-
中国经济社会的飞速发展促使人们更加注重绿色生态的人居环境质量,从而推动了草皮在城市中的需求不断增长。《中国林业和草原统计年鉴2018》数据显示:2018年中国草皮产量超过6万 hm2[1]。随着绿地面积的增加和质量的提升,草皮在园林绿化建设中的应用前景更加广阔[2]。但有研究表明:2018年中国耕地“非粮化”面积已达54.47万 km2,占全国耕地面积总量的32.3%,上海、浙江等6省(市)“非粮化”率已超过50.0%[3]。耕地“非粮化”问题与耕地保护的矛盾日益突出。浙江省水利厅资料显示:2018年浙江省全年河湖库塘清淤8 072.2万 m2[4]。目前,处理大量底泥的主要方法是干化处理后进行填埋,不仅占据了大片土地资源,还可能因为雨水冲刷造成土壤与水体的二次污染。另一方面,草坪草生产基本都是在同一耕地地块上重复进行,成坪后以草皮卷形式进行移植,不仅每次要带走2~3 cm的表层土壤,而且会对土壤的容重、密度和孔隙度等结构造成不可逆破坏,不利于耕地保护和可持续利用,因此,草坪生产耕地是“非粮化”整治重点关注领域之一[5]。无土栽培草皮具有种植灵活、可控性高、病虫害少、节水节肥等优越性,已在世界设施农业中被广泛采用[6]。将清淤产生的大量河湖库塘底泥代替耕地土壤用于草皮生产,不仅能有效解决“非粮化”引起的耕地挤占与土层破坏问题,而且能切实满足草皮等景观绿化种植的市场需求,还能协同解决河湖库塘底泥等有机固体废弃物的处理难题。
近年来,部分无土栽培基质出现了一些新的问题。块状岩棉很难分解,如果随意丢弃会污染环境;不可再生的天然泥炭被长期大量使用导致资源枯竭,并对地球湿地环境造成无法挽回的破坏;蛭石的结构松散、易破环,且使用周期短,维护成本高[7−8]。这促使栽培基质研究向环保型、经济型、技术型方向转变。选择资源循环利用、污染风险低且能解决环境问题的替代基质是主要发展方向[9]。在这种背景下,工农业有机固体废弃物基质研究备受关注[10]。沼渣是沼气发酵的产物,富含有机质、腐殖酸和氨基酸,以及速效养分和微量元素等,可以减少化肥使用,提高养殖业生态效益,降低草皮种植成本。生物质炭在土壤中的施用已经被证明可以改善土壤理化结构,固定土壤中重金属,有利于植物生长。将河道底泥、沼渣、生物质炭按一定比例复配制成种植基质,既符合绿色循环农业和可持续发展的要求,更具有实际的经济效益、环境效益和生态效益,是一种新的尝试。
本研究选取禾本科Gramineae冷季型草坪草匍匐剪股颖‘本特A-4’Agrostis stolonifera ‘PENN A-4’为研究对象,以清淤河道底泥为主料,复配沼渣和生物质炭,探究河道底泥为主料的基质对匍匐剪股颖‘本特A-4’生物量、叶绿素、根系活力、可溶性糖、丙二醛、抗氧化保护酶的影响,为河道底泥等有机固体废弃物的资源化利用提供理论参考。
-
河道底泥取自钱塘江富阳段清淤产生的淤泥;沼渣取自杭州富阳某养殖场,为猪粪尿混合物经厌氧发酵(沼气工程)后产生的固体废渣;生物质炭以该养殖场猪粪为原料,经过500 ℃高温限氧炭化后得到的猪粪炭;耕作土取自试验基地旁耕地表层黏壤土,pH呈酸性。各供试材料理化指标如表1所示。
表 1 材料基础理化性质
Table 1. Basic physical and chemical properties of the materials used in the study
基质 酸碱度 电导率/(mS·cm−1) 容重/(g·cm−3) 总孔隙度/% 有机质/(g·kg−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 全钾/(g·kg−1) 底泥 7.48 0.15 1.05 58.02 84.07 0.60 0.69 10.67 沼渣 6.54 2.49 0.51 72.41 309.50 15.23 24.69 3.71 生物质炭 9.40 1.26 0.63 59.85 699.63 20.83 21.91 14.50 耕作土 6.39 0.45 1.23 40.28 33.39 1.51 1.59 15.67 试验草种为禾本科冷季型草坪草匍匐剪股颖‘本特A-4’。该品种具有“百草之王”的美誉,是当前世界范围内品质最高的草皮品种,广泛应用于庭院、公园、广场等观赏性草坪,也是高尔夫球场的主要草种,有出色的耐低修剪、耐高温、抗病虫害以及卓越的抗寒能力。
-
本研究采用极端顶点设计,对河道底泥、沼渣、生物质炭进行混料,阶数为2[11]。基于底泥最大消耗原则(尽量多地消纳河道底泥),将上述3种基质的体积比例分别设定为50%≤底泥≤100%、0≤沼渣≤50%、0≤生物质炭≤10%。混料设计方案见表2,按体积比(v/v)进行混合。因目前草皮生产基本采用农田种植成坪后移植方式,故设置当地耕作表层土(0~20 cm)为对照组(ck)。
表 2 混料设计方案
Table 2. Scheme of a mixed material design
处理 点类型 底泥/% 沼渣/% 生物质炭/% 处理 点类型 底泥/% 沼渣/% 生物质炭/% 1 顶点 50.00 50.00 0 8 双混合 70.00 20.00 10.00 2 顶点 50.00 40.00 10.00 9 中心点 72.50 22.50 5.00 3 顶点 100.00 0 0 10 轴点 61.25 36.25 2.50 4 顶点 90.00 0 10.00 11 轴点 61.25 31.25 7.50 5 双混合 50.00 45.00 5.00 12 轴点 86.25 11.25 2.50 6 双混合 95.00 0 5.00 13 轴点 81.25 11.25 7.50 7 双混合 75.00 25.00 0 说明:数值为体积百分比。 试验在浙江科技大学校内试验基地(30°13′31″N,120°01′30″E,年日照时数为1 522.4 h)进行。坪床采用带排水孔规格为40 cm×40 cm×7 cm的育苗盘,底部铺30 g·m−2无纺布隔离,基质厚度为3.0 cm,上覆土厚度为0.5 cm。每处理重复3次。播种密度为12.0 g·m−2,发芽前每天浇水1次,发芽后7 d浇水1~2次,浇水量遵循见干见湿的原则。种植期间不额外施肥,待幼苗生长10 d左右,株高至10 cm后,按照1/3原则进行修剪[12]。本研究在开放自然环境下开展。2022年10月15日播种,共60 d,在第60天取样,测定植物理化指标。
-
生物量干质量采用实测称量法,叶绿素采用乙醇浸提法,可溶性糖采用蒽酮比色法,丙二醛采用硫代巴比妥酸比色法,过氧化氢酶采用钼酸铵比色法,超氧化物歧化酶采用氮蓝四唑法,过氧化物酶采用愈创木酚法,根系活力采用氯化三苯四氮唑法。生物量干质量在杀青烘干后测定,其余指标采用鲜样测定。具体测定方法参考《植物生理学实验指导》[13]。
-
将试验数据录入Excel 2013,并进行整理,用SPSS 26分析不同处理间差异显著性,Origin 2023制图。
-
由图1A可见:处理1、处理2、处理10匍匐剪股颖‘本特A-4’地上部分干质量与ck相比差异最显著(P<0.05),分别比ck显著提高了172.98%、185.07%、189.27%,但三者之间差异不显著;处理3、处理4、处理6地上部分干质量显著低于ck (P<0.05),仅有ck地上部分干质量的12.46%、45.19%、28.50% (图1A)。主要原因是处理3、处理4、处理6未添加沼渣。随着混料基质中沼渣比例的增加,草皮地上部分干质量逐渐增加(图1B)。
-
由表3可知:各处理间匍匐剪股颖‘本特A-4’叶绿素a、b质量分数分别为1.25~1.65和0.35~0.50 mg·g−1,低于ck。由于底泥性质更接近于黏土,故随着底泥比例的增加,叶绿素质量分数呈上升趋势。仅处理8和处理9叶绿素a/b略高于ck,但与ck相比,差异不显著。
表 3 不同处理间匍匐剪股颖‘本特A-4’叶绿素的质量分数
Table 3. Chlorophyll contents in different treatments of A. stolonifera ‘PENN A-4’
处理 叶绿素a/
(mg·g−1)叶绿素b/
(mg·g−1)叶绿素a+b/
(mg·g−1)叶绿素a/b 处理 叶绿素a/
(mg·g−1)叶绿素b/
(mg·g−1)叶绿素a+b/
