留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缓释氮肥配施有机肥对稻麦轮作体系作物生长和土壤养分的影响

姚权 唐旭 肖谋良 姜振辉 吴春艳 李艳 尹昌 李永夫

颜顾浙, 方伟, 卢络天, 等. 土壤酶活性对不同植物连作的差异响应[J]. 浙江农林大学学报, 2023, 40(3): 520-530. DOI: 10.11833/j.issn.2095-0756.20220494
引用本文: 姚权, 唐旭, 肖谋良, 等. 缓释氮肥配施有机肥对稻麦轮作体系作物生长和土壤养分的影响[J]. 浙江农林大学学报, 2025, 42(1): 175−184 doi:  10.11833/j.issn.2095-0756.20240149
YAN Guzhe, FANG Wei, LU Luotian, et al. Differential response of soil enzyme activity to continuous cropping of different plants[J]. Journal of Zhejiang A&F University, 2023, 40(3): 520-530. DOI: 10.11833/j.issn.2095-0756.20220494
Citation: YAO Quan, TANG Xu, XIAO Mouliang, et al. Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system[J]. Journal of Zhejiang A&F University, 2025, 42(1): 175−184 doi:  10.11833/j.issn.2095-0756.20240149

缓释氮肥配施有机肥对稻麦轮作体系作物生长和土壤养分的影响

DOI: 10.11833/j.issn.2095-0756.20240149
基金项目: 国家重点研发计划政府间国际科技创新合作重点专项项目(2022YFE0127800);国家自然科学基金资助项目(32271845)
详细信息
    作者简介: 姚权(ORCID: 0009-0003-5097-6220),从事土壤碳氮循环研究。E-mail: yaoquanzafu@163.com
    通信作者: 李永夫(ORCID: 0000-0002-8324-5606),教授,博士,从事土壤碳氮循环研究。E-mail: yongfuli@zafu.edu.cn
  • 中图分类号: S714.8

Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system

  • 摘要:   目的  过度使用无机氮肥会导致严重的环境问题。适当减少氮肥并配合有机肥的施用,不仅可以保持作物产量,还能确保稻麦轮作体系的长期可持续耕作。  方法  通过田间试验,以常规施氮量(小麦Triticum aestivum季180 kg·hm−2、水稻Oryza sativa季210 kg·hm−2)为基准,氮肥种类为缓控释尿素,设置4个处理:不施氮肥(ck)、常规施氮(N100)、减氮15%配施有机肥(MN85)和减氮30%配施有机肥(MN70),明确氮肥减量配施有机肥对稻麦轮作体系作物产量、植株氮和土壤养分的影响。  结果  氮肥增产贡献率为46.0% (小麦季为66.2%,水稻季为25.8%),施氮肥显著提高了作物产量(P<0.05),尤其是MN85处理的作物产量增幅最大。与N100相比,MN85处理的水稻有效穗数提高了16.8% (P<0.05)。与MN70相比,N100和MN85处理的小麦籽粒氮质量分数分别提高了8.7%和9.0% (P<0.05),秸秆氮质量分数分别提高了16.6%和16.0% (P<0.05)。与N100和MN70相比,MN85处理的水稻籽粒吸氮量分别提高了23.5%和19.8% (P<0.05),秸秆吸氮量分别提高了25.5%和26.6%。施肥处理均导致一部分氮素累积在土壤中,尤其是减氮配施有机肥处理拥有更多的氮素盈余量。与N100相比,小麦氮肥表观利用率、氮肥农学效率和氮肥偏生产率在MN85处理下分别降低了37.0%、36.4%和41.5%,在MN70处理下分别降低了60.2%、55.1%和47.5%;但水稻季减氮配施有机肥处理的氮素生理效率提高了30.5%~33.4% (P<0.05),MN85处理的氮肥农学效率提高了33.3%。与N100相比,减氮配施有机肥处理的土壤有机质和全氮质量分数分别增加了12.2%~13.9%和10.4%~13.0% (P<0.05);微生物生物量氮和硝态氮分别增加了37.9%~42.7%和72.2%~107.4% (P<0.05);而且MN85处理的土壤速效钾和有效磷也增加了45.9%和152.0% (P<0.05),水溶性氮增加了68.8% (P<0.05)。  结论  缓控释尿素减量15%配施有机肥能够提升土壤养分质量分数,促进作物对氮素的吸收,从而提高作物产量和氮肥利用效率,可作为一种有效的氮肥减量增效措施。图1表6参40
  • 同一块土地连续种植同一作物或近缘作物,即使在正常的栽培管理状况下,也会出现植株长势变弱、病虫害严重、作物产量降低、品质下降等的现象为连作障碍[1],很多作物都存在这一现象[25]。目前,中国连作危害程度高的地块面积超过10%,当季作物损失占20%~80%,严重的甚至几乎绝产。连作障碍每年造成数百亿元的经济损失,同时还降低了农作物的安全性[6]。作物轮作、间作、套作等增加生物多样性的方法是解决连作障碍的有效措施,但都仅是短期内的改善,且操作上存在诸多不便,推广应用不理想。中国土地利用指数高、经营强度大,同一地区集中连作1~2种植物是当下农业生产的主要模式[7]。因此,目前提出的解决连作障碍的技术与方法,难以从本质上解决连作障碍问题[8]。以“作物连作障碍”为关键词,统计1989—2018年的结果表明:突现度(某变量出现频次在较短时间内突然增加)排名前二位的分别是黄豆Glycine max (35.3094)、马铃薯Solanum tuberosum(28.9866)[9],说明这2种植物连作障碍问题严重。而禾本科植物连作障碍的研究报道极少,说明实际生产中禾本科Poaceae植物很少出现连作障碍。禾本科作物还常常作为连作障碍首选的间作或轮作对象,如对枸杞Lycium chinense与禾草间作研究发现:土壤理化性质、土壤酶活性、枸杞生长速率和产量以及禾草生物量等指标均表现为间作高于枸杞单独连作,间作对枸杞分枝的促进作用尤为显著[10]。胡麻Linum usitatissimum与小麦Triticum aestivum轮作可减弱土壤水提液对胡麻种子萌发以及生长的自毒作用,利于胡麻的生长[11]。可见,不同植物耐受连作障碍的能力不同。

    土壤酶是大部分物质转化过程的执行者[12],土壤酶活性是衡量土壤肥力的重要指标之一[13]。在植物生长过程中,根系不断分泌代谢产物到根际土壤,对土壤微生物活动产生显著影响,从而影响土壤酶活性,由此改变了根际环境土壤的理化性质,特别是各种养分的生物有效性以及养分的转化速率[14]。随着连作时间的延长,植株细胞膜的通透性增加,养分物质运输功能下降,引发自毒作用,作物的正常生长也受到影响[15],虽然对连作障碍这一农业生产老大难问题已经开展了大量研究[9],但同时比较多科植物连作过程中生物化学变化的研究未见报道。为此,本研究通过比较多科植物连作过程中土壤酶活性的差异变化,假设植物遗传特性是耐连作障碍的重要因子,为耐连作障碍的发生机制研究提供证据。

    以浙江农林大学实习基地的森林土壤和育苗基质1∶1的体积比混合均匀后为盆栽本底土,该土结构疏松、质地优良,具有良好的保水保肥效果。森林土壤基本理化性质:pH 5.21,速效钾为193.33 mg·kg−1,碱解氮为51.17 mg·kg−1,有效磷为6.00 mg·kg−1,全氮为1.33 g·kg−1,全碳为28.50 g·kg−1。育苗基质基本理化性质:有机质质量分数大于45%,pH 5.50~7.00,含少量的氮磷钾物质。混合后的土pH 5.42。植物包括:豆科Fabaceae花生Arachis hypogaea、黄豆Glycine max,葫芦科Cucurbitaceae西瓜Citrullus lanatus、南瓜Cucurbita moschata,茄科Solanaceae番茄Solanum lycopersicum、马铃薯Solanum tuberosum,禾本科Poaceae早熟禾亚科Pooideae二穗短柄草Brachypodium distachyon (Bd-21,模式植物)黑麦草Lolium perenne、小麦Triticum aestivum,黍亚科Pamicinae玉米Zea mays、高粱Sorghum bicolor。选择饱满,大小均匀的种子,所有种子在播种前均经过氧化氢灭菌消毒和催芽。

