿根际土壤养分的影响
土壤养分是土壤健康状况的重要指标,放牧对土壤有机质、元素循环产生影响。对中国西藏高原高山草甸[15]、科尔沁沙漠化草地[16]、松嫩平原羊草草甸[17]和玉树隆宝滩地区高寒草甸[18]的研究中均发现土壤有机质质量分数在放牧后显著降低,但是REEDER等[19]和WIENHOLD等[20]的研究结果与之相反,认为放牧能够增加土壤中的有机质等。安慧等[21]认为放牧过程动物通过粪便将消耗的植物养分大部分返还到土壤中,增加土壤碳氮输入,使有机质、氮素和速效钾、速效磷等增加。本研究结果与上述研究结果相似,放牧后土壤中有机质、全氮、全磷、全钾、碱解氮、速效钾和速效磷等增加,土壤pH值下降。同时,本研究还发现冷蒿根际土壤中有机质、全氮、碱解氮、速效磷和速效钾等养分显著高于非根际,而土壤的pH值显著低于非根际(P<0.05),冷蒿的生长能够有效改善土壤健康状况,降低放牧对土壤的扰动,可能是由于冷蒿的生物量、盖度、根茎比与牧压成正比[22],较大的根茎比增加了碳素等向地下的分配量[23],使得土壤中各化学组分的量增加;根系分泌大量的酸性物质[12],降低土壤pH值的同时增加各种元素的可溶性和可被利用性。
3.2 放牧对冷蒿根际土壤微生物数量的影响
关于放牧对草原土壤微生物影响的研究很多,但结果不一致。WANG等[24]在美国佛罗里达州一草地的研究结果表明,放牧草地土壤微生物数量显著高于未放牧草地,停止放牧微生物数量也随之下降;BARDGETT等[25]研究表明:放牧能增加高原草地土壤的微生物量。有更多研究认为,适度放牧有助于土壤微生物数量的增加,过度放牧则会导致微生物数量显著降低[26]。与此类研究结果不同,本研究中放牧干扰降低了非根际土壤微生物数量,但冷蒿的生长却使土壤微生物数量在放牧后显著升高,并且相同放牧强度下,冷蒿根际微生物的数量均高于非根际(图 1)。表明冷蒿的生长能够降低放牧对土壤微生物产生的干扰,使土壤微生物能够较正常的生长繁殖,这可能是冷蒿在放牧后较其他草原植物仍能生长良好引起的。冷蒿被动物践踏破坏顶端优势后,其半匍匐型枝条生成不定根进行克隆生长[22, 27],其发达的根系及丰富的根系分泌物能够为土壤微生物提供丰富的生长基质和有利的生存环境,丰富了土壤微生物的能量来源。另外,冷蒿地上茎叶部分常释放出具有抑制动物采食、其他牧草种子萌发、幼苗生长和繁衍能力的挥发性物质,增强冷蒿的生存竞争力[28-29],这些特性为构建稳定土壤生态群落提供了坚实基础。冷蒿的良好生长为土壤微生物提供了良好的生存环境以及丰富的碳源,而对非根际土壤微生物来说土壤微环境破坏严重且可用的碳源较少而不能大量繁殖。本研究表明:土壤微生物量与冷蒿的有无具有密切关系,冷蒿能够为微生物提供相对稳定的微生态环境以及相对丰富的土壤养分,降低放牧对土壤的扰动,使土壤微生物量显著升高。
3.3 放牧对冷蒿根际土壤微生物群落功能多样性的影响
本试验采用Biolog-ECO板技术对内蒙古典型草原不同放牧强度下冷蒿根际和非根际土壤微生物功能多样性进行了研究,结果显示放牧后土壤微生物活性、4种微生物多样性指数及碳源利用能力均显著下降。导致微生物群落功能多样性下降的可能原因是放牧改变了地表植被多样性,使输入地下的植物残体、根系分泌物成分改变,加之牧畜践踏增强对土壤团聚体及地表的破坏,改变了土壤结构,使土壤微生物生境改变,从而影响土壤微生物的活性及群落多样性。当前,诸多研究证明草地利用、管理条件和植被类型的变化能显著改变土壤微生物群落组成、活性及功能多样性[30]。张海芳等[31]对内蒙古贝加尔针茅草原在放牧、刈割和围封等3种不同利用方式下土壤微生物功能多样性进行研究,发现放牧后土壤微生物代谢活性降低,但功能多样性增强;刈割与放牧方式下微生物群落碳源利用情况及代谢功能相似,而围封土壤微生物群落代谢活性最高,碳源利用模式及代谢强度也不同于放牧和刈割。李玉洁等[32]认为随着休牧年限增加,贝加尔针茅草原土壤微生物的代谢功能增强,数量增大;毕江涛等[33]研究荒漠草原5种不同植被类型土壤微生物活性、主要利用碳源类型、群落功能多样性均存在显著差异。可见,植物根际土壤微生物多样性不仅随着利用方式改变,还随着植物类型改变,具有很强的植物种的特异性。
本研究还发现:不同放牧强度处理下冷蒿根际土壤微生物活性、碳源利用能力及功能多样性等都高于非根际土壤。主成分分析表明:对照和轻度放牧后冷蒿根际与非冷蒿根际土壤差异不显著,重度放牧后两者差异显著,羧酸类和氨基酸类碳源在分异中起重要作用,植被类型和多样性的改变影响微生物的碳源利用,尤其体现在对这两类碳源的利用上[34-35]。其中羧酸类和氨基酸类碳源是根系分泌物的主要成分,分别与植物抗胁迫和土壤养分有效性有关[36]。根际土壤与非根际土壤微生物之间的差异与植物凋落物和根系分泌物息息相关,植物凋落物和根系分泌物是土壤微生物生长基质和有利环境的提供者。而不同植物的凋落物和根系分泌物化学组分差异很大[37],是植被类型影响土壤微生物活性及功能类群的主要推进力量[38]。王纳纳等[10]对内蒙古草原典型植物对土壤微生物群落影响的研究发现,植物不同土壤微生物群落组成不同,并且土壤微生物群落结构在根际和非根际间的差异大于不同物种间的差异,说明植物根际和非根际土壤性质和微生物群落功能多样性存在巨大不同。杨阳等[7]对宁夏荒漠草原不同植物根际与非根际微生物量分布特征的研究也发现,长芒草Stipa bungeana,蒙古冰草Agropyron mongolicum,甘草Glycyrrhiza uralensis等6种地带性优势植物根际土壤微生物量显著高于非根际土壤。滕应等[39]发现矿区土壤根际微生物数量、群落功能多样性、碳源利用类型及群落结构因种植牧草种类不同而发生相应变化,且根际土壤微生物代谢活性均显著高于非根际土壤。
4. 结论