(mg·g−1)叶绿素a/b 1 1.33±0.01** 0.45±0.02** 1.77±0.03** 2.97±0.17** 8 1.49±0.04** 0.42±0.01** 1.91±0.04** 3.54±0.06 2 1.38±0.08** 0.46±0.03* 1.84±0.11** 3.00±0.04** 9 1.49±0.05** 0.42±0.05** 1.91±0.09** 3.54±0.41 3 1.65±0.10* 0.53±0.04 2.18±0.14* 3.10±0.08* 10 1.40±0.06** 0.44±0.05** 1.84±0.11** 3.20±0.21 4 1.28±0.02** 0.41±0.02** 1.69±0.03** 3.10±0.11* 11 1.50±0.03** 0.47±0.01* 1.97±0.03** 3.20±0.03 5 1.28±0.09** 0.45±0.03** 1.73±0.12** 2.87±0.04** 12 1.59±0.01** 0.48±0.01 2.07±0.02** 3.30±0.06 6 1.25±0.06** 0.37±0.04** 1.63±0.09** 3.36±0.28 13 1.40±0.04** 0.45±0.02** 1.85±0.07** 3.14±0.10* 7 1.33±0.18** 0.40±0.06** 1.74±0.25** 3.30±0.08 ck 1.81±0.10 0.53±0.03 2.33±0.14 3.42±0.02 说明:*表示不同处理与ck间差异显著(P<0.05),**表示不同处理与ck间差异极显著(P<0.01)。 -
由图2A可见:与ck相比,处理4的匍匐剪股颖‘本特A-4’地下部分干质量最高,比ck显著提高了48.05% (P<0.05)。处理4与处理13基质上匍匐剪股颖‘本特A-4’地下部分干质量无显著差异,但2个处理显著高于其他处理(P<0.05),表明随着生物质炭比例逐渐增加,匍匐剪股颖‘本特A-4’地下部分根系生物量逐渐增加,但随着沼渣比例的增加,地下部分干质量有降低趋势(图2B)。
-
由图3A可见:根系活力最强的是处理7的匍匐剪股颖‘本特A-4’,为0.03×16.67 nkat·g−1,比ck (0.01×16.67 nkat·g−1)高约2.4倍;处理9、处理10次之,比ck高约2.0倍; 与ck相比,处理12根系活力无显著差异;处理6和处理13的根系活力显著低于ck (P<0.05),仅分别为ck的65.84%、83.69%。随着沼渣比例提高、底泥比例降低(图3B),基质容重逐渐降低,根系活力逐渐增强,能从基质中吸收更多矿质元素和水分供应地上部分的生长,这与图1B中显示的随着混料基质中沼渣比例的增加,匍匐剪股颖‘本特A-4’地上部分干质量逐渐增加是一致的。混料基质中生物质炭比例的变化对匍匐剪股颖‘本特A-4’根系活力的影响不明显。
-
由图4A可知:与ck相比,处理4的匍匐剪股颖‘本特A-4’可溶性糖质量分数最高,比ck显著提高了70.95% (P<0.05),但与处理1、处理2相比差异不显著。处理3次之。处理5匍匐剪股颖‘本特A-4’的可溶性糖质量分数显著低于ck (P<0.05),其余处理与ck相比无显著差异(图4A)。底泥比例为50.00%~100.00%时,随着底泥比例的增加,匍匐剪股颖‘本特A-4’可溶性糖质量分数呈先降低后逐渐升高的趋势;同时,混料基质中沼渣比例过高或过低都会导致匍匐剪股颖‘本特A-4’可溶性糖质量分数升高,生物质炭比例的变化与沼渣导致的匍匐剪股颖‘本特A-4’可溶性糖质量分数变化趋势基本一致(图4B)。
-
由图5A可知:处理7的匍匐剪股颖 ‘本特A-4’丙二醛质量摩尔浓度最高,为20.65 nmol·g−1,处理1次之,为20.89 nmol·g−1,分别比ck显著提高了24.16%、25.60% (P<0.05),但处理1和处理7之间差异不显著,其余处理匍匐剪股颖‘本特A-4’丙二醛质量摩尔浓度与ck相比无显著差异。由图5B可见:随着混料基质中底泥和生物质炭比例降低,沼渣比例增加,匍匐剪股颖‘本特A-4’丙二醛质量摩尔浓度逐渐升高。
-
由表4可见:与ck相比,处理4、处理8、处理13的匍匐剪股颖‘本特A-4’过氧化氢酶活性显著下降了42.33%、44.54%、46.45% (P<0.05),而处理7、处理9、处理11过氧化氢酶活性显著升高了35.02%、40.66%、25.23% (P<0.05),表明随着混料基质中生物质炭比例逐渐减少,匍匐剪股颖‘本特A-4’过氧化氢酶活性逐渐增加。
表 4 不同处理间匍匐剪股颖‘本特A-4’抗氧化保护酶活性
Table 4. Antioxidant protective enzyme activities in different treatments of A. stolonifera ‘PENN A-4’
处理 过氧化氢酶/
(×16.67 nkat·g−1)超氧化物歧化酶/
(×16.67 nkat·g−1)过氧化物酶/
(×16.67 nkat·g−1)处理 过氧化氢酶/
(×16.67 nkat·g−1)超氧化物歧化酶/
(×16.67 nkat·g−1)过氧化物酶/
(×16.67 nkat·g−1)1 21.40±1.01 367.55±36.93** 697.92±42.87 8 12.43±2.48** 373.57±18.29** 594.51±39.24** 2 21.40±5.14 395.48±31.95** 793.27±21.60* 9 31.54±3.38** 430.98±18.62** 708.82±16.03 3 20.28±0.96 256.49±10.25* 659.04±28.40* 10 24.38±3.40 398.58±16.95** 764.31±29.50 4 12.93±0.79** 304.48±15.89 613.16±27.51** 11 28.08±0.98** 415.11±27.08** 828.98±36.13** 5 20.84±0.64 378.02±27.12** 715.14±27.55 12 18.19±1.71* 316.05±37.78 574.14±25.23** 6 17.81±1.89* 292.52±19.37 676.58±42.97 13 12.01±1.22** 319.52±15.16 787.36±43.58* 7 30.27±1.86** 392.23±10.75** 785.75±41.48 ck 22.42±2.64 304.96±29.18 729.52±34.36 说明:*表示不同处理与ck间差异显著(P<0.05);**表示不同处理与ck间差异极显著(P<0.01)。 处理3匍匐剪股颖‘本特A-4’中的超氧化物歧化酶活性显著降低,较ck显著下降了15.89% (P<0.05);其次是处理6,但匍匐剪股颖‘本特A-4’的超氧化物歧化酶活性与对照组相比降低不显著。处理3、处理6的混料基质中底泥比例分别为100.00%和95.00%,表明混料基质中底泥比例提高会降低匍匐剪股颖‘本特A-4’的超氧化物歧化酶活性。
与ck相比,处理11的匍匐剪股颖‘本特A-4’过氧化物酶活性升幅最大,达极显著差异水平(P<0.01),处理2、处理13的匍匐剪股颖‘本特A-4’过氧化物酶活性较ck显著升高了8.74%和7.93% (P<0.05);但处理3、处理4、处理8和处理12与ck相比,匍匐剪股颖‘本特A-4’过氧化物酶活性显著下降,其中处理12降幅最大,达极显著水平(P<0.01)。随着混料基质中沼渣比例的增加,匍匐剪股颖‘本特A-4’过氧化物酶活性出现先缓慢增加再减少的趋势。当沼渣比例在30.00%~40.00%时,匍匐剪股颖‘本特A-4’过氧化物酶活性显著上升。
-
地上部分生物量的大小能够在一定程度上反映植物的生长和光合作用能力,叶绿素质量分数的变化是体现植物遭受胁迫损害的重要指标之一。本研究中,基质中沼渣的施用是影响匍匐剪股颖‘本特A-4’地上部分生物量的主要因素,加入适量的沼渣(36.25%~50.00%)能够显著提高其地上部分生物量。这与HAMMERSCHMIEDT等[14]发现的沼渣施用显著增加了莴苣Lactuca sativa地上部分生物量的结果相似,并且随着沼渣在基质中比例逐渐增加,河道底泥比例逐渐降低,匍匐剪股颖‘本特A-4’地上部分生物量逐渐增加。本研究中沼渣为某养殖场猪粪尿混合物经厌氧发酵后的固体废渣,可以作为有机肥原料使用,改善基质肥力,为植物茎叶生长提供必要的营养元素。CHEN等[15]研究表明:生物质炭的施用能够提高作物的生物量,但本研究中生物质炭对匍匐剪股颖‘本特A-4’地上部分生物量影响不明显。主要原因可能是猪粪沼渣炭化后,产物中氮等营养元素因高温逸失,磷、钾等营养与原料沼渣中赋存形态相比有效性降低,短期内(本研究为60 d),其营养效应还未显现。冯树林等[16]研究表明:植物叶绿素质量分数与土壤水分有较大关系。混料基质匍匐剪股颖‘本特A-4’叶绿素质量分数均低于ck,可能是混料基质容重低于传统耕作土,保水性能相对也低,匍匐剪股颖‘本特A-4’叶片水分亏缺,叶绿素结构受到一定影响,光合作用相关蛋白质量分数降低,叶绿素降解速度高于合成速度。生物质炭虽然有较好的保水性能,但由于其占比较低,保水效果不明显。在混料基质配比中,当底泥比例为50.00%~75.00%、沼渣比例为36.25%~50.00%时,匍匐剪股颖‘本特A-4’地上部分生物量和绿度较好。