    进行单一作物长期连作的盆栽试验,每种植物至少6盆(即重复),连续种植3季。考虑不同植物的生物量尽量一致的原则,花生、黄豆、西瓜、南瓜、番茄、马铃薯、二穗短柄草、黑麦草、小麦、玉米、高梁分别栽培5、5、5、5、7、2、10、40、10、5、5 株·盆−1,所选植物生长均匀,长势一致。

    于浙江农林大学人工气候箱进行试验,气候箱栽培条件为25 ℃、光照16 h,18 ℃、黑暗 8 h的昼夜循环,生长旺季时温度调至30 ℃。土壤水分基本保持在75%的田间持水量,其他栽培管理措施按一般要求进行,各盆保持一致。注意抗旱、防病虫,保证全苗及植株正常生长发育。

    种植时间和采样时间如表1所示,每茬植物的收获时间处于该植物营养生长时期,根据植物生长的情况可适当调整采样时间,栽培时长为38~55 d,共采集3茬,鉴于本底土壤速效钾质量分数高、而氮磷质量分数低的实际情况,在第1季时选择磷酸二铵[(NH4)2HPO4]作为追肥[氮磷钾质量比(N∶P2O5∶K2O)为18∶46∶0]。肥料按照肥质量比1∶50进行配置,每盆每次浇50 mL,均以每季植物能正常生长为依据适当补施肥料,每季浇施3次。选择生长一致的4个重复,分别采集第1季和第3季的土壤样品,分析土壤酶以及土壤性质。收获时植物根系基本充满整个盆,密布于土壤之间,植物根系对土壤的影响涉及大部分土壤,可以认为盆中土壤均为根区土壤。将植物取出后的盆中土壤充分混匀后得到混合样品,风干待测。

    表 1  植物栽培和收获时间表
    Table 1  Schedule for transplanting and harvesting
    栽植季度栽培日期
    (年-月-日)
    采样日期
    (年-月-日)
    采收植物
    第1季 2020-12-02 2021-02-02
    2021-02-07
    2021-02-20
    2021-03-01
    2021-03-08
    黄豆、花生
    高粱、玉米
    马铃薯、小麦
    二穗短柄草、黑麦草
    番茄、西瓜、南瓜
    第2季 2021-03-18 2021-04-29
    2021-05-02
    2021-05-07
    2021-05-14
    2021-05-17
    黄豆、玉米
    花生、高粱
    西瓜、南瓜、番茄
    马铃薯、二穗短柄草
    黑麦草、小麦
    第3季 2021-05-31 2021-07-14
    2021-07-20
    2021-07-21
    2021-07-23
    玉米、番茄
    黄豆、花生、马铃薯
    西瓜、南瓜、高粱
    黑麦、小麦、二穗短柄草
    下载: 导出CSV 
    | 显示表格

    测定土壤碳、氮、磷循环的3类土壤酶:①碳循环土壤酶,包括α-葡萄糖苷酶(AG)、β-葡萄糖苷酶(BG)、纤维二糖水解酶(CB)、β-木糖苷酶(XYL);②氮循环土壤酶,包括亮氨酸氨基肽酶(LAP)、N-乙酰-β-氨基葡萄糖苷酶(NAG);③ 磷循环土壤酶,为酸性磷酸酶(PHOS)。酶活性测定采用SAIYA-CORK等[16]的荧光微孔板检测技术,具体测定方法:称取2 g土壤,加入醋酸缓冲液进行浸提,取200 μL浸提液与96孔板后立即加入反应底物,25 ℃ 培养箱中黑暗培养3 h,使用多功能酶标仪(SynergyTM H1,Biotek)在365和450 nm波长下测定吸光度并计算土壤酶活性。