本研究结果表明:放牧处理后,在冷蒿根际和非根际土壤化学性质、微生物量、群落结构和代谢功能上存在不同程度的差异。冷蒿根际土壤微生物量、代谢活性、碳源利用能力和多样性指数均高于非根际。LG-ARS微生物代谢活性最高,ck-ARS微生物多样性指数最高,对31种碳源利用最强,而HG-NRS微生物多样性指数均最低。冷蒿根际土壤微生物优势代谢群落为糖类、氨基酸类和羧酸类,相对稳定,而非根际优势代谢群落变化较大,不稳定。放牧处理后,冷蒿根际土壤pH值均低于pH 8.0,土壤养分均高于非根际。总之,冷蒿的“纯植株丛”生长方式能够改善土壤微环境,增加其根际土壤微生物群落功能多样性,从而增强抵抗放牧胁迫的能力,成为草场的优势群落。
-
表 1 细叶青冈种群数量特征
Table 1. Quantitative characteristics of C. gracilis population
调查年份 总个体
数/株死亡个
体数/株新增个
体数/株平均胸
径/cm胸高断面积/
(m2·hm−2)2012 276 10.65 4.71 2017 291 25 40 10.82 5.15 -
[1] 赵中华, 刘文桢, 石小龙, 等. 小陇山锐齿栎天然林结构动态分析[J]. 林业科学研究, 2015, 28(6): 759 − 766. ZHAO Zhonghua, LIU Wenzhen, SHI Xiaolong, et al. Structure dynamic of Quercus aliena var. acuteserrata natural forest on Xiaolongshan [J]. Forest Research, 2015, 28(6): 759 − 766. [2] 徐玮泽, 刘琪璟, 孟盛旺, 等. 长白山阔叶红松林树木种群动态的长期监测[J]. 应用生态学报, 2018, 29(10): 3159 − 3166. XU Weize, LIU Qijing, MENG Shengwang, et al. Long-term monitoring of tree population dynamics of broad-leaved Korean pine forest in Changbai Mountains, China [J]. Chinese Journal of Applied Ecology, 2018, 29(10): 3159 − 3166. [3] 祝燕, 赵谷风, 张俪文, 等. 古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构[J]. 植物生态学报, 2008, 32(2): 262 − 273. ZHU Yan, ZHAO Gufeng, ZHANG Liwen, et al. Community composition and structure of Gutianshan forest dynamic plot inamid-subtropical evergreen broad-leaved forest, east China [J]. Chinese Journal of Plant Ecology, 2008, 32(2): 262 − 273. [4] 张毅锋, 汤孟平. 天目山常绿阔叶林空间结构动态变化特征[J]. 生态学报, 2021, 41(5): 1959 − 1969. ZHANG Yifeng, TANG Mengping. Analysis on spatial structure dynamic characteristics of evergreen broad-leaved forest in Tianmu Mountain [J]. Acta Ecologica Sinica, 2021, 41(5): 1959 − 1969. [5] 蔡永立, 达良俊. 亚热带东部壳斗科6种常绿植物叶的生态解剖[J]. 应用与环境生物学报, 2002, 8(5): 460 − 466. CAI Yongli, DA Liangjun. Ecological leaf anatomy of six evergreen species of Fagaceae in the eastern subtropical area of China [J]. Chinese Journal of Applied Environmental Biology, 2002, 8(5): 460 − 466. [6] 余小龙, 余树全, 伊力塔, 等. UV-B辐射胁迫对细叶青冈幼苗叶绿素荧光特性的影响[J]. 东北农业大学学报, 2011, 42(10): 114 − 119. YU Xiaolong, YU Shuquan, YI Lita, et al. UV-B radiative forcing on chlorophyll fluorescence characteristics of Cyclobalanopsis gracilis seedlings [J]. Journal of Northeast Agricultural University, 2011, 42(10): 114 − 119. [7] 蒋红宝, 伊力塔, 刘美华, 等. 模拟酸雨对细叶青冈幼苗叶片叶绿素荧光参数的影响[J]. 