在草皮生长过程中,地下部分是其吸收水分和矿质元素的主要器官。地下部分生物量越多,越能够促进草皮生长[17]。本研究中,基质中生物质炭的比例是影响匍匐剪股颖‘本特A-4’地下部分生物量的主要因素,加入适量的生物质炭(5.00%~10.00%)能够有效提高其地下部分生物量促进匍匐剪股颖‘本特A-4’的根系生长,表明生物质炭的特殊多孔结构一定程度上改变了基质结构,这与XIANG等[18]研究生物炭施用能显著增加根系生物量的结果相一致。此外,PEI等[19]研究表明:生物质炭的添加能够增加根系分泌物的释放,如氨基酸、植物生长素和脱落酸等,这些根系分泌物能够进一步促进根系的伸长,为植物提供更有利的生长条件,并且随着沼渣比例的提高,根系活力逐渐增强。本研究中,混料基质容重低于耕作土,表明基质松散、孔隙多、透气性好,有利于植物生长。在几种混料基质配比中,当生物质炭比例为5.00%~10.00%时,匍匐剪股颖‘本特A-4’地下部分生物量较高,根系活力较好;底泥比例为75.00%~100%,沼渣比例为0~25.00%时,更有助于地下部分生长;底泥比例为50.00%~75.00%,沼渣比例为20.00%~50.00%时,根系活力更旺盛。
增加草皮地上部分生物量,可以促进其光合、呼吸和蒸腾作用,提高草坪草的观赏性;增加其地下生物量,则能够促进草皮对水分的固定、吸收,进而促进草皮的生长。通过调整基质中底泥、沼渣和生物质炭的混配比例,可以优化草皮的生长,促进地上和地下部分的协调生长。
-
可溶性糖是重要的渗透调节物质。植物可以通过积累可溶性糖,增强细胞的渗透调节能力,应对外界环境影响[20]。本研究中,匍匐剪股颖‘本特A-4’ 可溶性糖质量分数随着混料基质中沼渣和生物质炭比例的增加,整体呈先降低后增加的趋势,表明添加适当比例(2.50%~7.50%)的生物质炭,能够降低其可溶性糖质量分数,缓解植物受到的胁迫影响,这与HAFEZ等[21]研究水分胁迫下生物质炭处理降低了大麦Hordeum vulgare的可溶性糖质量分数的结果相近。同时,本研究结果也显示:随着底泥比例的增加、沼渣比例的降低,可溶性糖质量分数呈上升趋势。在混料基质配比中,当底泥比例为50.00%~75.00%,沼渣比例为25.00%~36.25%,生物质炭比例为2.50%~7.50%时,草皮可溶性糖质量分数较为适中。
丙二醛是植物膜脂过氧化的最终产物,其质量摩尔浓度可以反映植物所受胁迫的程度[22]。本研究中,随着底泥比例降低,沼渣比例增加,匍匐剪股颖‘本特A-4’抗氧化酶活性有所上升,清除了植株体内部分活性氧自由基,但仍有部分过剩的自由基,引发膜脂氧化作用,从而导致丙二醛积累。同时,本研究结果也显示:混料基质中增加生物质炭的比例,能够有效降低丙二醛质量摩尔浓度。这与刘易等[23]的研究结果类似,其发现生物质炭处理土壤后玉米Zea mays丙二醛质量摩尔浓度降低。但当生物质炭添加比例过低(0~2.50%)时,不能发挥其降低丙二醛的效果。在混料基质配比中,当底泥比例为75.00%~100%、沼渣比例为0~30.00%、生物质炭比例为2.50%~10.00%时,匍匐剪股颖‘本特 A-4’丙二醛质量摩尔浓度较为适中。
过氧化氢酶、超氧化物歧化酶、过氧化物酶是植物体内重要的抗氧化保护酶。在一定范围内,过氧化氢酶、超氧化物歧化酶和过氧化物酶的活性与植物所受胁迫的程度呈正相关[24]。本研究中,底泥的性质接近黏土,以其为主料添加生物质炭的基质均可缓解匍匐剪股颖‘本特A-4’的受胁迫程度。随着沼渣添加比例的增加,过氧化氢酶、超氧化物歧化酶、过氧化物酶的活性变化趋势相近,呈先增加后降低,但依然高于基质中未添加沼渣时的活性,说明沼渣含有的一些有害物质,重金属、抗生素、病原微生物等也会随着沼渣比例的增加而增加。这些有害物质超过植物耐受程度时,可能会破坏植物的保护酶系统,导致酶活性降低,而对植物的生长产生不利影响。因此,在实际生产中使用沼渣时需要对其中的有害物质进行检测,以确保植物健康生长。适量生物质炭的添加能在降低匍匐剪股颖‘本特A-4’体内丙二醛质量摩尔浓度的同时,降低过氧化物酶和超氧化物歧化酶的活性。这与FARHANGI-ABRIZ等[25]的研究结果相近,其发现添加生物质炭处理的盐胁迫大豆Glycine max幼苗抗氧化酶活性显著降低。适当比例的底泥、沼渣和生物质炭能够通过改善基质理化性质,降低植物遭受胁迫程度,使草皮生长良好。在混料基质配比中,当底泥比例为72.50%~100%、沼渣比例为0~20.00%、生物质炭比例为2.50%~10.00%时,匍匐剪股颖‘本特 A-4’过氧化氢酶活性适中;当底泥比例为81.25%~100%、沼渣比例为0~11.25%、生物质炭比例为0~7.50%时,匍匐剪股颖‘本特 A-4’超氧化物歧化酶活性适中;当底泥比例为81.25%~100%、沼渣比例为0~22.50%、生物质炭比例为在0~10.00%时,匍匐剪股颖‘本特 A-4’过氧化物酶活性较为适中。
-
从混料基质对生长的影响分析,比例为75.00%的底泥,对匍匐剪股颖‘本特A-4’地上部分、地下部分生物量及根系活力的影响较为均衡;从混料基质对生理指标的影响分析,与传统耕作土相比,底泥作为替代基质主料对匍匐剪股颖‘本特A-4’生长不会产生不利影响。从这个角度出发,底泥比例大于75.00%较为适宜。
生物质炭比例为5.00%~10.00%的混料基质,对匍匐剪股颖‘本特A-4’地上部分、地下部分生物量及根系活力的影响较好;但从对匍匐剪股颖‘本特A-4’ 可溶性糖、丙二醛和抗氧化酶等生理指标的影响看,生物质炭的比例为2.50%~5.00%比较合适。
因此,如果混料基质以底泥、生物质炭、沼渣混合,底泥比例选择为75.00%,生物质炭比例为5.00%,则混料基质中沼渣比例为20.00%。在此配比下,匍匐剪股颖‘本特A-4’地上部分干质量和地下部分干质量分别显著提高了58.53%和17.19%,与ck相比均达显著差异水平,根系活力提升了近1倍(91.55%),但匍匐剪股颖‘本特A-4’叶绿素a、b质量分数分别降低了21.52%和19.49%。另外,与ck相比,混料基质除引起匍匐剪股颖‘本特A-4’超氧化物歧化酶活性升高外(28.66%),对匍匐剪股颖‘本特A-4’可溶性糖质量分数、丙二醛质量摩尔浓度及过氧化氢酶和过氧化物酶活性的影响不明显。综上所述,在此配比下,混料基质相较于传统耕作土对匍匐剪股颖‘本特A-4’生长具有显著的促进作用,同时,匍匐剪股颖‘本特A-4’生理抗性反应小。
-
以底泥为主料,掺混适当比例的生物质炭、沼渣的基质代替耕作土进行匍匐剪股颖‘本特A-4’种植是可行的,掺混沼渣能够有效提高匍匐剪股颖‘本特A-4’地上部分生物量和根系活力,生物质炭可有效提高匍匐剪股颖‘本特A-4’地下部分生物量。与传统耕作土相比,当混料基质中底泥占75.00%、沼渣占20.00%、生物质炭占5.00%时,匍匐剪股颖‘本特A-4’的生长表现良好。
Effects of river sediment as the main substrate on the growth and physiological indexes of Agrostis stolonifera ‘PENN A-4’
-
摘要:
