-
矿质元素的生物地球化学循环直接影响生态系统的生产力和稳定性。磷(P)作为碳、氮之外陆地生态系统最关键的营养元素,在植物体内的分配和代谢决定了植物的生长过程及生产力水平[1]。低磷环境在生态系统内普遍存在,土壤总磷库80%以上的磷不可移动[2],植物难以吸收利用。同时,土壤有效磷(Pi)易被铝离子、铁离子、钙离子吸附固定,与氢氧化合物构成螯合物[3−5],因此有效磷浓度随土壤发育而下降,导致世界范围内有效磷浓度低于10 µmol·L−1的土壤广泛存在[6]。
为满足农林业生产需求,集约施用磷肥成为生产经营的主要措施。然而,一般磷肥当季利用率仅为10%~25%,75%~90%的磷被转化固定成植物难以吸收的形态[7],导致磷肥利用率低下。同时,随着经济增长和人口剧增,过度开采和不合理的磷肥经营管理造成磷矿资源储备耗竭、水体磷素增加,对生态环境造成严重威胁[8−10]。近年来,关于土壤磷素循环研究的不断深入,揭示了植物进化形成的一系列复杂适应性策略[11−12],并发现土壤功能微生物对土壤磷库活化和植物营养健康有重要影响[13−14]。丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和溶磷细菌(phosphate-solubilizing bacteria,PSB)在自然界土壤中普遍存在。研究发现,丛枝菌根真菌和溶磷细菌可以溶解难溶性无机磷、矿化有机磷,两者直接参与土壤磷素活化与植物磷素获取过程,与土壤、植物之间联系密切[15−16],在维持土壤磷养分有效性和生态系统功能中发挥重要作用[16−18]。鉴于此,为开发可持续土壤磷素高效利用途径,围绕植物-丛枝菌根真菌-溶磷细菌共生关系,详述了丛枝菌根真菌与溶磷细菌在植物磷养分吸收中的作用,强调了植物-丛枝菌根真菌-溶磷细菌互作增效对土壤磷素调动的途径和机制。
Mechanisms of plant P acquisition coordinated by arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria
-
摘要: 磷素是生物生长发育的重要元素,溶磷细菌和丛枝菌根真菌直接参与土壤磷素活化和植物获取磷素的过程,对生态系统磷养分周转与植物产量的形成具有重要意义。从植物获取和利用磷的策略、植物磷素吸收的丛枝菌根真菌协调途径、植物磷素吸收的溶磷细菌协调途径、植物-丛枝菌根真菌-溶磷细菌的协同作用4个方面,总结分析了植物-微生物协作促进磷养分高效吸收利用的作用机制。分析发现:植物的磷素获取过程需要高效的根系适应能力,通过调控根系形态性状、改变根系分泌物成分与分泌量,促进土壤磷素活化;同时,丛枝菌根真菌可通过与植物间的互利共生物质交换,推动根际与菌丝际的土壤生物活性与化学性质变化,促进植物获取磷素;此外,溶磷细菌与植物、丛枝菌根真菌在土壤界面形成积极互作关系,分泌多种有机酸、降低土壤pH值、提高磷活化相关酶活性改善土壤可利用磷水平。在此基础上,对植物-丛枝菌根真菌-溶磷细菌互作促进植物磷素吸收的研究前景进行了展望。未来应重点关注:菌根属性在互作体系中的作用;分析鉴定互作体系成员的代谢物组成及其潜在功能;探讨生物或非生物因素对土壤微生物群落构建及其功能组装的影响。参141Abstract: Phosphorus is an important element for biological growth and development. Phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi are directly involved in the process of soil phosphorus activation and plant phosphorus acquisition, which is of great significance for the turnover of phosphorus nutrients in ecosystems and the formation of plant yield. In this paper, the mechanism of plant-microorganism collaboration in promoting the efficient absorption and utilization of phosphorus nutrients was summarized and analyzed from four aspects: the strategy of plant phosphorus acquisition and utilization, the coordination pathway of arbuscular mycorrhizal fungi for plant phosphorus absorption, the coordination pathway of phosphate-solubilizing bacteria for plant phosphorus absorption, and the synergy of plant-arbuscular mycorrhizal fungi-phosphate-solubilizing bacteria. It was found in the analysis that the phosphorus acquisition process of plants required efficient root adaptability, which promoted soil phosphorus activation by regulating root morphological traits and changing the composition and secretion of root exudates. Arbuscular mycorrhizal fungi could promote the changes of soil biological activity and chemical properties in rhizosphere and hyphosphere by exchanging mutually beneficial symbiotic substances with plants, and promote plants to obtain phosphorus. Phosphate-solubilizing bacteria had a positive interaction with plants and arbuscular mycorrhizal fungi at the soil interface, secreting a variety of organic acids, reducing soil pH, and increasing the activities of phosphorus activation-related enzymes to improve soil available phosphorus levels. On this basis, research prospect of plant-arbuscular mycorrhizal fungi-phosphate-solubilizing bacteria interaction to promote plant phosphorus uptake was prospected. Future research should focus on the following aspects: the role of mycorrhizal traits in the interaction system, analysis and identification of metabolite composition and potential functions of the member of the interaction system, and to explore the effects of biotic or abiotic factors on the construction and functional assembly of soil microbial community. [Ch, 141 ref.]
