-
生物质炭基肥是一种以生物质炭为基质,根据不同区域土地特点、不同作物生长特点以及科学施肥原理,添加有机质或无机质配制而成的生态环保型肥料。生物质炭具有微观孔隙结构、较大的比表面积和高吸附性等特点,这使得生物质炭基肥在优化土壤理化性质和调节土壤微生物群落及数量等方面效果显著[1]。研究表明:施用生物质炭基肥可以显著改善土壤的物理性状[2],降低土壤容重[3],增加田间持水量和透气性[4],提高土壤pH和养分有效性[5]。在生产实践中,施用生物质炭基肥可实现化肥减施,提高当地烟农收益的目的[6−7]。根据不同用途,研究人员相继开发出多种生物质炭基肥类型,并已在北方壤土、砂土麦田和南方烟田进行应用[8]。
尽管生物质炭基肥在烤烟Nicotiana tabacum种植中已经得到一定的推广,但相关研究多集中在施用生物质炭基肥对烤烟地上部生长及养分积累方面[9−10],而对烤烟根系发育及其与烤后烟化学品质关系的研究鲜有报道。重庆植烟区烟叶品质和地方性香韵特色突出,是中国烟叶的重要产区。近年来,随着有机肥的使用比例过少和土壤连作效应的增加,重庆植烟区土壤有效养分严重失衡,土壤酸化、黏化、贫瘠以及微生物群落结构恶化已经成为丞待解决的问题[11]。研究显示:重庆植烟土壤在2005年已经出现了严重的酸化现象[12],有一半以上的土壤严重酸化,其中黔江县、丰都县的酸化土壤面积均达65%以上[13],酸碱度适宜的土壤不到35%。因此,在生产中应采取增施生物质炭基肥、种植绿肥等措施加强对酸化土壤的治理,为优质烟叶的生产提供保障。本研究选用‘云烟116’N. tabacum ‘Yunyan 116’为材料,在重庆彭水县设置常规施肥、生物质炭基有机肥和生物质炭基复混肥大田试验,研究生物质炭基肥对烤烟根系发育、产量产值和化学品质的影响,以期为指导当地烤烟生产和提高烟农收益提供理论依据和技术支持。
-
由图1可知:随着烟株移栽时间的延长,3个处理的根系活力均呈先上升后下降的抛物线式变化,以移栽后60 d时最高,移栽后120 d时最低。在移栽后30 d时,3个处理的烟株根系活力无显著差异。在移栽后60 d时,T2处理的根系活力较T1处理显著提高(P<0.05)。在移栽后90 d时,T2与T3处理的根系活力无显著差异,但较T1处理分别显著提高了46.8%和34.4%(P<0.05)。在移栽后120 d时,T2处理的根系活力与T3和T1处理差异显著(P<0.05)。生物质炭基肥可以提高烟株根系活力,总体上以T2处理效果最好。
-
如表1所示:烟株的侧根条数在移栽后的30 d时,3个处理间无显著性差异。在移栽后60 d时,T2和T3处理的侧根条数显著高于T1处理(P<0.05)。在移栽后90 d时,3个处理侧根条数从大到小依次为T3、T2、T1,T3处理相比T1处理增加了17.5% (P<0.05)。在移栽后120 d时,T2和T3处理比T1处理提高14.7%和26.4% (P<0.05)。
表 1 移栽后不同生物质炭基肥处理下烤烟根条数的变化
Table 1. Change of root number of flue-cured tobacco under different biochar-based fertilizers after transplantation
移栽后时间/d 处理 侧根/条 不定根/条 30 T1 13.8±4.1 a 62.4±1.3 b T2 14.3±1.2 a 74.9±2.6 a T3 15.4±0.8 a 76.6±3.1 a 60 T1 17.5±1.4 b 89.2±1.5 c T2 22.7±2.9 a 117.2±1.9 b T3 24.7±1.6 a 136.6±2.0 a 90 T1 25.7±3.8 b 59.0±4.8 c T2 26.3±1.0 ab 68.6±0.5 b T3 30.2±2.4 a 75.0±3.3 a 120 T1 23.1±1.3 b 44.8±0.8 b T2 26.5±1.6 a 54.7±1.5 a T3 29.2±1.7 a 53.3±1.9 a 说明:不同字母表示同时间不同处理间差异显著(P<0.05)。 移栽后30 d时,T2和T3处理烟株的不定根条数均高于T1处理,且与T1处理呈显著差异(P<0.05)。移栽后60和90 d时,3个处理的不定根条数从大到小依次为T3、T2、T1,且3个处理间均存在显著差异(P<0.05)。移栽后120 d时,以T2处理的不定根条数最多,其次为T3处理,最后为T1处理,且T2、T3与T1处理差异达显著水平(P<0.05)。总体上,烟株的侧根条数和不定根条数以T3处理最多。
-
由图2可以看出:3个处理根系钾质量分数随烟株的生长呈逐渐下降趋势。移栽后30和60 d时,T2和T3处理的烟株根系钾质量分数均高于T1处理,其中T3处理显著高于T1处理(P<0.05)。移栽后90和120 d时,3个处理的烟株根系钾质量分数无显著差异。
图 2 不同生物质炭基肥对根系钾质量分数的影响
Figure 2. Effects of different biochar-based fertilizers on potassium contents in roots
从图3可见:在移栽后的30~90 d,T3和T1处理的烟株根系氮质量分数均高于T2处理。其中在移栽后30 d时,T3与T2处理烟株根系氮质量分数差异显著(P<0.05),在移栽后60 d时,3个处理之间的根系氮质量分数差异不显著。在移栽后90 d时,T1和T3处理根系氮质量分数均显著高于T2处理(P<0.05),而在移栽后120 d时,T2处理根系氮质量分数最高,且与T1处理差异显著(P<0.05)。
图 3 不同生物质炭基肥对根系氮质量分数的影响
Figure 3. Effects of different biochar-based fertilizers on nitrogen contents in roots