福建林学院学报, 2013, 33(4): 316 − 321. JIANG Hongbao, YI Lita, LIU Meihua, et al. Effects of simulated acid rain on chlorophyll fluorescence parameters of Cyclobalanopsis myrsinaefolia [J]. Journal of Fujian College of Forestry, 2013, 33(4): 316 − 321. [8] BAI Cheng, YOU Shixue, KU Weipeng, et al. Life form dynamics of the tree layer in evergreen and deciduous broad-leaved mixed forest during 1996−2017 in Tianmu Mountains, eastern China[J/OL]. Silva Fennica, 2020, 54(2)[2022-12-05]. doi: 10.14214/sf.10167. [9] 楼一恺, 范忆, 戴其林, 等. 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系[J]. 生态学报, 2021, 41(21): 8568 − 8577. LOU Yikai, FAN Yi, DAI Qilin, et al. Relationship between vertical structure and overall species diversity in an evergreen deciduous broad-leaved forest community of Tianmu Mountain Natural Reserve [J]. Acta Ecologica Sinica, 2021, 41(21): 8568 − 8577. [10] 汤孟平, 周国模, 施拥军, 等. 天目山常绿阔叶林优势种群及其空间分布格局[J]. 植物生态学报, 2006, 30(5): 743 − 752. TANG Mengping, ZHOU Guomo, SHI Yongjun, et al. Study of dominant plant populations and their spatial patterns in evergreen broadleaved forest in Tianmu Mountain, China [J]. Chinese Journal of Plant Ecology, 2006, 30(5): 743 − 752. [11] RIPLEY B D. Modelling spatial patterns [J]. Journal of the Royal Statistical Society, 1977, 39(2): 172 − 212. [12] WIEGAND T, MOLONEY K A. Rings, circles, and null-models for point pattern analysis in ecology [J]. Oikos, 2004, 104(2): 209 − 229. [13] 卢杰, 潘刚, 罗大庆, 等. 濒危植物急尖长苞冷杉种群结构及空间分布格局[J]. 林业资源管理, 2009, 8(4): 48 − 53. LU Jie, PAN Gang, LUO Daqing, et al. The population structure and spatial pattern of Abies georgei [J]. Forest Resources Management, 2009, 8(4): 48 − 53. [14] 杨晓惠, 林文树, 刘曦, 等. 小兴安岭典型阔叶红松林幼树的群落结构动态[J]. 中南林业科技大学学报, 2021, 41(12): 87 − 97. YANG Xiaohui, LIN Wenshu, LIU Xi, et al. The dynamics of sapling community structure of typical broad-leaved Korean pine forest in the Lesser Khingan mountains [J]. Journal of Central South University of Forestry &Technology, 2021, 41(12): 87 − 97. [15] 秦爱丽, 马凡强, 许格希, 等. 珍稀濒危树种峨眉含笑种群结构与动态特征[J]. 生态学报, 2020, 40(13): 4445 − 4454. QIN Aili, MA Fanqiang, XU Gexi, et al. Population structure and dynamic characteristics of a rare and endangered tree species Michelia wilsonii Finet et Gagn [J]. Acta Ecologica Sinica, 2020, 40(13): 4445 − 4454. [16] 宋萍, 洪伟, 吴承祯, 等. 珍稀濒危植物桫椤种群生命过程及谱分析[J]. 应用生态学报, 2008, 19(12): 2577 − 2582. SONG Ping, HONG Wei, WU Chengzhen, et al. Population life process and spectral analysis of rare and endangered plant Alsophila spinulosa [J]. Chinese Journal of Applied Ecology, 2008, 19(12): 2577 − 2582. [17] 张昭臣, 郝占庆, 叶吉, 等. 长白山次生杨桦林树木短期死亡动态[J]. 