    重点分析与土壤碳、氮、磷循环相关酶活关联最大的pH、碱解氮和有效磷等3个指标(表2)。与本底土壤pH 5.42相比,除玉米土壤外,其他植物种植1季后,土壤pH普遍下降,其中豆科植物下降幅度最小,而西瓜最大;第3季又比第1季下降,所有土壤pH均在4.5以下,土壤呈强酸性。连作后土壤碱解氮及有效磷明显增加,第1季土壤碱解氮质量分数西瓜最低、玉米最高,有效磷质量分数则是南瓜最高、小麦最低。第3季时土壤有效磷质量分数比第1季大幅增加,而碱解氮则有增有减。

    表 2  第1季和第3季植物收获后不同植物根区土壤化学性质比较
    Table 2  Comparison of soil chemical properties in root zone of different plants after harvest in the first and third seasons
    植物种类pH碱解氮/(mg·kg−1)有效磷/(mg·kg−1)
    第1季第3季第1季第3季第1季第3季
    花生 5.03±0.05 bc 4.20±0.08 abc 561.65±60.70 cde 705.83±58.59 a 149.89±17.64 e 651.52±21.10 a
    黄豆 5.23±0.17 ab 4.10±0.08 abc 567.42±34.93 bcd 577.84±30.07 ab 161.44±30.06 de 355.58±63.73 ef
    西瓜 4.23±0.25 e 3.97±0.05 bc 492.05±46.00 e 672.01±96.79 ab 161.36±30.12 de 393.66±34.33 def
    南瓜 4.90±0.22 cd 4.13±0.21 abc 664.13±22.70 ab 553.72±108.19 ab 323.48±17.76 a 577.35±93.74 ab
    番茄 4.93±0.09 bc 4.13±0.12 abc 647.74±56.66 abc 520.56±131.32 abc 292.47±18.44 ab 478.03±0.02 bcde
    马铃薯 4.77±0.05 cd 3.97±0.05 bc 530.86±10.41 de 360.96±12.77 c 267.34±49.73 abc 304.40±51.93 f
    二穗短柄草 4.57±0.17 d 3.93±0.12 c 540.13±39.37 de 356.81±20.47 c 245.17±16.65 bc 425.49±40.00 cdef
    黑麦 4.73±0.12 cd 4.23±0.12 ab 593.97±29.02 bcd 667.47±82.33 ab 218.97±46.98 cd 546.70±60.91 abc
    小麦 4.83±0.05 cd 4.23±0.12 ab 567.93±26.81 bcd 687.14±71.14 ab 114.48±11.85 e 524.25±41.53 abc
    玉米 5.43±0.17 a 4.27±0.21 a 699.27±75.11 a 546.80±114.25 ab 288.63±45.34 ab 599.87±42.06 ab
    高粱 4.77±0.09 cd 4.13±0.05 abc 397.89±24.82 f 509.08±23.38 bc 124.26±3.98 e 485.14±24.71 bcd
      说明:不同小写字母表示不同植物间差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格
    2.2.1   第1季不同植物土壤碳、氮、磷循环相关酶活性差异