图4表明:3个处理的烟碱质量分数均在移栽后90 d时达最高值。移栽后30 d时,3个处理的根系烟碱质量分数无显著差异。移栽后60 d时,以T3处理烟株根系的烟碱质量分数最高,且显著高于T1与T2处理(P<0.05)。移栽后90 d时,仍以T3处理最高,且与T2处理间差异显著(P<0.05)。移栽后120 d时,T1和T3处理降幅较大,以T2处理烟碱质量分数最高,且与T1处理间差异显著(P<0.05)。
-
从表2可见:T2处理的烟叶产量最高,比T1处理高16.9% (P<0.05)。T3与T1处理差异不显著,但比T1处理增加了11.4%。3个处理的产值与产量从大到小依次为T2、T3、T1。3个处理间的均价差异不显著(P>0.05),其中T2和T3处理的均价高于T1处理。各处理间的上中等烟比例差异显著(P<0.05),其中以T2处理最高,其次为T3处理,最后为T1处理。总体上,与T1处理相比,T2和T3处理的产量、产值、均价和中上等烟比例均呈增加趋势,整体以T2处理效果最佳,说明施用生物质炭基肥对烤后烟的产量产值及上中等烟比例均有明显的促进作用。
表 2 不同生物质炭基肥处理下烤后烟经济性状的比较
Table 2. Comparison of economic traits of different biochar-based fertilizer treatments
处理 产量/
(kg·hm−2)产值/
(万元·hm−2)均价/
(元·kg−1)上中等烟
比例/%T1 1 933 b 5.3 b 27.4 a 83.1 c T2 2 260 a 6.5 a 28.5 a 86.0 a T3 2 153 ab 6.0 ab 28.0 a 84.6 b 说明:同列不同字母表示差异显著(P<0.05)。 -
烟叶内在化学成分及其协调性是衡量烤烟品质的重要指标[17]。由表3可知:T2处理烤后烟上部叶中的氯离子、还原糖、烟碱质量分数最高,且糖碱比高于其他2个处理。但T3处理的烤后烟叶的钾和总氮质量分数较为突出,在3个处理中钾氯比和氮碱比最高。T1处理的总糖质量分数占比最高,与T2、T3处理差异显著(P<0.05)。T2处理烤后烟中部叶的氯离子、还原糖、总糖和烟碱质量分数仍然最高,其中,3个处理的上部叶和中部叶的氯离子质量分数均差异显著(P<0.05),且T2和T3处理的还原糖质量分数均差异显著(P<0.05)。T3处理的钾和总氮质量分数最高,与T1处理差异显著(P<0.05),T3处理的钾氯比和氮碱比最高,与其他2个处理差异显著(P<0.05),糖碱比则以T1处理最高。烤后烟下部叶中3个处理的氯离子、烟碱和总氮质量分数及钾氯比差别不显著,但钾、还原糖和总糖质量分数均以T2处理最高,且与T1或T3处理差异显著(P<0.05),氮碱比则以T1处理最高。
表 3 烤后烟叶化学成分比较
Table 3. Comparison of chemical composition of flue-cured tobacco
等级 处理 氯/% 钾/% 钾氯比 还原糖/% 总糖/% 烟碱/% 糖碱比 总氮/% 氮碱比 上部叶 T1 0.24 c 1.51 b 6.43 b 19.82 ab 27.35 a 2.44 a 8.12 a 2.73 a 1.07 a T2 0.28 a 1.51 b 5.41 c 20.73 a 25.61 b 2.55 a 8.13 a 2.57 b 0.97 b T3 0.26 b 1.90 a 7.32 a 17.74 b 23.17 c 2.61 a 6.80 b 2.89 a 1.11 a 中部叶 T1 0.35 c 1.65 b 4.75 b 21.84 a 28.01 a 2.18 b 10.02 a 2.31 b 0.93 b T2 0.40 a 1.70 b 4.23 b 22.39 a 28.64 a 2.56 a 8.75 b 2.46 ab 0.96 b T3 0.37 b 2.09 a 5.63 a 20.58 b 27.66 a 2.17 b 9.48 ab 2.74 a 1.11 a 下部叶 T1 0.31 a 1.91 b 6.12 a 20.87 b 31.21 ab 1.86 a 11.22 b 2.15 a 0.92 a T2 0.33 a 2.53 a 7.57 a 24.66 a 32.43 a 1.89 a 13.05 a 2.02 a 0.87 b T3 0.34 a 2.18 b 6.53 a 21.39 b 28.89 b 1.93 a 11.08 b 2.10 a 0.87 b 说明:不同字母表示同等级不同处理间差异显著(P<0.05);氯、钾、还原糖、总糖、烟碱、总氮均为质量分数。 -
相关分析(表4)可知:移栽后30 d时,根系钾与烟叶氯离子呈显著正相关(P<0.05);移栽后60 d时,烟叶钾与根系活力呈显著正相关(P<0.05),与氮碱比呈显著负相关(P<0.05),根系氮与烟叶总氮呈显著正相关(P<0.05),但与烟叶钾呈显著负相关(P<0.05);移栽后90 d时,根系烟碱与烟叶总氮呈显著负相关(P<0.05),与烟叶钾氯比呈显著正相关(P<0.05),而根系氮与烟叶还原糖呈显著负相关(P<0.05);移栽后120 d时,根系烟碱与烟叶钾呈显著正相关(P<0.05)。根系钾与烟叶总糖呈显著正相关(P<0.05),根系氮与烟叶钾氯比呈极显著正相关(P<0.01)。
表 4 烤烟根系性状与烟叶化学品质的相关分析
Table 4. Correlation analysis of flue-cured tobacco root traits and chemical properties