目的 河湖库塘清淤底泥用于草皮等高经济价值园林绿化植物生产,既能有效解决挤占耕地与破坏耕层问题,又能协同解决底泥等有机固体废弃物的处理难题。 方法 通过混料设计,按照底泥最大消耗原则,设置底泥、沼渣、生物质炭3种原料用量比例(体积比)分别为50%≤底泥≤100%、0≤沼渣≤50%、0≤生物质炭≤10%,共13个处理,同时设置耕作土为对照组,测定匍匐剪股颖‘本特A-4’Agrostis stolonifera ‘PENN A-4’生长指标(生物量干质量、叶绿素、根系活力)和生理指标(可溶性糖、丙二醛、抗氧化保护酶),明确河道底泥为主料的基质代替传统耕作土种植匍匐剪股颖‘本特A-4’的可行性和适宜性。 结果 与耕作土(对照)相比,混料基质中3种原料比例(体积比)底泥为75.00%、沼渣为20.00%、生物质炭为5.00%时,匍匐剪股颖‘本特A-4’地上部分和地下部分干质量分别显著提高了58.53%和17.19% (P<0.05),根系活力极显著提高了近1倍 (P<0.01),但匍匐剪股颖‘本特A-4’叶绿素a、b质量分数分别均极显著降低了约20.00% (P<0.01)。另外,混料基质使匍匐剪股颖‘本特A-4’超氧化物歧化酶活性极显著升高28.66% (P<0.01),对植株体内可溶性糖质量分数、丙二醛质量摩尔浓度及过氧化氢酶活性和过氧化物酶活性影响不显著。 结论 以底泥为主料,掺混适当比例的生物质炭、沼渣的基质代替耕作土种植匍匐剪股颖‘本特A-4’是可行的,掺混的沼渣能够有效提高匍匐剪股颖‘本特A-4’地上部分生物量和根系活力,生物质炭可有效提高匍匐剪股颖‘本特A-4’地下部分生物量。图5表4参25 -
关键词:
- 河道底泥 /
- 匍匐剪股颖‘本特A-4’ /
- 基质 /
- 生理指标 /
- 生物量
Abstract:Objective The dredging sediment from rivers, lakes, reservoirs and ponds can be used for the production of high-economic value landscape plants such as turf, which can not only solve the problem of occupying cultivated farmland and destroying top soil layer, but also solve the treatment and disposal problem of organic solid waste such as sediment. Method Based on the mixed material design and the principle of maximum consumption of river sediment, the proportion of the three raw materials, namely sediment, biogas residue, and biochar, was set to be 50%≤sediment≤100%, 0≤biogas residue≤50%, and 0≤biochar≤10%, respectively, totaling 13 treatments. Meanwhile, cultivated soil was set as the control, and the growth indicators (biomass dry mass, chlorophyll, root activity) and physiological indicators (soluble sugar, malondialdehyde, antioxidant protective enzymes) were measured to explore the feasibility and suitability of planting Agrostis stolonifera ‘PENN A-4’ with the substrate of river sediment as the main material instead of the traditional cultivated soil. Result Compared with the control, the dry weight of above ground part and underground part of A. stolonifera ‘PENN A-4’ significantly increased by 58.53% and 17.19%, respectively (P<0.05) and the root activity nearly doubled (P<0.01) when the proportion of sediment in the mixed substrate was 75.00%, the proportion of biogas residue was 20.00%, and the proportion of biochar was 5.00%, but the content of chlorophyll a and b in plants decreased by approximately 20.00% (P<0.01). In addition, the mixed substrate significantly increased superoxide dismutase activity (28.66%, P<0.01), but had no significant effect on the contents of soluble sugar and malondialdehyde, catalase activity and peroxidase activity in plants. Conclusion It is feasible to use river sediment as the main material, mixed with an appropriate proportion of biogas residue and biochar as a substrate instead of cultivated soil for A. stolonifera ‘PENN A-4’ planting. The mixed biogas residue can effectively increase the aboveground biomass and root vitality of the turf grass, while biochar can effectively increase the underground biomass of the grass. [Ch, 5 fig. 4 tab. 25 ref.] -
Key words:
- river sediment /
- Agrostis stolonifera ‘PENN A-4’ /
- turf substrate /
- physiological indexes /
- biomass
-
植物繁育系统是指直接影响后代遗传组成的所有有性特征,包括花部特征、开放式样、花各性器官寿命长短,自交亲和程度与交配系统等[1]。作为植物重要的繁殖器官,花内部器官发育和外部形态特征与植物的传粉效率、交配方式密不可分。因此,系统研究植物的花部特征和繁育系统有助于理解其繁殖过程限制因子的生态效应,对生物多样性保育具有重要价值[2]。
长柱紫茎Stewartia rostrata为山茶科Theaceae紫茎属Stewartia的落叶灌木或小乔木,主要分布于浙江西北部、安徽南部及西部、江西北部及湖南东部,地理分布较为狭窄。花白繁茂,花瓣多带有形状、颜色不一的红斑,树干造型多样;集中开花,观赏价值极高,在园林绿地应用潜力巨大。近年来,由于人类干扰频繁和自然环境恶化,长柱紫茎的野外生存受到极大的威胁,迫切需要开展保育生物学系列研究。实地调查发现:尽管盛花期花量极大,但长柱紫茎群落下层幼苗稀少,天然更新不良,与同属的濒危植物紫茎Stewartia sinensis衰退型种群结构类似[3−4]。紫茎属木本植物幼苗幼树稀少,其原因可能涉及群落环境(如植物间竞争排斥关系、植物与传粉昆虫关系)与非生物环境(如阴雨天气的出现)的限制作用、种子发芽受阻、花部特征与繁育系统影响传粉过程造成种子发育质量不良等。已有研究表明[5]:紫茎的种子发芽率无论是实验室还是圃地最高仅为10%,甚至为0。长柱紫茎和紫茎在同属中亲缘关系最为接近,形态特征、生物学特性有许多相近之处,推测此2个种的繁育过程受阻有相似之处。