-
[1] MARSCHNER P. Marschner’s Mineral Nutrition of Higher Plants [M]. 3th ed. San Diego: Academic Press, 2012: 3 − 5. [2] XU Xiaoli, MAO Xiali, van ZWIETEN L, et al. Wetting-drying cycles during a rice-wheat crop rotation rapidly (im) mobilize recalcitrant soil phosphorus [J]. Journal of Soils and Sediments, 2020, 20(9): 3921 − 3930. [3] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review [J]. Plant and Soil, 2001, 237: 173 − 195. [4] MA Jie, MA Yunling, WEI Rongfei, et al. Phosphorus transport in different soil types and the contribution of control factors to phosphorus retardation [J/OL]. Chemosphere, 2021, 276: 130012[2022-11-10]. doi: 10.1016/j.chemosphere.2021.130012. [5] ZHOU Jia, ZHANG Yufu, WU Kaibin, et al. National estimates of environmental thresholds for upland soil phosphorus in China based on a meta-analysis [J/OL]. Science of the Total Environment, 2021, 780(9): 146677[2022-11-10]. doi: 10.1016/j.scitotenv.2021.146677. [6] BIELESKI R L. Phosphate pools, phosphate transport, and phosphate availability [J]. Annual Review of Plant Physiology, 2003, 24(1): 225 − 252. [7] SYERS J K, JOHNSTON A E, CURTIN D. Efficiency of Soil and Fertilizer Phosphorus Use: Reconciling Changing Concepts of Soil Phosphorus Chemistry with Agronomic Information [M]. Rome: Food and Agriculture Organization of The United Nations, 2008: 108. [8] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist, 2003, 157(3): 423 − 447. [9] ELSER J, BENNETT E. Phosphorus cycle: a broken biogeochemical cycle [J]. Nature, 2011, 478(7367): 29 − 31. [10] SCHERER L, PFISTER S. Modelling spatially explicit impacts from phosphorus emissions in agriculture [J]. International Journal of Life Cycle Assessment, 2015, 20: 785 − 795. [11] LYNCH J P. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture [J]. New Phytologist, 2019, 223(2): 548 − 564. [12] TOUHAMI D, MCDOWELL R W, CONDRON L M. Role of organic anions and phosphatase enzymes in phosphorus acquisition in the rhizospheres of legumes and grasses grown in a low phosphorus pasture soil [J/OL]. Plants, 2020, 9(9): 1185[2022-11-10]. doi: 10.3390/plants9091185. [13] BAHADUR B, RAJAM M V, SAHIJRAM L, et al. Plant Biology and Biotechnology [M]. New Delhi: Springer, 2015: 307 − 333. [14] GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses [J]. Nature Reviews Microbiology, 2020, 18(11): 649 − 660. [15] SAWERS R J H, SVANE S F, QUAN C, et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters [J]. New Phytologist, 2017, 214(2): 632 − 643. [16] BI Qingfang, ZHENG Bangxiao, LIN Xianyong, et al. The microbial cycling of phosphorus on long-term fertilized soil: insights from phosphate oxygen isotope ratios [J]. Chemical Geology, 2018, 483: 56 − 64. [17] SHARMA S B, SAYYED R Z, TRIVEDI M H, et al. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils [J/OL]. Springer Plus, 2013, 2: 587[2022-11-10]. doi:10.1186/2193-1801-2-587. [18] XING Yijing, SHI Wenhui, ZHU Ying, et al. Screening and activity assessing of phosphorus availability improving microorganisms associated with bamboo rhizosphere in subtropical China [J]. Environmental Microbiology, 2021, 23(10): 6074 − 6088. [19] WILLIAMSON L C, RIBRIOUX S P C P, FITTER A H, et al. Phosphate availability regulates root system architecture in Arabidopsis [J]. Plant Physiology, 2001, 126(2): 875 − 882. [20] 周建菲, 史文辉, 潘凯婷, 等. 低磷胁迫对毛竹幼苗生长和养分生理的影响[J]. 