移栽后时间/d 根系性状 烟叶化学成分 还原糖 总糖 总氮 钾 烟碱 糖碱比 氮碱比 钾氯比 氯离子 30 根系活力 0.395 −0.410 −0.621 0.665 0.936 0.213 0.970 0.528 0.996 烟碱 −0.835 −0.970 0.663 −0.618 0.512 −0.924 0.068 −0.743 0.262 钾 0.252 −0.543 −0.496 0.545 0.978 0.064 −0.923 0.394 0.998* 氮 −0.899 −0.930 0.754 −0.714 0.397 0.966 0.196 −0.823 0.135 60 根系活力 0.919 0.332 −0.99 0.997* 0.434 0.828 −0.870 0.968 0.660 烟碱 −0.075 −0.785 −0.188 0.245 0.993 −0.263 −0.748 0.076 0.924 钾 0.573 −0.216 −0.767 0.803 0.844 0.407 −0.999* 0.690 0.957 氮 −0.955 −0.428 0.999* −0.999* 0.339 −0.882 0.814 −0.989 −0.579 90 根系活力 0.789 0.081 −0.922 0.943 0.649 0.658 −0.967 0.872 0.830 烟碱 0.976 0.499 −0.999* 0.995 0.262 0.917 −0.765 0.998* 0.512 钾 −0.858 −0.201 0.962 −0.976 −0.552 −0.745 0.929 −0.925 −0.756 氮 −0.999* −0.698 0.957 −0.939 −0.015 −0.987 0.582 −0.984 −0.284 120 根系活力 0.958 0.860 −0.849 0.817 −0.245 0.995 −0.350 0.903 0.024 烟碱 0.922 0.339 −0.991 0.997* 0.427 0.832 −0.866 0.970 0.655 钾 0.616 0.997* −0.389 0.335 −0.759 0.754 0.254 0.491 −0.556 氮 0.989 0.562 −0.993 0.984 0.189 0.944 −0.715 0.999** 0.446 说明:*表示P<0.05;**表示P<0.01。 综合来看,根系性状与化学品质之间在移栽后存在不同的相关关系,且在移栽后60、90和120 d时更为突出,根系钾和氮与烤后烟的化学品质指标相关性均达到显著水平(P<0.05)。在移栽后90和120 d时,根系烟碱与化学品质指标相关性同样也达到显著水平(P<0.05)。
Effect of biochar-based fertilizer on root development, yield and quality of flue-cured tobacco in Chongqing tobacco growing area
-
摘要:
目的 研究生物质炭基肥对重庆植烟区烤烟Nicotiana tabacum根系发育及产量和品质的影响,为重庆植烟区合理施用生物质炭基肥提供理论依据和技术支持。 方法 以‘云烟116’N. tabacum ‘Yunyan 116’为材料,设置常规施肥(T1)、生物质炭基有机肥(T2)和生物质炭基复混肥(T3) 3个处理,分析施用生物质炭基肥对烤烟根系生理活性、烤后烟化学品质及经济性状的影响。 结果 施用生物质炭基肥可优化烟株根系生理及养分指标。其中,根系活力在移栽后均以T2处理最高,与T1处理相比提高了4.2%~46.8%;侧根条数和不定根条数均以T3处理最多,与T1处理相比分别提高了11.6%~41.1%和19.0%~53.1%;根系氮和钾质量分数随烟株生长而降低,且均以T2处理降幅最缓;根系烟碱质量分数则呈现先升后降趋势,以T2和T3处理较高;施用生物质炭基肥可增加烤烟的产量和产值,提升烤后烟的化学品质,其中以T2处理的产量和产值最高,与T1处理相比分别增加了16.9%和22.6%。此外,生物质炭基肥对烤后烟氮碱比、糖碱比和钾氯比均有提高作用,增强了烟叶内在化学成分的协调性,改善了烟叶品质;相关分析可知:根系钾质量分数(在移栽后30、60和120 d)、氮质量分数(在移栽后60、90和120 d)与烤后烟的化学品质相关性最为密切。 结论 生物质炭基肥有利于烤烟根系的生长发育,可增加烤烟的产量和产值,提升烤后烟的化学品质,其中使用生物质炭基有机肥处理效果更佳。图4表4参31 Abstract:Objective The objective is to explore the effect of biochar-based fertilizer on root development, and yield and quality of flue-cured tobacco (Nicotiana tabacum) in Chongqing tobacco growing area, in order to provide theoretical basis and technical support for the rational application of biochar-based fertilizer in this area. Method N. tabacum ‘Yunyan 116’ was taken as the research object, and three treatments including conventional fertilization (T1), biochar-based organic fertilizer (T2) and biochar-based compound fertilizer (T3) were set up to analyze the effect of biochar-based fertilizer on the physiological activity of flue-cured tobacco root, chemical quality and economic traits of flue-cured tobacco. Result The application of biochar-based fertilizer could optimize the physiological and nutrient indexes of tobacco