应用生态学报, 2013, 24(2): 303 − 310. ZHANG Zhaochen, HAO Zhanqing, YE Ji, et al. Short-term death dynamics of trees in natural secondary poplar-birch forest in Changbai Mountains of northeast China [J]. Chinese Journal of Applied Ecology, 2013, 24(2): 303 − 310. [18] 拓锋, 刘贤德, 刘润红, 等. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172 − 1183. TA Feng, LIU Xiande, LIU Runhong, et al. Spatial distribution patterns and association of Picea crassifolia population in Dayekou Basin of Qilian Mountains, northwestern China [J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1172 − 1183. [19] 朱文婷, 刘海坤, 何睿, 等. 藏东南急尖长苞冷杉群落空间点格局分析及其时空动态[J]. 生态学报, 2022, 42(22): 8977 − 8984. ZHU Wenting, LIU Haikun, HE Rui, et al. Spatial point pattern analysis and spatio-temporal dynamics of Abies georgei var. smithii forests in southeast Tibet [J]. Acta Ecologica Sinica, 2022, 42(22): 8977 − 8984. [20] 黄明钗, 史艳财, 韦霄, 等. 珍稀濒危植物金花茶的点格局分析[J]. 生态学杂志, 2013, 32(5): 1127 − 1134. HUANG Mingchai, SHI Yancai, WEI Xiao, et al. Point pattern analysis of rare and endangered plant Camellia nitidissima Chi. [J]. Chinese Journal of Ecology, 2013, 32(5): 1127 − 1134. [21] 蔡飞. 杭州西湖山区青冈种群结构和动态的研究[J]. 林业科学, 2000, 36(3): 67 − 72. CAI Fei. A study on the structure and dynamics of Cyclobalanopsis glauca population at hills around West Lake in Hangzhou [J]. Scientia Silva Sinica, 2000, 36(3): 67 − 72. [22] 康华靖, 陈子林, 刘鹏, 等. 大盘山自然保护区香果树种群结构与分布格局[J]. 生态学报, 2007, 27(1): 389 − 396. KANG Huajing, CHEN Zilin, LIU Peng, et al. The population structure and distribution pattern of Emmenopterys henryi in Dapanshan Natural Reserve of Zhejiang Province [J]. Acta Ecologica Sinica, 2007, 27(1): 389 − 396. [23] 任毅华, 周尧治, 侯磊, 等. 色季拉山急尖长苞冷杉种群不同龄级立木的空间分布格局[J]. 生态学报, 2021, 41(13): 5417 − 5424. REN Yihua, ZHOU Yaozhi, HOU Lei, et al. Spatial distribution patterns of standing trees at different ages in Abies georgei var. smithii forests in Sejila Mountain [J]. Acta Ecologica Sinica, 2021, 41(13): 5417 − 5424. [24] 邱婧, 韩安霞, 何春梅, 等. 秦岭优势乔木锐齿槲栎的空间分布格局及种内关联[J]. 应用生态学报, 2022, 33(8): 2035 − 2042. QIU Jing, HAN Anxia, HE Chunmei, et al. Spatial distribution pattern and intraspecific association of dominant species Quercus aliena var. acu-tiserrata in Qinling Mountains, China [J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2035 − 2042. [25] SCHURR F M, BOSSDORF O, MILTON S J, et al. Spatial pattern formation in semi-arid shrubland: apriori predicted versus observed pattern characteristics [J]. Plant Ecology, 2004, 173(2): 271 − 282. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220784