目前,紫茎属已有研究集中于群落结构[4]、繁殖技术[5]、种子发芽[6]、植物种分类[7]及系统发育[8]等方面,未发现有关紫茎属特别是长柱紫茎花部特征、传粉过程的限制因素、繁育系统所属类型等的报道。繁育系统类型是否对长柱紫茎结实率和种子败育产生影响,其衰退型种群结构是否与其繁育系统类型有关,生境自然条件变化是否影响传粉昆虫的行为,从而影响繁殖成功率;这些都是当前亟待深入研究的科学问题。为此,本研究以长柱紫茎为材料,通过观察(测)长柱紫茎花部特征和昆虫访花特性、测定花粉活力和柱头可授性、测算杂交指数和花粉胚珠比等,深入揭示其繁殖过程限制因素的影响,为紫茎属种群更新、人工扩繁及园林推广应用提供科学依据,为紫茎属的濒危植物致濒机制研究提供思路。
1. 材料与方法
1.1 试验区概况
研究地浙江农林大学东湖校区(30°15′28″N,119°43′35″E)海拔101.3 m,属于中亚热带季风气候,四季分明,年平均气温为16.1 ℃,全年降水量为1 628.6 mm,年降水日为154 d,无霜期为236 d。研究地周边地带性植被为亚热带常绿阔叶林。选择3 a生长柱紫茎为材料,株高为2.5~3.0 m。研究时间为2021年4—6月。
1.2 开花动态及花部特征观察(测)
1.2.1 开花动态
于花蕾期随机选取30朵花挂牌标记,每天16:00观察直至单花开放;开花当天及开花第2天8:00—18:00连续观察,每隔2 h定点观测1次并拍照,之后每天观测1次。观察花的开花动态,记录单花结构、花朵大小和形状、雄雌蕊位置形态变化、花瓣颜色、苞片颜色、萼片颜色、花药开裂时间等,直至花部萎蔫[9]。
1.2.2 花部形态特征
于盛花期,在15株植株上随机选取30朵发育良好的花,测定花部结构参数,记录花冠直径、苞片长宽、花瓣长宽、萼片长宽、子房直径及长度等数据。
1.3 花粉活力测定
1.3.1 花粉离体培养
随机采集当天开放花朵的花粉,设置5种蔗糖质量浓度(0、5、10、15、20 g·L−1)处理,于25 ℃下培养6 h后观察并统计花粉萌发率。
1.3.2 花粉活力测定
随机采集当天开放花朵的花粉,分别采用2,3,5-氯化三苯基四氮唑(TTC)染色法、碘-碘化钾(I2-KI)染色法,筛选最适蔗糖质量浓度培养6 h后测定花粉活力,以加热致死的花粉作对照,每个处理3次重复。在光学显微镜下随机选取3个视野统计着色花粉数,每个视野花粉数不少于100粒[10]。
1.3.3 花粉萌发率测定
选取开放前1 d至开放后第3天的花朵,每个阶段选取10朵,测定最适蔗糖质量浓度培养下的花粉活力,以加热致死的花粉为对照。在光学显微镜下观察统计花粉萌发率,每视野内花粉数不少于100粒。
1.4 柱头可授性测定
随机选取开放前1 d至开放后7 d的花朵,将柱头放在凹面载玻片上,完全浸泡于质量分数3%的过氧化氢(H2O2)溶液中,30 min后在体式显微镜下观察,若有气泡产生则表明柱头有活性,反之则无[11]。
1.5 花粉胚珠比计算
随机选取不同植株的20朵即将开放的花蕾,记录每朵花的雄蕊数。随机选取1个花药,用解剖针将花药捣碎,蒸馏水定容至1 mL,吸取1 µL液体在光学显微镜下统计花粉数量;每朵花选取3个花药,重复3次,取平均数乘雄蕊数再乘1 000得出单花花粉量。解剖相对应的子房,统计胚珠数[12]。根据CRUDEN[13]标准,计算花粉胚珠比(单花花粉总数/单花胚珠数,P/O);并由此判断长柱紫茎繁育系统类型。
1.6 杂交指数估算
按照DAFNI[14]标准,通过杂交指数(OCI)评判繁育系统类型。用游标卡尺测定花冠直径;观察记录花药开裂时间与柱头可授期,雌雄蕊是否同时成熟;记录花药与柱头之间的相对空间关系。
1.7 访花昆虫观察
随机选择5株长柱紫茎,于晴天9:00—17:00连续观察访花昆虫。每株长柱紫茎选择10朵花,每2 h观察1次,每天观察5次,记录访花昆虫的种类和访花时间[15]。
2. 结果与分析
2.1 开花动态及花部形态特征
2.1.1 开花动态
长柱紫茎居群花期为5月初至5月中下旬,约17 d (2021年5月1—17日),单花花期2 d。5月1日该居群的第1朵花开放,5月8日单日开花最多,占总开花数的15%,达到盛花期,5月13日进入末花期。
长柱紫茎单花开放过程分为花蕾期(苞片、萼片包裹花蕾)、初展期(花药、柱头显露)、盛放期(花瓣平展)、凋落期(花瓣枯萎)及坐果期(子房膨大结实) 5个过程(图1)。具体的,①花蕾期(图1A和B),苞片、萼片呈绿色,紧紧包裹花蕾。临近开放时,绿色的苞片和萼片从基部向边缘转为紫红色,同时向外伸展,逐渐显现出花苞。花苞顶部受光影响,呈现红斑。②初展期(图1C),单花花瓣展开,花药和柱头显露,弯曲的花丝慢慢伸展高出柱头。③盛放期(图1D),花瓣完全平展,雄蕊高于柱头伸展,柱头反向弯曲,呈5裂。④凋落期(图1E和F),花瓣枯萎、脱落,开放24~32 h后,花药逐渐由橘黄色变为淡棕色,花冠极易掉落,柱头萎蔫,萼片和苞片逐渐收缩,花朵直径变小。⑤坐果期(图1G和H),子房膨大,萼片和苞片再逐渐展开,由红色转为绿色,果实由绿色转为棕色,逐渐木质化。
2.1.2 花部形态特征
长柱紫茎的平均单花直径为(50.2±11.7) mm (表1),花瓣5枚,白色,边缘裂状,有1~3枚花瓣带红斑(图1K);每花具1对叶状苞片(图1J-1),披针叶形,开花时基部由绿色转为紫红色;萼片5枚(图1J-2);雄蕊50~84枚,长17~19 mm,花丝黄色呈线形,基部连合成短管,花丝的连合处不及花丝长度的1/3(图1J-4),花药橘黄色,干后变为淡棕色;雌蕊1枚,长14~16 mm,柱头呈5裂(图1J-5),花朵盛开时花丝高于柱头;子房5室,每室4枚胚珠,稀2~3枚,中轴胎座。
表 1 长柱紫茎的花部形态特征Table 1 Flower characteristics of S. rostrata花器官 平均值±标准误 花器官 平均值±标准误 花器官 平均值±标准误 花梗长/mm 5.2±1.4 萼片宽/mm 8.8±2.2 带斑的花瓣宽/mm 19.6±2.9 花冠直径/mm 50.2±11.7 花瓣数/枚 5±0 雄蕊数/枚 64.9±11.8 苞片数/片 2±0 花瓣长/mm 28.5±3.7 雄蕊长/mm 17.5±1.5 苞片长/mm 15.5±4.2 花瓣宽/mm 20.0±3.1 胚珠数/枚 18.6±2.4 苞片宽/mm 9.4±2.4 花斑长/mm 8.9±2.8 雌蕊长度/mm 14.2±1.1 萼片数/枚 5±0 花斑宽/mm 8.2±2.7 子房直径/mm 5.0±0.7 萼片长/mm 15.2±3.3 带斑的花瓣长/mm 20.2±5.7 子房长/mm 3.7±0.5 2.2 花粉活力测定
2.2.1 花粉离体培养的适宜蔗糖质量浓度
在无蔗糖培养基下,长柱紫茎花粉萌发率仅为13.7%;随着培养基蔗糖质量浓度的增加,花粉萌发率增大,在15 g·L−1出现峰值,为69.3%。当蔗糖质量浓度为20 g·L−1时,花粉萌发率降至33.3%。因此,15 g·L−1的蔗糖培养基为最适培养基(图2)。
2.2.2 不同方法测定花粉活力
采用I2-KI染色,活力较强的花粉会呈现蓝黑色,但在操作时,易混入杂质,视野中观察到的蓝黑色不够明显,不利于计数。采用TTC染色,有活力的花粉会呈现红色;但观察到大部分花粉未变红,说明TTC染色不利于测定长柱紫茎的花粉活力。因此,TTC染色法和I2-KI染色法均不适合长柱紫茎花粉活力的测定。实际研究中,与TTC染色法和I2-KI染色法相比,花粉离体培养下,花粉会萌发较长的花粉管,更有利于观察。
2.2.3 不同开放时间花粉萌发率
采用15g·L−1的蔗糖培养基培养花粉,由图3可知:开放前1 d,花粉萌发率较高,为49.3%,开花当天花粉活力最高,为65.0%。之后花粉活力逐渐下降,到第3天,已降至11.7%。
2.3 柱头可授性
由图4可知:开放前1 d长柱紫茎花药尚未开裂,柱头合拢,呈白色,可授性弱。开放1~2 d,柱头逐渐张开,具有较强可授性,之后可授性逐渐增强。到第3天柱头开始萎蔫,由白色转变为棕黄色,可授性强。在开放的第4天,柱头完全展开,向外反卷呈5裂,呈棕黄色、萎蔫皱巴的状态,此时花粉活性最强。之后,柱头可授性逐渐下降,到第7天,柱头基本失去可授性。
2.4 花粉胚珠比
根据统计结果,长柱紫茎花粉数为(1 618 666.7±254 775.4)粒,胚珠数为(18.6±2.4)枚,花粉/胚珠比(P/O)为2 108.0~195 525.0,平均为87 025.1。依照CRUDEN的标准,判断长柱紫茎的繁育系统属于专性异交。
2.5 杂交指数测算
依照DAFNI的评判标准,测算长柱紫茎的杂交指数。长柱紫茎成熟花朵的花冠直径平均为50.24 mm,大于6 mm,记为3。雌雄蕊在成熟时间上一致,记为0;在花蕾期,长柱紫茎的柱头高于雄蕊,当花朵完全盛开时,雄蕊高于雌蕊,柱头和花药存在空间分离,记为1。因此,OCI结果为4,说明长柱紫茎的繁育类型属于以异交为主,需要传粉者,部分自交亲和。