root. The root activity in T2 was the highest after transplantation, which increased by 4.2%−46.8% compared with T1. The number of lateral roots and adventitious roots in T3 was the most, which increased by 11.6%−41.1% and 19.0%−53.1% respectively compared with T1. The contents of nitrogen and potassium in root system decreased with the growth of tobacco plant, and the decrease was the slowest in T2. The nicotine contents in root system increased first and then decreased, and those in T2 and T3 were higher. The application of biochar-based fertilizer could increase the yield and output value of flue-cured tobacco and improve the chemical quality of flue-cured tobacco. Among them, T2 treatment had the highest yield and output value, which increased by 16.9% and 22.6% respectively compared with T1. In addition, biochar-based fertilizer could improve the nitrogen alkali ratio, sugar alkali ratio and potassium chloride ratio of flue-cured tobacco, improve the coordination of internal chemical components and improve the quality of flue-cured tobacco. Correlation analysis showed that the potassium contents (at 30, 60 and 120 d after transplanting) and the nitrogen contents (at 60, 90 and 120 d after transplanting) in root system were most closely related to the chemical quality of flue-cured tobacco. Conclusion Biochar-based fertilizer is beneficial to the growth and development of flue-cured tobacco roots, and can increase the output value as well as the chemical quality of flue-cured tobacco. [Ch, 4 fig. 4 tab. 31 ref.] -
Key words:
- biochar-based fertilizer /
- flue-cured tobacco /
- root system /
- yield /
- quality
-
表 1 移栽后不同生物质炭基肥处理下烤烟根条数的变化
Table 1. Change of root number of flue-cured tobacco under different biochar-based fertilizers after transplantation
移栽后时间/d 处理 侧根/条 不定根/条 30 T1 13.8±4.1 a 62.4±1.3 b T2 14.3±1.2 a 74.9±2.6 a T3 15.4±0.8 a 76.6±3.1 a 60 T1 17.5±1.4 b 89.2±1.5 c T2 22.7±2.9 a 117.2±1.9 b T3 24.7±1.6 a 136.6±2.0 a 90 T1 25.7±3.8 b 59.0±4.8 c T2 26.3±1.0 ab 68.6±0.5 b T3 30.2±2.4 a 75.0±3.3 a 120 T1 23.1±1.3 b 44.8±0.8 b T2 26.5±1.6 a 54.7±1.5 a T3 29.2±1.7 a 53.3±1.9 a 说明:不同字母表示同时间不同处理间差异显著(P<0.05)。 表 2 不同生物质炭基肥处理下烤后烟经济性状的比较
Table 2. Comparison of economic traits of different biochar-based fertilizer treatments
处理 产量/
(kg·hm−2)产值/
(万元·hm−2)均价/
(元·kg−1)上中等烟
比例/%T1 1 933 b 5.3 b 27.4 a 83.1 c T2 2 260 a 6.5 a 28.5 a 86.0 a T3 2 153 ab 6.0 ab 28.0 a 84.6 b 说明:同列不同字母表示差异显著(P<0.05)。 表 3 烤后烟叶化学成分比较
Table 3. Comparison of chemical composition of flue-cured tobacco