浙江农林大学学报, 2022, 39(5): 1010 − 1017. ZHOU Jianfei, SHI Wenhui, PAN Kaiting, et al. Effect of low phosphorus stress on growth and nutrient physiology of Phyllostachys edulis seedling [J]. Journal of Zhejiang A&F University, 2022, 39(5): 1010 − 1017. [21] LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops [J]. Annual Review of Plant Biology, 2014, 65: 95 − 123. [22] WANG Ruzhen, CRESSWELL T, JOHANSEN M P, et al. Re-allocation of nitrogen and phosphorus from roots drives regrowth of grasses and sedges after defoliation under deficit irrigation and nitrogen enrichment [J]. Journal of Ecology, 2021, 109(12): 4071 − 4080. [23] VENEKLAAS E J, LAMBERS H, BRAGG J, et al. Opportunities for improving phosphorus-use efficiency in crop plants [J]. New Phytologist, 2012, 195(2): 306 − 320. [24] TIAN Jiang, GE Fei, ZHANG Dayi, et al. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle [J/OL]. Biology, 2021, 10(2): 158[2022-11-10]. doi: 10.3390/biology10020158. [25] LYNCH J P, HO M D. Rhizoeconomics: carbon costs of phosphorus acquisition [J]. Plant and Soil, 2005, 269: 45 − 56. [26] HAMMELEHLE A, OBERSON A, LÜSCHER A, et al. Above- and belowground nitrogen distribution of a red clover-perennial ryegrass sward along a soil nutrient availability gradient established by organic and conventional cropping systems [J]. Plant and Soil, 2018, 425: 507 − 525. [27] 胡支舰, 庚金武, 陈健, 等. 氮沉降对低磷胁迫下毛竹实生幼苗生长及土壤化学特性的影响[J]. 浙江林业科技, 2021, 41(2): 17 − 22. HU Zhijian, GENG Jinwu, CHEN Jian, et al. Effect of nitrogen deposition on growth of Phyllostachys edulis seedlings and soil chemical properties under low phosphorus stress [J]. Journal of Zhejiang Forestry Science and Technology, 2021, 41(2): 17 − 22. [28] WEN Zhihui, LI Hongbo, SHEN Qi, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species [J]. New Phytologist, 2019, 223(2): 882 − 895. [29] MIGUEL M A, POSTMA J A, LYNCH J P. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition [J]. Plant Physiology, 2015, 167(4): 1430 − 1439. [30] WANG Liangsheng, LIU Dong. Analyses of root-secreted acid phosphatase activity in Arabidopsis [J/OL]. Bio-Protocol, 2017, 7(7): e2202[2022-11-15]. doi: 10.21769/BioProtoc.2202. [31] JUSZCZUK I M, WIKTOROWSKA A, MALUSÁ E, et al. Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.) [J]. Plant and Soil, 2004, 267(1): 41 − 49. [32] HU H, TANG C, RENGEL Z. Influence of phenolic acids on phosphorus mobilisation in acidic and calcareous soils [J]. Plant and Soil, 2005, 268: 173 − 180. [33] JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps [J]. Plant and Soil, 2003, 248(1): 31 − 41. [34] ALMEIDA D S, DELAI L B, SAWAYA A C H F, et al. Exudation of organic acid anions by tropical grasses in response to low phosphorus availability [J/OL]. Scientific Reports, 2020, 10(1): 16955[2022-11-15]. doi: 10.1038/s41598-020-73398-1. [35] CHAI Y N, SCHACHTMAN D P. Root exudates impact plant performance under abiotic stress [J]. Trends in Plant Science, 2022, 27(1): 80 − 91. [36] RICHARDSON A E. Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs [J]. Plant and Soil, 2009, 322: 17 − 24. [37] PLAXTON W C, TRAN H T. Metabolic adaptations of phosphate-starved plants [J]. Plant Physiology, 2011, 156(3): 1006 − 1015. [38] DENG Minjun, HU Bin, XU Lei, et al. OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.) [J]. Plant Molecular Biology, 2014, 86(6): 655 − 669. [39] 王保明, 陈永忠, 王湘南, 等. 植物低磷胁迫响应及其调控机制[J]. 福建农林大学学报 (自然科学版), 2015, 44(6): 567 − 575. WANG Baoming, CHEN Yongzhong, WANG Xiangnan, et al. The response to low phosphorus stress and its regulation mechanism in plants [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(6): 567 − 575. [40] XU Lei, ZHAO Hongyu, WAN Renjing, et al. Identification of vacuolar phosphate efflux transporters in land plants [J]. Nature Plants, 2019, 5(1): 84 − 94. [41] LIN Weiyi, HUANG Tengkuei, LEONG Shangjye, et al. Long-distance call from phosphate: systemic regulation of phosphate starvation responses [J]. Journal of Experimental Botany, 2014, 65(7): 1817 − 1827. [42] ZHANG Deshan, ZHANG Chaochun, TANG Xiaoyan, et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize [J]. New Phytologist, 2016, 209(2): 823 − 831. [43] BRUNDRETT M C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis [J]. Plant and Soil, 2009, 320: 37 − 77. [44] 王幼珊, 张淑彬, 殷晓芳, 等. 