2.6 访花昆虫观察
长柱紫茎上观察到的访花昆虫有熊蜂Bombus sp.、中华蜜蜂Apis cerana、黑带食蚜蝇Episyrphus balteatus、叶甲Chrysomelidae和日本弓背蚁Camponotus japonicus等,有效传粉者主要为熊蜂,其他种类出现频率低或进行无效传粉(图5)。长柱紫茎的开花高峰为7:00—11:00,昆虫的访花时间也集中在这段时间。黑带食蚜蝇在同一朵花上同一部位停留超过20 s,舔食花蜜,但数量较少,传粉作用不佳(图5A)。熊蜂单次访花时间为2~5 s,访花频率很高,在较短时间内频繁地在多朵花间逗留。访花时喜欢头部向下,整个身体钻入花冠筒,身上的绒毛黏附花粉量大,与柱头接触面积大,可有效传粉(图5B)。中华蜜蜂与熊蜂行为相似,但出现频率不及熊蜂,且体积小,能够黏附到的花粉少(图5C)。叶甲外壳光滑,花粉难以黏附。偶见1只在花冠上停留较长时间,与柱头未进行有效接触,传粉贡献小(图5D)。日本弓背蚁的足部和腹部会黏附花粉,徘徊逗留,偶尔实现有效传粉(图5E)。
3. 讨论
3.1 花部特征与传粉适应性
花部特征包含花部构成(结构、颜色、气味等)和开放式样(开花数目、大小及类型等),因此可以从花部特征、开放式样解析植物与传粉者的生态依存关系。植物为了与传粉者的行为习惯相适应而使其花部形态结构、颜色等逐步进化[16]。对于蜂类,白色和黄色是可见花色。长柱紫茎花冠白色,平均直径达(50.2±11.7) mm,花丝黄色,颜色耀眼,同时平展的花冠为传粉昆虫提供停靠点,符合蜂媒花特征,此类花部特征与四川牡丹Paeonia decomposita一致[17]。同一物种内不同个体或居群间花色差异即花色多态性,传粉者的偏好因为花色差异造成访花频率的差异[18]。长柱紫茎的白色花瓣上常出现红色,推测是为适应单一的传粉媒介而进化出的特征,以便增加对其他类昆虫的吸引力,从而提高传粉效率[19]。
在强大的选择压力下,很多植物形成了“大量、集中开放”的开花模式,有利于吸引访花昆虫在短时间大量、密集表达访花行为,从而增加传粉机会[20]。长柱紫茎花期为5—6月,属于浙江的梅雨季节,阴雨天气极大地减少了传粉昆虫的活动。长柱紫茎集中开花,持续开花时间短,日均开花数量多,有利于提高繁殖成功率。此开花式样呈现的特征与山茶科Theaceae濒危植物金花茶Camellia nitidissima的研究结果一致[21]。长柱紫茎的有效传粉者主要为熊蜂,在阴雨天气熊蜂频繁地在同一植株上访花,且开花植株又少,原生境植株间相距较远,不利于花粉在植株间传播,结果增加同株异花授粉的可能性,降低接受花粉的质量,从而影响长柱紫茎的结实率。
3.2 繁育系统
参照CRUDEN[13]所述标准,长柱紫茎的繁育系统为专性异交。长柱紫茎P/O极高,达87 025.1,意味着长柱紫茎更加趋向于远交;但根据DAFNI[14]的标准,长柱紫茎OCI为4,判断其繁育系统为异交为主,部分自交亲和,需要传粉者。长柱紫茎开花后雄蕊逐渐伸长,最后花药高于柱头,且花蕾期有花药散粉现象,因此长柱紫茎的花部特征增加了自花授粉的可能性。在自然界中,绝大部分被子植物倾向于自交与异交结合的混合交配模式,只有极少数利用单一交配模式完成授粉[22]。综合得出:长柱紫茎的繁育系统属于倾向于异交的混合交配系统,当其异株(异花)授粉受阻时,可表现为自交亲和,自交是长柱紫茎适应长期阴雨环境的繁殖保障策略,此种混合交配系统与流苏树Chionanthus retusus相似[23]。
有效的传粉过程包含大量有活力的花粉、可授期的柱头及有效传粉媒介[24]三大要素。长柱紫茎平均雄蕊数为(64.9±11.8)枚,单花平均花粉量多达(1 618 666.7±254 775.4)粒,为传粉昆虫提供丰厚的报酬,且花粉黏附力强,易被传粉昆虫携带,为异交授粉提供了充足的物质保障,故花粉数量不是其繁殖受限的原因。柱头可授期长,达7 d,在第3和第4天达到最强活力,为实施人工授粉的最佳时期。柱头5裂增加传粉表面积和柱头可授期长为异花授粉提供了基本保障,有利于提高传粉效率和结实率,此现象与陈雄伟等[25]观测紫背天葵Begonia fimbristipula的结果一致。当天开花的花朵保持最强活力(65.0%),随着开花时间增加,花粉活力显著下降,到第2天仅38.3%,第3天降至11.7%。观察发现长柱紫茎大多数花朵寿命很短,开花损失率高,花粉强活力和较强柱头可授性仅1 d的相遇期,严重影响花朵的传粉效率。无论授粉与否,长柱紫茎在开花24~32 h后,花冠和雄蕊都存在易脱落的现象,脱落后花粉迅速失活,大大减少了受精的可能性[26]。推测已授粉花朵脱落可能与营养资源限制有关,减少繁殖成本[27];未授粉花朵可能通过短寿命减小花展示程度,从而减少同株异花传粉的概率[28]。
P/O是衡量植物对雄性资源分配量的指标[29],高P/O值可能是对传粉效率低造成柱头接受的花粉量少、质量低的补偿[30],多样化的传粉媒介有利于提高授粉成功率。长柱紫茎授粉受限可能与传粉者的种类、数量有关。长柱紫茎的主要传粉昆虫熊蜂,飞行距离远,访花频率高,多朵花之间穿梭,携带花粉量大,有效地进行异花传粉,但其他昆虫传粉效率较低,有效传粉媒介单一。长柱紫茎花粉离开花朵后迅速失活,不利于传粉昆虫远距离完成植株之间的传粉,因此居群间的基因不能充分交流[31]。
4. 结论
综上所述,长柱紫茎花冠白色和花丝黄色,与蜂类传粉特性相适应,为典型蜂媒花;传粉受阴雨天气影响,集中开花模式是对恶劣天气的有效适应,但传粉昆虫单一。开花24~32 h,花冠和雄蕊都极易脱落从而导致花粉迅速失活。以上因素限制了长柱紫茎的繁殖。集中开花模式、花粉量大、柱头5裂及可授期长等花部特征是长柱紫茎维持繁殖成功的基本保障。长柱紫茎繁育系统属于以异交为主,需要传粉者,当其授粉受阻时,可表现为自交亲和,自交是长柱紫茎适应长期阴雨天气的繁殖策略。
-
表 1 材料基础理化性质
Table 1. Basic physical and chemical properties of the materials used in the study
基质 酸碱度 电导率/(mS·cm−1) 容重/(g·cm−3) 总孔隙度/% 有机质/(g·kg−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 全钾/(g·kg−1) 底泥 7.48 0.15 1.05 58.02 84.07 0.60 0.69 10.67 沼渣 6.54 2.49 0.51 72.41 309.50 15.23 24.69 3.71 生物质炭 9.40 1.26 0.63 59.85 699.63 20.83 21.91 14.50 耕作土 6.39 0.45 1.23 40.28 33.39 1.51 1.59 15.67 表 2 混料设计方案
Table 2. Scheme of a mixed material design
处理 点类型 底泥/% 沼渣/% 生物质炭/% 处理 点类型 底泥/% 沼渣/% 生物质炭/% 1 顶点 50.00 50.00 0 8 双混合 70.00 20.00 10.00 2 顶点 50.00 40.00 10.00 9 中心点 72.50 22.50 5.00 3 顶点 100.00 0 0 10 轴点 61.25 36.25 2.50 4 顶点 90.00 0 10.00 11 轴点 61.25 31.25 7.50 5 双混合 50.00 45.00 5.00 12 轴点 86.25 11.25 2.50 6 双混合 95.00 0 5.00 13 轴点 81.25 11.25 7.50 7 双混合 75.00 25.00 0 说明:数值为体积百分比。 表 3 不同处理间匍匐剪股颖‘本特A-4’叶绿素的质量分数
Table 3. Chlorophyll contents in different treatments of A. stolonifera ‘PENN A-4’
处理 叶绿素a/
(mg·g−1)叶绿素b/
(mg·g−1)叶绿素a+b/
(mg·g−1)叶绿素a/b 处理 叶绿素a/
(mg·g−1)叶绿素b/
(mg·g−1)叶绿素a+b/