    第1季土壤碳循环相关的AG和BG活性水平相近(图1 A和B), AG活性较高的有南瓜、番茄、黑麦草和玉米,而小麦和高粱最低;BG活性较低为黄豆、马铃薯和玉米,较高组为花生、南瓜、黑麦草和高粱,同科植物均存在较大差异,甚至达显著水平(P<0.05)。CB活性总体低于AG和BG,不同植物之间的高低水平与AG基本一致; XYL活性最高的是马铃薯,最低是黑麦草(图1C和D)。综上所知,种植1季后,不同植物之间4种土壤碳循环酶活性高低顺序没有显著分异,相对而言,几种禾本植物的波动较大,特别是玉米在所有植物中的排序处于最高(AG和CB)或最低(BG)的位置。与土壤氮循环相关的LAP和NAG活性其重复之间的变异比碳循环酶活性小,但南瓜土壤LAP活性异常高,其他植物之间没有显著差异(图1E);NAG活性最高的是高粱,最低是马铃薯和二穗短柄草(图1F)。PHOS活性在不同植物之间的差异是所有酶中最小的,总体而言,禾本科植物高于非禾本科植物,其中最高的还是高粱(图1G)。

    图 1  第1季不同植物土壤根区酶活性
    Figure 1  Soil rhizosphere enzyme activities of different plants after the first season

    分析第1季所有植物土壤酶活性之间的相关性结果发现:显著相关性只存在于AG与PHOS(R=−0.647)、BG与XYL (R=−0.605)及LAP (R=0.653)、CB与XYL (R=−0.704),说明不同植物对土壤酶活性影响强度、甚至方向不相同,显著负相关(3组)多于显著正相关(1组)。

    2.2.2   第3季不同植物土壤碳、氮、磷循环相关酶活性差异

    第3季植物土壤酶活性,除XYL外,土壤酶活性的重复之间变异也显著缩小(图2),其主要规律为非禾本科植物AG高于禾本科植物、而CB则相反;不同植物之间土壤BG活性差异不显著;禾本科植物XYL活性总体高于非禾本科植物。综上所知,种植3季植物后,二穗短柄草土壤几种碳循环相关酶活性总体较高,而玉米则总体较低。不同植物土壤2种氮循环酶活性没有一致的差异规律。土壤磷循环相关的PHOS活性则是同科的不同种出现一高一低相反的结果,二穗短柄草、黑麦草和小麦之间差异较小。

    图 2  第3季不同植物土壤根区酶活性
    Figure 2  Soil rhizosphere enzyme activities of different plants after the third season

    分析第3季所有植物7种土壤酶活性之间的相关性结果发现:只有AG与BG (R=0.763)、LAP与PHOS (R=0.642)之间显著相关,说明植物对不同土壤酶活性影响分异性增加。

    分析土壤酶的动态变化(图3)发现:与第1季相比,第3季植物收获后土壤酶活性多数呈增加趋势,其中CB活性的增幅最明显,而玉米则除BG外其余土壤酶活性均出现降幅。

    图 3  不同植物第1季和第3季土壤酶活性平均增幅或减幅
    Figure 3  Average increase or decrease percentage of soil enzyme activities in the first and third plant seasons

    将非禾本科植物以科为单位、禾本科以亚科为单位进行比较。禾本科包括二穗短柄草、黑麦和小麦等组成的早熟禾亚科(C3植物)以及由玉米和高粱组成的黍亚科(C4植物)。由图4发现:第1季不同科或亚科之间AG活性无显著差异,而第3季的茄科显著高于豆科和黍亚科(P<0.05)。BG活性第3季各科、亚科之间无显著差异,第1季的葫芦科显著高于豆科和茄科(P<0.05),茄科的平均值最低。 第1季土壤的CB活性表现为黍亚科显著高于茄科(P<0.05),而第3季则是黍亚科显著低于早熟禾亚科及豆科(P<0.05),豆科显著高于葫芦科(P<0.05)。XYL活性第1季无差异,而第3季早熟禾亚科显著高于其他科(P<0.05)。土壤氮循环酶LAP活性第1季的葫芦科显著高于其他科(P<0.05),而第3季却没有显著差异;NAG活性第1季无差异,第3季黍亚科显著低于豆科、葫芦科和早熟禾亚科(P<0.05)。PHOS活性第1季时黍亚科显著高于其他科(P<0.05),第3季则是豆科显著低于其他科(P<0.05)。