中国大陆地区丛枝菌根真菌菌种资源的分离鉴定与形态学特征[J]. 微生物学通报, 2016, 43(10): 2154 − 2165. WANG Youshan, ZHANG Shubin, YIN Xiaofang, et al. Isolation and identification of arbuscular mycorrhizal fungi from mainland China [J]. Microbiology China, 2016, 43(10): 2154 − 2165. [45] DIAGNE N, NGOM M, DJIGHALY P I, et al. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation [J/OL]. Diversity, 2020, 12(10): 370[2022-11-15]. doi: 10.3390/d12100370. [46] SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales [J]. Annual Review of Plant Biology, 2011, 62: 227 − 250. [47] XIE Xian’an, LAI Wenzhen, CHE Xianrong, et al. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas [J]. New Phytologist, 2022, 234(2): 650 − 671. [48] MÓNICA I F D, GODEAS A M, SCERVINO J M. In vivo modulation of arbuscular mycorrhizal symbiosis and soil quality by fungal P solubilizers [J]. Microbial Ecology, 2020, 79(1): 21 − 29. [49] TOLJANDER J F, LINDAHL B D, PAUL L R, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure [J]. FEMS Microbiology Ecology, 2007, 61(2): 295 − 304. [50] MACKAY J E, CAVAGNARO T R, MÜLLER S D S, et al. A key role for arbuscular mycorrhiza in plant acquisition of P from sewage sludge recycled to soil [J]. Soil Biology and Biochemistry, 2017, 115: 11 − 20. [51] ZHANG Lin, ZHOU Jiachao, GEORGE T S, et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra [J]. Trends in Plant Science, 2022, 27(4): 402 − 411. [52] KIERS E T, DUHAMEL M, BEESETTY Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis [J]. Science, 2011, 333(6044): 880 − 882. [53] CHEN Min, ARATO M, BORGHI L, et al. Beneficial services of arbuscular mycorrhizal fungi-from ecology to application [J/OL]. Frontiers in Plant Science, 2018, 9: 1270[2022-11-15]. doi: 10.3389/fpls.2018.01270. [54] BENNETT A E, GROTEN K. The costs and benefits of plant-arbuscular mycorrhizal fungal interactions [J]. Annual Review of Plant Biology, 2022, 73: 649 − 672. [55] ZHANG Lin, CHU Qun, ZHOU Jianwei, et al. Soil phosphorus availability determines the preference for direct or mycorrhizal phosphorus uptake pathway in maize [J/OL]. Geoderma, 2021, 403: 115261[2022-11-15]. doi: 10.1016/j.geoderma.2021.115261. [56] CHU Qun, ZHANG Lin, ZHOU Jianwei, et al. Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway [J]. Plant and Soil, 2020, 449: 357 − 371. [57] FERROL N, AZCÓN-AGUILAR C, PÉREZ-TIENDA J. Review: arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: an overview on the mechanisms involved [J]. Plant Science, 2019, 280: 441 − 447. [58] SMITH S E, JAKOBSEN I, GRØNLUND M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition [J]. Plant Physiology, 2011, 156(3): 1050 − 1057. [59] BERGMANN J, WEIGELT A, van der PLAS F, et al. The fungal collaboration gradient dominates the root economics space in plants [J/OL]. Science Advances, 2020, 6(27): eaba3756[2022-11-15]. doi: 10.1126/sciadv.aba3756. [60] SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses [J]. Plant Physiology, 2003, 133(1): 16 − 20. [61] SCHNEPF A, ROOSE T, SCHWEIGER P. Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake-a modelling study [J]. Plant and Soil, 2008, 312: 85 − 99. [62] LUTHFIANA N, INAMURA N, TANTRIANI, et al. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency [J]. Mycorrhiza, 2021, 31(3): 403 − 412. [63] BHARADWAJ D P, ALSTRÖM S, LUNDQUIST P O. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions [J]. Mycorrhiza, 2012, 22(6): 437 − 447. [64] KUCEY R M N. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin alberta soils [J]. Canadian Journal of Soil Science, 1983, 63(4): 671 − 678. [65] 姚青. 