(mg·g−1)叶绿素a/b 1 1.33±0.01** 0.45±0.02** 1.77±0.03** 2.97±0.17** 8 1.49±0.04** 0.42±0.01** 1.91±0.04** 3.54±0.06 2 1.38±0.08** 0.46±0.03* 1.84±0.11** 3.00±0.04** 9 1.49±0.05** 0.42±0.05** 1.91±0.09** 3.54±0.41 3 1.65±0.10* 0.53±0.04 2.18±0.14* 3.10±0.08* 10 1.40±0.06** 0.44±0.05** 1.84±0.11** 3.20±0.21 4 1.28±0.02** 0.41±0.02** 1.69±0.03** 3.10±0.11* 11 1.50±0.03** 0.47±0.01* 1.97±0.03** 3.20±0.03 5 1.28±0.09** 0.45±0.03** 1.73±0.12** 2.87±0.04** 12 1.59±0.01** 0.48±0.01 2.07±0.02** 3.30±0.06 6 1.25±0.06** 0.37±0.04** 1.63±0.09** 3.36±0.28 13 1.40±0.04** 0.45±0.02** 1.85±0.07** 3.14±0.10* 7 1.33±0.18** 0.40±0.06** 1.74±0.25** 3.30±0.08 ck 1.81±0.10 0.53±0.03 2.33±0.14 3.42±0.02 说明:*表示不同处理与ck间差异显著(P<0.05),**表示不同处理与ck间差异极显著(P<0.01)。 表 4 不同处理间匍匐剪股颖‘本特A-4’抗氧化保护酶活性
Table 4. Antioxidant protective enzyme activities in different treatments of A. stolonifera ‘PENN A-4’
处理 过氧化氢酶/
(×16.67 nkat·g−1)超氧化物歧化酶/
(×16.67 nkat·g−1)过氧化物酶/
(×16.67 nkat·g−1)处理 过氧化氢酶/
(×16.67 nkat·g−1)超氧化物歧化酶/
(×16.67 nkat·g−1)过氧化物酶/
(×16.67 nkat·g−1)1 21.40±1.01 367.55±36.93** 697.92±42.87 8 12.43±2.48** 373.57±18.29** 594.51±39.24** 2 21.40±5.14 395.48±31.95** 793.27±21.60* 9 31.54±3.38** 430.98±18.62** 708.82±16.03 3 20.28±0.96 256.49±10.25* 659.04±28.40* 10 24.38±3.40 398.58±16.95** 764.31±29.50 4 12.93±0.79** 304.48±15.89 613.16±27.51** 11 28.08±0.98** 415.11±27.08** 828.98±36.13** 5 20.84±0.64 378.02±27.12** 715.14±27.55 12 18.19±1.71* 316.05±37.78 574.14±25.23** 6 17.81±1.89* 292.52±19.37 676.58±42.97 13 12.01±1.22** 319.52±15.16 787.36±43.58* 7 30.27±1.86** 392.23±10.75** 785.75±41.48 ck 22.42±2.64 304.96±29.18 729.52±34.36 说明:*表示不同处理与ck间差异显著(P<0.05);**表示不同处理与ck间差异极显著(P<0.01)。 -
[1] 张建龙. 中国林业和草原统计年鉴(2018)[M]. 北京: 中国林业出版社, 2019. ZHANG Jianlong. China Forestry and Grassland Statisical Yearbook (2018) [M]. Beijing: China Forestry Publishing House, 2019. [2] 单华佳, 李梦璐, 孙彦, 等. 近10年中国草坪业发展现状[J]. 草地学报, 2013, 21(2): 222 − 229. SHAN Huajia, LI Menglu, SUN Yan, et al. Recent development of turf grass industry in China [J]. Acta Agrestia Sinica, 2013, 21(2): 222 − 229. [3] 杨翠红, 林康, 高翔, 等. “十四五”时期我国粮食生产的发展态势及风险分析[J]. 中国科学院院刊, 2022, 37(8): 1088 − 1098. YANG Cuihong, LIN Kang, GAO Xiang, et al. Analysis on development and risks of China’ s food production during 14th five-year plan period [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1088 − 1098. [4] 浙江省水利厅. 全省水利统计简报(2018年度)[EB/OL]. 2019-02-12 [2023-12-25]. https://slt.zj.gov.cn/art/2019/2/12/art_1229232728_1987881.html. Department of Water Resources of Zhejiang Province. Provincial Water Conservancy Statistics Briefing (2018) [EB/OL]. 2019-02-12 [2023-12-25]. https://slt.zj.gov.cn/art/2019/2/12/art_1229232728_1987881.html. [5] 崔建宇, 慕康国, 胡林, 等. 北京地区草皮卷生产对土壤质量影响的研究[J]. 草业科学, 2003, 20(6): 68 − 72. CUI Jianyu, MU Kangguo, HU Lin, et al. Studies on the effects of sod-production on soil quality in Beijing area [J]. Pratacultural Science, 2003, 20(6): 68 − 72. [6] 崔高磊, 徐翠, 罗富成, 等. 无土草皮生长介质的研究与应用进展[J]. 草学, 2020(6): 7 − 12, 24. CUI Gaolei, XU Cui, LUO Fucheng, et al. Research and application progress of soilless turf growth substrate [J]. Journal of Grassland and Forage Science, 2020(6): 7 − 12, 24. [7] DUNN C, FREEMAN C. Peatlands: our greatest source of carbon credits? [J]. Carbon Management, 2011, 2(3): 289 − 301. [8] CLEARY J, ROULET N T, MOORE T R. Greenhouse gas emissions from Canadian peat extraction, 1990−2000: a life-cycle analysis [J]. AMBIO, 2005, 34(6): 456 − 461. [9] 肖超群, 郭小平, 刘玲, 等. 绿化废弃物堆肥配制屋顶绿化新型基质的研究[J]. 浙江农林大学学报, 2019, 36(3): 598 − 604. XIAO Chaoqun, GUO Xiaoping, LIU Ling, et al. Greening waste compost as a new substrate for green roofs [J]. Journal of Zhejiang A&F University, 2019, 36(3): 598 − 604. [10] RAVIV M. Composts in growing media: what’ s new and what’ s next? [J]. Acta Horticulturae, 2013, 982: 39 − 52. [11] 马逢时, 周暐, 刘传冰. 