    图 4  不同科及禾本科亚科第1季和第3季植物根区土壤碳循环酶活性的差异
    Figure 4  Difference of carbon cycling enzyme activity between family or subfamily of rhizosphere soil in the first and third seasons

    以科或亚科为单位统计分析的动态变化结果(图5)表明:多科植物不同酶活性大多增加;豆科、茄科和早熟禾亚科增幅最大的是CB,葫芦科增幅最大的是PHOS,黍亚科增幅最大的是LAP。

    图 5  不同科植物第1季和第3季土壤酶活性平均增幅或减幅
    Figure 5  Average increase or decrease percentage of soil enzyme activities in the first and third plant seasons based on plant family

    种植1季植物后不同植物土壤的多项性质产生差异变化,pH 5.00以上的花生、黄豆和玉米,其中玉米pH最高,而西瓜和二穗短柄草pH较低,分别为4.23和4.57。土壤碱解氮的差异规律与pH基本一致,说明植物对氮利用越多,则土壤pH下降越大(西瓜和高粱),这一结果符合氮肥引起土壤酸化的结论[17]。第1季后玉米土壤各项养分指标及pH均处于较高水平,可能是其吸收利用养分相对较少的结果,与高粱、小麦土壤差异明显。另外,除BG外,玉米土壤的其他3种碳循环酶活性均较高,而小麦则较低。玉米土壤酶活性与土壤养分呈正相关,与已有研究结果[18]一致。玉米和小麦土壤AG活性与BG活性相反,说明高水平土壤养分不利于BG活性发挥。BG水解结合于末端非还原性的β-D-葡萄糖键,与纤维素降解有关,由于纤维素的贫营养特征,因此,分解纤维素的微生物能够长期适应低养分水平土壤环境[19]。番茄和马铃薯土壤也是AG活性高,BG活性低,土壤氮磷水平总体与玉米相近。除了土壤养分外,植物也能通过根系分泌物影响土壤微生物,从而间接影响土壤酶活性。土壤LAP活性除南瓜异常高外,其他植物之间差异不大。南瓜土壤LAP活性异常高的原因可能与其根系分泌物存在诱导LAP活性提高的成分。南瓜被广泛用作砧木以缓解西瓜、黄瓜、甜瓜、冬瓜和苦瓜等多种植物连作障碍[2024],这与南瓜土壤较高的LAP活性有关。高粱土壤的NAG活性最高,BG活性也最高,NAG与几丁质降解有关,几丁质是真菌细胞壁的主要成分。高粱土壤可能存在较丰富的纤维素[25],促进降解纤维素的真菌大量繁殖,从而积累含几丁质的大量真菌生物残体,诱导NAG活性增加。高粱土壤PHOS活性显著高于其他植物,已有研究表明:土壤有效磷较低可诱导PHOS活性[2628],由此推测,高粱土壤PHOS活性显著高是因为其土壤有效磷低于其他植物。本研究土壤PHOS活性总体均低于其他研究报道[2930]

    种植3季作物后,土壤pH较第1季下降0.50~1.16,玉米仍然是所有植物中最高(4.27),而西瓜、马铃薯和二穗短柄草则低于4.0;土壤碱解氮、有效磷显著增加,特别是有效磷增加了2~3倍,原因是本底土壤有效磷很低(6.00 mg·kg−1),氮素水平也偏低(碱解氮51.17 mg·kg−1),而速效钾丰富(193.33 mg·kg−1),因此种植过程中追施高磷的磷酸二铵肥料以保证植物养分需求。第3季时土壤养分水平过高对土壤酶活性产生一定的负面影响,而二穗短柄草虽然其土壤pH仅3.93,但土壤氮磷水平较低,反而其各种土壤酶活性均较高;马铃薯土壤pH、养分水平与二穗短柄草相近,除XYL和NAG酶外,其他5种酶活性也较高。相反的情况发生在玉米,土壤养分水平较高但土壤各种酶活性相对较低,说明高水平养分对玉米土壤酶活性的负面影响比其他植物强。从第3季土壤酶的增减幅度结果证明:玉米土壤仅BG活性有小幅增加,其他6种酶均下降;而CB活性总体增幅最大,其中小麦和马铃薯分别增加519%和267%。CB水解纤维素释放纤维二糖,其增幅最大的原因可能:一是连作后真菌数量增加[3132],真菌是分解纤维素的最主要类群; 二是随着种植次数增加,土壤中纤维素不断积累,诱导微生物分泌CB。这与王雨晴等[33]的研究一致,即CB活性与纤维素含量及真菌基因丰度呈极显著正相关。