植物对VA菌根的依赖性差异及菌根活化难溶性磷酸盐的机理研究 [D]. 北京: 中国农业大学, 2000. YAO Qing. Variation of Plants Myeorrhizal Dependency and Mobilization of Scareely-soluble Phosphate by VA Mycorrhizae [D]. Beijing: China Agricultural University, 2000. [66] NAGY R, DRISSNER D, AMRHEIN N, et al. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated [J]. New Phytologist, 2009, 181(4): 950 − 959. [67] 任爱天, 鲁为华, 杨洁晶, 等. 不同磷水平下AM真菌对紫花苜蓿生长和磷利用的影响[J]. 中国草地学报, 2014, 36(6): 72 − 78. REN Aitian, LU Weihua, YANG Jiejing, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth of alfalfa and phosphorus utilization under different P levels [J]. Chinese Journal of Grassland, 2014, 36(6): 72 − 78. [68] HONVAULT N, HOUBEN D, NOBILE C, et al. Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification [J]. Plant and Soil, 2021, 461: 137 − 150. [69] BÜNEMANN E K, OBERSON A, FROSSARD E, et al. Phosphorus in Action-biological Processes in Soil Phosphorus Cycling [M]. Berlin: Springer, 2011: 137. [70] JIANG Yina, WANG Wanxiao, XIE Qiujin, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi [J]. Science, 2017, 356(6343): 1172 − 1175. [71] FOSTER K R, KOKKO H. Cheating can stabilize cooperation in mutualisms [J]. Proceedings of the Royal Society B:Biological Sciences, 2006, 273(1598): 2233 − 2239. [72] AKÇAY E. Evolutionary Models of Mutualism [M]. New York: Oxford University Press, 2015: 57 − 76. [73] KOHLEN W, CHARNIKHOVA T, LIU Qing, et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis [J]. Plant Physiologist, 2011, 155(2): 974 − 987. [74] OLDROYD G E, LEYSER O. A plant’s diet, surviving in a variable nutrient environment [J/OL]. Science, 2020, 368(6486): eaba0196[2022-11-15]. doi: 10.1126/science.aba0196. [75] AKIYAMA K, MATSUZAKI K, HAYASHI H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi [J]. Nature, 2005, 435: 824 − 827. [76] SHI Jincai, ZHAO Boyu, ZHENG Shuang, et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis [J]. Cell, 2021, 184(22): 5527 − 5540. [77] BRANSCHEID A, SIEH D, PANT B D, et al. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis [J]. Molecular Plant-Microbe Interactions, 2010, 23(7): 915 − 926. [78] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究[J]. 微生物学报, 2002, 42(2): 236 − 241. ZHAO Xiaorong, LIN Qimei, LI Baoguo. The solubilization of four insoluble phosphates by some microorganisms [J]. Acta Microbiologica Sinica, 2002, 42(2): 236 − 241. [79] ILLMER P, SCHINNER F. Solubilization of inorganic calcium phosphates-solubilization mechanisms [J]. Soil Biology and Biochemistry, 1995, 27(3): 257 − 263. [80] 冯哲叶, 陈莎莎, 王文超, 等. 几株溶磷细菌的筛选和鉴定及其溶磷效果[J]. 南京农业大学学报, 2017, 40(5): 842 − 849. FENG Zheye, CHEN Shasha, WANG Wenchao, et al. Screening and identification of several phosphate-solubilizing bacteria and effect of their P-solubility [J]. Journal of Nanjing Agricultural University, 2017, 40(5): 842 − 849. [81] XU Jiacheng, HUANG Limin, CHEN Chengyu, et al. Effective lead immobilization by phosphate rock solubilization mediated by phosphate rock amendment and phosphate solubilizing bacteria [J/OL]. Chemosphere, 2019, 237: 124540[2022-11-15]. doi: 10.1016/j.chemosphere.2019.124540. [82] 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1 − 7. CHI Jingliang, HAO Min, WANG Zhixue, et al. Advances in research and application of phosphorus-solubilizing microorganism [J]. Journal of Microbiology, 2021, 41(1): 1 − 7. [83] BENNING J W, MOELLER D A. Microbes, mutualism, and range margins: testing the fitness consequences of soil microbial communities across and beyond a native plant’s range [J]. New Phytologist, 2021, 229(5): 2886 − 2900. [84] SAHU P K, SINGH D P, PRABHA R, et al. Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability [J]. Ecological Indicators, 2019, 105: 601 − 612. [85] SHI Wenhui, XING Yijing, ZHU Ying, et al. Diverse responses of pqqC- and phoD-harbouring bacterial communities to variation in soil properties of moso bamboo forests [J]. Microbial Biotechnology, 2022, 15(7): 2097 − 2111. [86] BERNARD J, WALL C B, COSTANTINI M S, et al. Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed [J]. The ISME Journal, 2021, 15: 999 − 1009. [87] YAO Fei, YANG Shan, WANG Zhirui, et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient [J/OL]. Frontiers in Microbiology, 2017, 8: 2071[2022-11-15]. doi: 10.3389/fmicb.2017.02071. [88] CHEN Yepei, REKHA P D, ARUN A B, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities [J]. Applied Soil Ecology, 2006, 34(1): 33 − 41. [89] 庄馥璐, 柴小粉, 高蓓蓓, 等. 苹果根际解磷菌的分离筛选及解磷能力[J]. 中国农业大学学报, 2020, 25(7): 69 − 79. ZHUANG Fulu, CHAI Xiaofen, GAO Beibei, et al. Isolation and screening of phosphorus-solubilizing bacteria in apple rhizosphere [J]. Journal of China Agricultural University, 2020, 25(7): 69 − 79. [90] KIM K Y, MC DONALD G A, JORDAN D. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium [J]. Biology and Fertility of Soils, 1997, 24(4): 347 − 352. [91] PARK K H, LEE C Y, SON H J, et al. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities [J]. Letters in Applied Microbiology, 2009, 49: 222 − 228. [92] AWASTHI R, TEWARI R, NAYYAR H. Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops [J]. International Research Journal of Microbiology, 2011, 2(12): 484 − 503. [93] 薛冬, 黄向东, 杨瑞先, 等. 牡丹根际溶磷放线菌的筛选及其溶磷特性[J]. 应用生态学报, 2018, 29(5): 1645 − 1652. XUE Dong, HUANG Xiangdong, YANG Ruixian, et al. Screening and phosphate-solubilizing characteristics of phosphate-solubilizing actinomycetes in rhizosphere of tree peony [J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1645 − 1652. [94] SONG O R, LEE S J, LEE Y S, et al. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil [J]. Brazilian Journal of Microbiology, 2008, 39(1): 151 − 156. [95] 吕俊, 于存. 1株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用[J]. 应用生态学报, 2020, 31(9): 2923 − 2934. LÜ Jun, YU Cun. Screening and identification of an efficient phosphate-solubilizing Burkholderia sp. and its growth-promoting effect on Pinus massoniana seedling [J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2923 − 2934. [96] LIDBURY I D E A, SCANLAN D J, MURPHY A R J, et al. A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere [J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(5): e2118122119[2022-11-15]. doi: 10.1073/pnas. 2118122119. [97] LIANG Xinjin, CSETENYI L, GADD G M. Lead bioprecipitation by yeasts utilizing organic phosphorus substrates [J]. Geomicrobiology Journal, 2016, 33(3/4): 294 − 307. [98] RODRÍGUEZ H, VIDAL R F. Phosphate solubilizing bacteria and their role in plant growth promotion [J]. Biotechnology Advances, 1999, 17(4/5): 319 − 339. [99] HNAMTE R, LALRUATSANGA H, LALFAKZUALA R. Isolation, identification and characterization of phosphate solubilizing bacteria from Jhum Field of Mizoram, India [J]. Geomicrobiology Journal, 2021, 38: 924 − 933. [100] LIU Zeping, ZHANG Xiaolong, LI Leibing, et al. Isolation and characterization of three plant growth-promoting rhizobacteria for growth enhancement of rice seedling [J]. Journal of Plant Growth Regulation, 2022, 41: 1382 − 1393. [101] 孙波, 廖红, 苏彦华, 等. 土壤-根系-微生物系统中影响氮磷利用的一些关键协同机制的研究进展[J]. 土壤, 2015, 47(2): 210 − 219. SUN Bo, LIAO Hong, SU Yanhua, et al. Advances in key coordinative mechanisms in soil-root-microbe systems to affect nitrogen and phosphorus utilization [J]. Soils, 2015, 47(2): 210 − 219. [102] TIAN Baoliang, PEI Yingchun, HUANG Wei, et al. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant [J]. The ISME Journal, 2021, 15(7): 1919 − 1930. [103] KUDOYAROVA G R, VYSOTSKAYA L B, ARKHIPOVA T N, et al. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants [J/OL]. Acta Physiologiae Plantarum, 2017, 39(11): 253[2022-11-15]. doi: 10.1007/s11738-017-2556-9. [104] KUDOYAROVA G R, MELENTIEV A I, MARTYNENKO E V, et al. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots [J]. Plant Physiology and Biochemistry, 2014, 83: 285 − 291. [105] HAYAT R, ALI S, AMARA U, et al. Soil beneficial bacteria and their role in plant growth promotion: a review [J]. Annals of Microbiology, 2010, 60(4): 579 − 589. [106] PANHWAR Q A, OTHMAN R, NAHER U A, et al. Effect of phosphate-solubilizing bacteria and oxalic acid on phosphate uptake from different P fractions and growth improvement of aerobic rice using 32P technique [J]. Australian Journal of Crop Science, 2013, 7(8): 1131 − 1140. [107] 谯天敏, 李姝江, 韩珊, 等. 温哥华假单胞菌菌株PAN4解磷能力及对核桃的促生作用[J]. 华南农业大学学报, 2015, 36(5): 117 − 124. QIAO Tianmin, LI Shujiang, HAN Shan, et al. The phosphate-solubilizing ability and growth promoting effects of Pseudomonas vancouverensis strain PAN4 on walnut [J]. Journal of South China Agricultural University, 2015, 36(5): 117 − 124. [108] MENDES R, PIZZIRANI-KLEINER A A, ARAÚJO W L, et al. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates [J]. Applied and Environmental Microbiology, 2007, 73(22): 7259 − 7267. [109] ETMINANI F, BEHROUZ H. Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees [J]. The Plant Pathology Journal, 2018, 34(3): 208 − 217. [110] BHALLA K, QU Xianya, KRETSCHMER M, et al. The phosphate language of fungi [J]. Trends Microbiology, 2022, 30(4): 338 − 349. [111] SALAS-GONZÁLEZ I, REYT G, FLIS P, et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis [J/OL]. Science, 2021, 371(6525): eabd0695[2022-11-15]. doi: 10.1126/science.abd0695. [112] SUN Xuepeng, CHEN Wenbo, IVANOV S, et al. Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts [J]. New Phytologist, 2019, 221(3): 1556 − 1573. [113] EMMETT B D, LÉVESQUE-TREMBLAY V, HARRISON M J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi [J]. The ISME Journal, 2021, 15(8): 2276 − 2288. [114] TISSERANT E, MALBREIL M, KUO A, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis [J]. Proceedings of the National Academy of Sciences, 2013, 110(50): 20117 − 20122. [115] NUCCIO E E, HODGE A, PETT-RIDGE J, et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition [J]. Environmental Microbiology, 2013, 15(6): 1870 − 1881. [116] ANDRADE G, MIHARA K L, LINDERMAN R G, et al. Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi [J]. Plant and Soil, 1997, 192: 71 − 79. [117] WANG Fei, SHI Ning, JIANG Rongfeng, et al. In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere [J]. Journal of Experimental Botany, 2016, 67(6): 1689 − 1701. [118] JIANG Feiyan, ZHANG Lin, ZHOU Jiachao, et al. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae [J]. New Phytologist, 2021, 230(1): 304 − 315. [119] SINGH B K, NUNAN N, RIDGWAY K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots [J]. Environmental Microbiology, 2008, 10(2): 534 − 541. [120] ZHANG Lin, PENG Yi, ZHOU Jiachao, et al. Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure [J/OL]. Soil Biology and Biochemistry, 2020, 142: 107724[2022-11-15]. doi: 10.1016/j.soilbio.2020.107724. [121] ZHANG Lin, XU Minggang, LIU Yu, et al. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium [J]. New Phytologist, 2016, 210(3): 1022 − 1032. [122] BEURA K, PRADHAN A K, GHOSH G K, et al. Root architecture, yield and phosphorus uptake by rice: response to rock phosphate enriched compost and microbial inoculants [J]. International Research Journal of Pure and Applied Chemistry, 2020, 21(19): 33 − 39. [123] LIU Junying, LIU Xuanshuai, ZHANG Qianbin, et al. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels [J/OL]. AMB Express, 2020, 10(1): 200[2022-11-15]. doi: 10.1186/s13568-020-01137-w. [124] 付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响[J]. 西北植物学报, 2016, 36(2): 353 − 360. FU Xiaofeng, ZHANG Guiping, ZHANG Xiaowei, et al. Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings [J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 353 − 360. [125] BATTINI F, GRØNLUND M, AGNOLUCCI M, et al. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria [J/OL]. Scientific Reports, 2017, 7(1): 4686[2022-11-15]. doi: 10.1038/s41598-017-04959-0. [126] 秦芳玲, 田中民. 同时接种解磷细菌与丛枝菌根真菌对低磷土壤红三叶草养分利用的影响[J]. 西北农林科技大学学报(自然科学版), 2009, 37(6): 151 − 157. QIN Fangling, TIAN Zhongmin. Effect of co-inoculation with arbuscular mycorrhizal fungi and four different phosphate-solubilizing bacteria on nutrients uptake of red clover in a low phosphorus soil [J]. Journal of Northwest A&F University (Nature Science Edition), 2009, 37(6): 151 − 157. [127] GARBAYE J. Helper bacteria-a new dimension to the mycorrhizal symbiosis [J]. New Phytologist, 1994, 128: 197 − 210. [128] AZCÓN-AGUILAR C, BAREA J M. Nutrient cycling in the mycorrhizosphere [J]. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 372 − 396. [129] BURKE D J, KRETZER A M, RYGIEWICZ P T, et al. Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization [J]. FEMS Microbiology Ecology, 2006, 57: 409 − 419. [130] REDECKER D, SCHÜSSLER A, STOCKINGER H, et al. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota) [J]. Mycorrhiza, 2013, 23(7): 515 − 531. [131] ETESAMI H, JEONG B R, GLICK B R. Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plant [J]. Frontiers in Plant Science, 2021, 12: 699618[2022-11-15]. doi: 10.3389/fpls.2021.699618. [132] WANG Yu, ZHANG Wenze, LIU Weikang, et al. Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates [J/OL]. BMC Plant Biology, 2021, 21(1): 48[2022-11-15]. doi: 10.1186/s12870-020-02817-2. [133] DELAUX P M, SCHORNACK S. Plant evolution driven by interactions with symbiotic and pathogenic microbes [J/OL]. Science, 2021, 371(6351): eaba6605[2022-11-15]. doi: 10.1126/science.aba6605. [134] DUAN Shilong, DECLERCK S, FENG Gu, et al. Hyphosphere interactions between Rhizophagus irregularis and Rahnella aquatilis promote carbon-phosphorus exchange at the peri-arbuscular space in Medicago truncatula [J]. Environmental Microbiology, 2023, 25(4): 867 − 879. [135] ZHANG Lin, FENG Gu, DECLERCK S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium [J]. The ISME Journal, 2018, 12: 2339 − 2351. [136] WANG Letian, ZHANG Lin, GEORGE T S, et al. A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization [J]. New Phytologist, 2023, 238(2): 859 − 873. [137] 张林. AM真菌与解磷细菌相互作用提高有机磷利用效率的机理 [D]. 北京: 中国农业大学, 2016. ZHANG Lin. The Hyphosphere Interactions Between an Arbuscular Mycorrhiza Fungus and Phosphate Solubilizing Bacteria in Relation to Improving Organic Phosphate Utilization [D]. Beijing: China Agricultural University, 2016. [138] YAMAMOTO K, HIRAO K, OSHIMA T, et al. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli [J]. Journal of Biological Chemistry, 2005, 280(2): 1448 − 1456. [139] DUAN Shilong, DECLERCK S, ZHANG Lin, et al. Two-component system in Rahnella aquatilis is impacted by the hyphosphere of the arbuscular mycorrhizal fungus Rhizophagus irregularis [J]. Environmental Microbiology Reports, 2022, 14(1): 119 − 129. [140] ZHANG Lin, FAN Jiequn, FENG Gu, et al. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2 [J]. Mycorrhiza, 2019, 29(1): 69 − 75. [141] CHAUDHARY V B, HOLLAND E P, CHARMAN-ANDERSON S, et al. What are mycorrhizal traits? [J]. Trends in Ecology &Evolution, 2022, 37(7): 573 − 581. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220765
计量
- 文章访问数: 839
- HTML全文浏览量: 87
- PDF下载量: 246
- 被引次数: 0