等级 处理 氯/% 钾/% 钾氯比 还原糖/% 总糖/% 烟碱/% 糖碱比 总氮/% 氮碱比 上部叶 T1 0.24 c 1.51 b 6.43 b 19.82 ab 27.35 a 2.44 a 8.12 a 2.73 a 1.07 a T2 0.28 a 1.51 b 5.41 c 20.73 a 25.61 b 2.55 a 8.13 a 2.57 b 0.97 b T3 0.26 b 1.90 a 7.32 a 17.74 b 23.17 c 2.61 a 6.80 b 2.89 a 1.11 a 中部叶 T1 0.35 c 1.65 b 4.75 b 21.84 a 28.01 a 2.18 b 10.02 a 2.31 b 0.93 b T2 0.40 a 1.70 b 4.23 b 22.39 a 28.64 a 2.56 a 8.75 b 2.46 ab 0.96 b T3 0.37 b 2.09 a 5.63 a 20.58 b 27.66 a 2.17 b 9.48 ab 2.74 a 1.11 a 下部叶 T1 0.31 a 1.91 b 6.12 a 20.87 b 31.21 ab 1.86 a 11.22 b 2.15 a 0.92 a T2 0.33 a 2.53 a 7.57 a 24.66 a 32.43 a 1.89 a 13.05 a 2.02 a 0.87 b T3 0.34 a 2.18 b 6.53 a 21.39 b 28.89 b 1.93 a 11.08 b 2.10 a 0.87 b 说明:不同字母表示同等级不同处理间差异显著(P<0.05);氯、钾、还原糖、总糖、烟碱、总氮均为质量分数。 表 4 烤烟根系性状与烟叶化学品质的相关分析
Table 4. Correlation analysis of flue-cured tobacco root traits and chemical properties
移栽后时间/d 根系性状 烟叶化学成分 还原糖 总糖 总氮 钾 烟碱 糖碱比 氮碱比 钾氯比 氯离子 30 根系活力 0.395 −0.410 −0.621 0.665 0.936 0.213 0.970 0.528 0.996 烟碱 −0.835 −0.970 0.663 −0.618 0.512 −0.924 0.068 −0.743 0.262 钾 0.252 −0.543 −0.496 0.545 0.978 0.064 −0.923 0.394 0.998* 氮 −0.899 −0.930 0.754 −0.714 0.397 0.966 0.196 −0.823 0.135 60 根系活力 0.919 0.332 −0.99 0.997* 0.434 0.828 −0.870 0.968 0.660 烟碱 −0.075 −0.785 −0.188 0.245 0.993 −0.263 −0.748 0.076 0.924 钾 0.573 −0.216 −0.767 0.803 0.844 0.407 −0.999* 0.690 0.957 氮 −0.955 −0.428 0.999* −0.999* 0.339 −0.882 0.814 −0.989 −0.579 90 根系活力 0.789 0.081 −0.922 0.943 0.649 0.658 −0.967 0.872 0.830 烟碱 0.976 0.499 −0.999* 0.995 0.262 0.917 −0.765 0.998* 0.512 钾 −0.858 −0.201 0.962 −0.976 −0.552 −0.745 0.929 −0.925 −0.756 氮 −0.999* −0.698 0.957 −0.939 −0.015 −0.987 0.582 −0.984 −0.284 120 根系活力 0.958 0.860 −0.849 0.817 −0.245 0.995 −0.350 0.903 0.024 烟碱 0.922 0.339 −0.991 0.997* 0.427 0.832 −0.866 0.970 0.655 钾 0.616 0.997* −0.389 0.335 −0.759 0.754 0.254 0.491 −0.556 氮 0.989 0.562 −0.993 0.984 0.189 0.944 −0.715 0.999** 0.446 说明:*表示P<0.05;**表示P<0.01。 -
[1] 任依, 姜培坤, 鲁长根, 等. 炭基肥与有机肥替代部分化肥对青紫泥水稻土微生物丰度及酶活性的影响[J]. 浙江农林大学学报, 2022, 39(4): 860 − 868. REN Yi, JIANG Peikun, LU Changgen, et al. Effects of biochar-based fertilizer and organic fertilizer substituting chemical fertilizer partially on soil microbial abundances and enzyme activities [J]. Journal of Zhejiang A&F University, 2022, 39(4): 860 − 868. [2] 刘卉, 周清明, 黎娟, 等. 长期定位连续施用生物炭对植烟土壤物理性状的影响[J]. 华北农学报, 2018, 33(3): 182 − 188. LIU Hui, ZHOU Qingming, LI Juan, et al. Effects of long-term continuous application of biochar on physical properties of tobacco-growing soil [J]. North China Agricultural Journal, 2018, 33(3): 182 − 188. [3] RANDOLPH P, BANSODE R R, HASSAN O A, et al. Effect of biochars produced from solid organic municipal waste on soil quality parameters [J]. Journal of Environmental Management, 2017, 192: 271 − 280. [4] ZHANG Chengsheng, LIN Yong, TIAN Xueying, et al. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance [J]. Applied Soil Ecology, 2016, 112: 90 − 96. [5] GAO Lin, WANG Rui, SHEN Guoming, et al. Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils [J]. Journal of Soil Science and Plant Nutrition, 2017, 17(4): 884 − 896. [6] 魏春辉, 任奕林, 刘峰, 等. 生物炭及生物炭基肥在农业中的应用研究进展[J]. 河南农业科学, 2016, 45(3): 14 − 19. WEI Chunhui, REN Yilin, LIU Feng, et al. Research progress of application of biochar and biochar-based fertilizer in agriculture [J]. Journal of Henan Agricultural Sciences, 2016, 45(3): 14 − 19. [7] 王成己, 唐莉娜, 胡忠良, 等. 生物炭和炭基肥在烟草农业的应用及展望[J]. 核农学报, 2021, 35(4): 997 − 1007. WANG Chengji, TANG Lina, HU Zhongliang, et al. Application and prospect of biochar and biochar-based fertilizer in tobacco agriculture [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 997 − 1007. [8] 苑晓辰. 包膜生物炭基肥的制备及特性研究[D]. 武汉: 华中农业大学, 2018. YUAN Xiaochen. Preparation and Properties of Coated Biochar-based Fertilizer[D]. Wuhan: Huazhong Agricultural University, 2018. [9] 申洪涛, 张子颖, 王新中, 等. 高炭基肥配施氮肥对牡丹江烤烟生长及产量和质量的影响[J]. 河南农业大学学报, 2020, 54(2): 189 − 196. SHEN Hongtao, ZHANG Ziying, WANG Xinzhong, et al. Effects of high carbon-based fertilizer combined with nitrogen fertilizer on growth yield and quality of Mudanjiang flue-cured tobacco [J]. Journal of Henan Agricultural University, 2020, 54(2): 189 − 196. [10] 何晓冰, 毛娟, 王晓强, 等. 生物炭基肥与化肥配施对烤烟干物质及养分积累的影响[J]. 贵州农业科学, 2020, 48(3): 39 − 44. HE Xiaobing, MAO Juan, WANG Xiaoqiang, et al. Effects of combined application of biochar-based fertilizer and chemical fertilizer on dry matter and nutrient accumulation of flue-cured tobacco [J]. Guizhou Agricultural Sciences, 2020, 48(3): 39 − 44. [11] 李志鹏, 刘浩, 于晓娜, 等. 黄腐酸对植烟土壤改良及烟叶品质的影响研究[J]. 土壤通报, 2016, 47(4): 914 − 920. LI Zhipeng, LIU Hao, YU Xiaona, et al. Effect of fulvic acid on improvement of tobacco-planted soil and quality of flue-cured tobacco leaves [J]. Chinese Journal of Soil Science, 2016, 47(4): 914 − 920. [12] 李晓宁, 高明, 王子芳. 重庆市植烟土壤肥力数值化综合评价[J]. 西南农业学报, 2007, 20(1): 67 − 71. LI Xiaoning, GAO Ming, WANG Zifang. Integrated digitization evaluation on tobacco soil fertility at Chongqing [J]. Southwest China Journal of Agricultural Sciences, 2007, 20(1): 67 − 71. [13] 江厚龙, 张定志, 李钠钾, 等. 重庆烟区植烟土壤养分现状分析[J]. 河南农业科学, 2015, 44(6): 58 − 63. JIANG Houlong, ZHANG Dingzhi, LI Najia, et al. Analysis of soil nutrients states at tobacco growing area in Chongqing [J]. Journal of Henan Agricultural Sciences, 2015, 44(6): 58 − 63. [14] 张璐, 任天宝, 阎海涛, 等. 