    禾本科植物存在着广泛的基因序列和功能的保守性[34],其他同科植物也有共性的遗传基因。一般而言,遗传相近的植物具有相似的根系分泌物、对养分的需求也较相似,由此推测,同一科植物对土壤微生物以及土壤酶活性可能有共性影响。第1季植物收获后,只有BG (葫芦科显著高于豆科和茄科)和CB (黍亚科显著高于茄科) 2种酶存在科之间的显著差异,而第3季收获后仅BG和LAP不存在显著差异,说明随着种植季数的增加,同科植物对土壤的共性影响逐渐显现。BG和CB都是降解纤维素的酶,最初的本底土壤微生物较少,而种植1季后土壤微生物大量繁殖,由于不同植物根系分泌物以及根系残体化学组成的差异,特别是根系残体中纤维素较多,由此引起不同科植物纤维素降解相关酶的差异。第3季时不同科植物土壤酶活性之间的差异加大,虽同为早熟禾亚科植物,但二穗短柄草在遗传上与小麦及黑麦草距离相对较远,因此第3季时其土壤AG和BG活性明显高于小麦及黑麦草。 第3季时非禾本科植物土壤AG活性明显高于禾本科植物,最高是茄科,而XYL则正好相反,其中最高的是早熟禾亚科。AG和XYL都是大分子有机物水解的末端酶,非禾本科植物土壤AG活性高,说明土壤中其上游大分子有机物中α-葡萄糖苷链接的多糖(如淀粉)较多,而禾本科植物土壤XYL活性高,说明土壤中上游大分子有机物中β-木糖苷酶链接的半纤维素多糖较多。也可能是禾本科植物的根系分泌物与非禾本科植物存在差异[35]。禾本科植物中早熟禾亚科土壤CB活性较高,但黍亚科则明显低于非禾本科植物,可能C3和C4植物的碳代谢物存在差异,需要后继分析根系分泌物。不同科植物第3季土壤CB和XYL活性的高低与第1季正好相反,豆科和茄科土壤CB活性明显升高,而黍亚科下降,茄科土壤XYL活性明显下降,而早熟禾亚科升高,说明CB和XYL可能存在互补关系。另外,禾本科植物土壤的XYL活性显著高于非禾本科植物,可能是禾本科植物土壤中半纤维素含量较丰富。XYL水解半纤维素产生种类丰富的五碳糖和六碳糖,是否有利于土壤微生物活动值得深入研究。黍亚科土壤PHOS活性在第1季和第3季土壤中均为最高,而其土壤NAG活性在第3季为最低。分科统计则土壤酶活性总体以上升为主,其中CB活性增幅最大,而豆科和茄科的XYL活性、葫芦科的LAP活性出现下降,黍亚科植物土壤的NAG活性和PHOS活性都出现下降,说明黍亚科植物土壤的氮、磷循环能力下降,可能是氮、磷养分增加显著,加上黍亚科植物对氮、磷的需求不高,因此,相关循环酶活性下降。

    通过不同科11种植物第1季和第3季土壤碳、氮、磷循环相关酶活性分析发现:同科的2种植物不同土壤酶、同种土壤酶不同科植物的动态变化规律并不一致,第1季和第3季黍亚科植物土壤PHOS活性均为最高,其中,高粱又显著高于比玉米;第3季时禾本科植物土壤的XYL活性显著高于非禾本科植物,而3种早熟禾亚科植物土壤又显著高于黍亚科植物。禾本科植物土壤PHOS和XYL活性较高是否与其耐连作有关,需要深入研究连作次数和土壤微生物指标等。