六西格玛管理统计指南: MINITAB使用指导[M]. 北京: 中国人民大学出版社, 2018. MA Fengshi, ZHOU Wei, LIU Chuanbing. Six Sigma Management Statistics Guide: MINITAB Usage Guide [M]. Beijing: China Renmin University Press, 2018. [12] 郑凯, 杨新根. 山西省草坪建植和养护管理[J]. 山西农业科学, 2010, 38(11): 98 − 100. ZHENG Kai, YANG Xin’gen. The technique of lawns establishment, management and maintenance in Shanxi Province [J]. Journal of Shanxi Agricultural Sciences, 2010, 38(11): 98 − 100. [13] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. GAO Junfeng. Plant Physiology Experiment Guide [M]. Beijing: Higher Education Press, 2006. [14] HAMMERSCHMIEDT T, KINTL A, HOLATKO J, et al. Assessment of digestates prepared from maize, legumes, and their mixed culture as soil amendments: effects on plant biomass and soil properties [J/OL]. Frontiers in Plant Science, 2022, 13: 1017191[2023-12-25]. doi: 10.3389/fpls.2022.1017191. [15] CHEN Wenfu, MENG Jun, HAN Xiaori, et al. Past, present, and future of biochar [J]. Biochar, 2019, 1(1): 75 − 87. [16] 冯树林, 周婷, 王军利. 几种野生百合叶绿素和氮对干旱胁迫的响应特征研究[J]. 辽宁农业科学, 2023(4): 6 − 11. FENG Shulin, ZHOU Ting, WANG Junli. Research on the response characteristics of chlorophyll and nitrogen content of several typical wild lilies to drought stress [J]. Liaoning Agricultural Sciences, 2023(4): 6 − 11. [17] 张卫红, 刘大林, 苗彦军, 等. 西藏3种野生牧草苗期对干旱胁迫的响应[J]. 生态学报, 2017, 37(21): 7277 − 7285. ZHANG Weihong, LIU Dalin, MIAO Yanjun, et al. Drought stress responses of the seedlings of three wild forages in Tibet [J]. Acta Ecologica Sinica, 2017, 37(21): 7277 − 7285. [18] XIANG Yangzhou, DENG Qi, DUAN Honglang, et al. Effects of biochar application on root traits: a meta-analysis [J]. Global Change Biology Bioenergy, 2017, 9(10): 1563 − 1572. [19] PEI Junmin, LI Jinquan, FANG Changming, et al. Different responses of root exudates to biochar application under elevated CO2 [J/OL]. Agriculture, Ecosystems & Environment, 2020, 301: 107061[2023-12-25]. doi: 10.1016/j.agee.2020.107061. [20] 刘训. 提高狗牙根抗旱性外源物质配方的筛选研究[D]. 武汉: 中国科学院, 2016. LIU Xun. Exogenous Application of Substances Improves the Drought Tolerance of Bermudagras [D]. Wuhan: Chinese Academy of Sciences, 2016. [21] HAFEZ Y M, ATTIA K, ALAMERY S, et al. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants [J/OL]. Agronomy, 2020, 10(5): 630[2023-12-25]. doi: 10.3390/agronomy10050630. [22] 刘亚丽, 王庆成, 刘爽, 等. 水分胁迫对脂松苗木针叶质膜透性和保护酶活性的影响[J]. 植物研究, 2011, 31(1): 49 − 55. LIU Yali, WANG Qingcheng, LIU Shuang, et al. Effects of water stress on plas ma membrane per meability and protective enzyme activities of red pine seedlings needles [J]. Bulletin of Botanical Research, 2011, 31(1): 49 − 55. [23] 刘易, 孟阿静, 黄建, 等. 生物质炭输入对盐胁迫下玉米植株生物学性状的影响[J]. 干旱地区农业研究, 2018, 36(2): 16 − 22, 249. LIU Yi, MENG Ajing, HUANG Jian, et al. Effect of biomass carbon input on corn biological index cultivated under saline stress [J]. Agricultural Research in the Arid Areas, 2018, 36(2): 16 − 22, 249. [24] 王鹤冰, 向华丰, 张洪成, 等. 不同性型水果黄瓜内过氧化物酶及同工酶的差异性分析[J]. 南方农业, 2021, 15(4): 52 − 54. WANG Hebing, XIANG Huafeng, ZHANG Hongcheng, et al. Difference analysis of endoperoxidase and isoenzymes in cucumber with different sex types [J]. South China Agriculture, 2021, 15(4): 52 − 54. [25] FARHANGI-ABRIZ S, TORABIAN S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress [J]. Ecotoxicology and Environmental Safety, 2017, 137: 64 − 70. 期刊类型引用(2)
1. 蔡艳清,陈玉军,李玫,邓创发,黄烈健. 榄李开花生物学和繁育系统. 植物研究. 2024(01): 152-160 . 百度学术
2. 何淼,张紫馥,臧帅彤,尹雪,孟儒,孙颖. 辽吉侧金盏花的开花特性和繁育系统. 东北林业大学学报. 2023(03): 54-59 . 百度学术
其他类型引用(4)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240157