不同有机物料对烤烟根际土壤碳库、酶活性及根系活力的影响[J]. 中国烟草科学, 2018, 39(2): 39 − 45. ZHANG Lu, REN Tianbao, YAN Haitao, et al. Effects of different organic materials on soil carbon pool, enzyme activity and root activity in rhizosphere of flue-cured tobacco [J]. Chinese Tobacco Science, 2018, 39(2): 39 − 45. [15] 张春, 赵浩淳, 郭涛, 等. 生物炭用量对烟苗生长的影响[J]. 烟草科技, 2015, 48(6): 9 − 12, 26. ZHANG Chun, ZHAO Haochun, GUO Tao, et al. Effect of biochar dosage on tobacco seedling growth [J]. Tobacco Science & Technology, 2015, 48(6): 9 − 12, 26. [16] 韩锦峰, 袁秀秀, 谢晓辉, 等. 同一品种在不同生态区烟叶化学品质的差异[J]. 中国烟草学报, 2016, 22(5): 70 − 78. HAN Jinfeng, YUAN Xiuxiu, XIE Xiaohui, et al. Chemical quality differences in leaf tobacco of same variety grown in different ecological regions [J]. Acta Tabacaria Sinica, 2016, 22(5): 70 − 78. [17] 杜文, 谭新良, 易建华, 等. 用烟叶化学成分进行烟叶质量评价[J]. 中国烟草学报, 2007, 13(3): 25 − 31. DU Wen, TAN Xinliang, YI Jianhua, et al. Quality evaluation of tobacco leaf by chemical components [J]. Acta Tabacaria Sinica, 2007, 13(3): 25 − 31. [18] 陈懿, 陈伟, 高维常, 等. 烟秆生物炭对烤烟根系生长的影响及其作用机理[J]. 烟草科技, 2017, 50(6): 26 − 32. CHEN Yi, CHEN Wei, GAO Weichang, et al. Effects of tobacco stem biochar on root growth of flue-cured tobacco and its mechanism [J]. Tobacco Science &Technology, 2017, 50(6): 26 − 32. [19] 艾栋, 刘青丽, 常乃杰, 等. 菌丝营养钵栽培对烤烟根系生长的影响[J]. 植物营养与肥料学报, 2022, 28(1): 181 − 190. AI Dong, LIU Qingli, CHANG Naijie, et al. Effects of mycelium culture on root growth of flue-cured tobacco [J]. Journal of Plant Nutrition and Fertilizer, 2022, 28(1): 181 − 190. [20] 韩毅, 陈发元, 赵铭钦, 等. 生物炭与有机无机肥配施对烟草和土壤汞含量及保护酶活性的影响[J]. 山东农业科学, 2016, 48(8): 74 − 79. HAN Yi, CHEN Fayuan, ZHAO Mingqin, et al. Effects of biochar combined with organic and inorganic fertilizers on mercury content and protective enzyme activities in tobacco and soil [J]. Shandong Agricultural Sciences, 2016, 48(8): 74 − 79. [21] 张璐. 不同高碳物料对土壤理化性状、微生物多样性和烟株生长发育的影响[D]. 郑州: 河南农业大学, 2018. ZHANG Lu. Effects of Different High Carbon Materials on Soil Physical and Chemical Properties, Microbial Diversity and Tobacco Plant Growth [D]. Zhengzhou: Henan Agricultural University, 2018. [22] CHEW J, ZHU Longlong, NIELSEN S, et al. Biochar-based fertilizer: supercharging root membrane potential and biomass yield of rice [J/OL]. Science of the Total Environment, 2020, 713: 136431[2023-02-10]. doi:10.1016/j.scitotenv.2019.136431. [23] 张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响[J]. 作物学报, 2013, 39(8): 1445 − 1451. ZHANG Weiming, MENG Jun, WANG Jiayu, et al. Effects of biochar on root morphology and physiological characteristics and yield of rice [J]. Journal of Crops, 2013, 39(8): 1445 − 1451. [24] AN Xiongfang, WU Zhansheng, QIN Huihua, et al. Integrated co-pyrolysis and coating for the synthesis of a new coated biochar-based fertilizer with enhanced slow-release performance [J/OL]. Journal of Cleaner Production, 2020, 283: 124642[2023-02-10]. doi:10.1016/j.jclepro.2020.124642. [25] 范江, 杨继洪, 王守旗, 等. 打顶对烤烟生长和各器官烟碱积累分配的影响[J]. 作物研究, 2016, 30(1): 36 − 40. FAN Jiang, YANG Jihong, WANG Shouqi, et al. Effects of topping on growth and nicotine accumulation and distribution of flue-cured tobacco organs [J]. Crop Research, 2016, 30(1): 36 − 40. [26] 罗斐, 陆新莉, 李朝阳, 等. 打叶留顶对烤烟上部叶和根系养分、烟碱及其合成酶的影响[J]. 核农学报, 2017, 31(10): 2023 − 2031. LUO Fei, LU Xinli, LI Chaoyang, et al. Effects of beating leaves and leaving tops on nutrients, nicotine and synthase in upper leaves and roots of flue-cured tobacco [J]. Journal of Nuclear Agronomy, 2017, 31(10): 2023 − 2031. [27] 高林, 王瑞, 张继光, 等. 生物炭与化肥混施对烤烟氮磷钾吸收累积的影响[J]. 中国烟草科学, 2017, 38(2): 19 − 24. GAO Lin, WANG Rui, ZHANG Jiguang, et al. Effects of mixed application of biochar and chemical fertilizers on uptake and accumulation of nitrogen, phosphorus and potassium in flue-cured tobacco [J]. Chinese Tobacco Science, 2017, 38(2): 19 − 24. [28] 李先才, 张晓龙, 潘义宏, 等. 不同比例缓释肥、烟草专用复合肥配施对植烟土壤肥力及烤烟产质量的影响[J]. 中国农学通报, 2021, 37(36): 47 − 53. LI Xiancai, ZHANG Xiaolong, PAN Yihong, et al. Effects of different proportions of slow-release fertilizer and compound fertilizer for tobacco on soil fertility and flue-cured tobacco yield and quality [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 47 − 53. [29] 王晓强, 许跃奇, 何晓冰, 等. 减氮配施生物炭基肥对豫中烤烟产质量的影响[J]. 贵州农业科学, 2019, 47(2): 32 − 36. WANG Xiaoqiang, XU Yueqi, HE Xiaobing, et al. Effects of nitrogen reduction combined with biochar fertilizer on the yield and quality of Yuzhong flue-cured tobacco [J]. Guizhou Agricultural Sciences, 2019, 47(2): 32 − 36. [30] 汪坤, 魏跃伟, 姬小明, 等. 生物炭基肥与哈茨木霉菌剂配施对烤烟和植烟土壤质量的影响[J]. 作物杂志, 2021(3): 106 − 113. WANG Kun, WEI Yuewei, JI Xiaoming, et al. Effects of combined application of biochar-based fertilizer and Trichoderma harzianum on the qualities of flue-cured tobacco and tobacco-growing soil [J]. Crops, 2021(3): 106 − 113. [31] 李青山, 王德权, 杜传印, 等. 有机无机肥与生物炭配施对烤烟生长发育和烟叶质量的影响[J]. 土壤通报, 2021, 52(6): 1393 − 1401. LI Qingshan, WANG Dequan, DU Chuanyin, et al. Effects of organic and inorganic fertilizers combined with biochar on growth and quality of flue-cured tobacco [J]. Chinese Journal of Soil Science, 2021, 52(6): 1393 − 1401. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230161