  • 图  1  减氮配施有机肥对作物籽粒产量的影响

    Figure  1  Effect of nitrogen reduction combined with organic fertilizer on crop yields

    表  1  施肥处理养分投入量

    Table  1.   Amount of pure nutrient input in fertilization treatments

    项目 处理 氮素投入量/(kg·hm−2) 磷素投入量/(kg·hm−2) 钾素投入量/(kg·hm−2)
    有机 无机 合计 有机 无机 合计 有机 无机 合计
    小麦 ck 0 0 0 0 34.50 34.50 0 90.00 90.00
    N100 0 180.00 180.00 0 34.50 34.50 0 90.00 90.00
    MN85 141.00 153.00 294.00 155.25 34.50 189.75 118.50 90.00 208.50
    MN70 141.00 126.00 267.00 155.25 34.50 189.75 118.50 90.00 208.50
    水稻 ck 0 0 0 0 40.50 40.50 0 90.00 90.00
    N100 0 210.00 210.00 0 40.50 40.50 0 90.00 90.00
    MN85 141.00 178.50 319.50 155.25 40.50 195.75 118.50 90.00 208.50
    MN70 141.00 147.00 288.00 155.25 40.50 195.75 118.50 90.00 208.50
    总计 ck 0 0 0 0 75.00 75.00 0 180.00 180.00
    N100 0 390.00 390.00 0 75.00 75.00 0 180.00 180.00
    MN85 282.00 331.50 613.50 310.50 75.00 385.50 237.00 180.00 417.00
    MN70 282.00 273.00 555.00 310.50 75.00 385.50 237.00 180.00 417.00
    下载: 导出CSV

    表  2  减氮配施有机肥对作物构成因素的影响

    Table  2.   Effect of nitrogen reduction combined with organic fertilizer on crop composition

    作物处理收获指数/%有效穗/
    (万个·hm−2)
    千粒重/g穗粒数/粒
    小麦ck48.06±2.61 a219±70 b41.35±2.35 b22±6 b
    N10050.35±0.77 a306±90 a45.09±0.93 a38±3 a
    MN8550.09±2.50 a325±107 a45.48±2.28 a41±8 a
    MN7048.90±1.64 a281±43 a45.42±0.41 a40±11 a
    水稻ck53.20±2.52 a134±3 c20.80±0.42 a207±28 a
    N10049.32±0.26 ab196±27 b20.95±0.56 a233±5 a
    MN8550.07±0.76 ab229±36 a21.03±0.78 a230±3 a
    MN7048.18±1.12 b213±25 ab21.65±0.60 a213±21 a
      说明:数值为平均值±标准差。不同小写字母表示同一指     标相同作物在不同处理间差异显著(P<0.05)。
    下载: 导出CSV

    表  3  减氮配施有机肥对作物氮质量分数和吸氮量的影响

    Table  3.   Effect of nitrogen reduction combined with organic fertilizer on crop nitrogen content and uptake

    作物
    处理
    氮质量分数/(g·kg−1) 吸氮量/(kg·hm−2)
    籽粒 秸秆 籽粒 秸秆
    小麦 ck 16.54±0.56 b 2.43±0.11 b 23.84±3.09 b 3.81±0.78 b
    N100 18.42±1.67 a 2.89±0.29 a 78.93±16.10 a 12.29±2.85 a
    MN85 18.47±2.11 a 2.88±0.38 a 80.23±22.90 a 12.85±5.60 a
    MN70 16.94±0.80 b 2.48±0.11 b 56.54±15.30 ab 8.63±2.44 ab
    水稻 ck 9.97±0.46 b 3.89±0.61 b 64.77±6.87 c 22.20±3.89 c
    N100 11.49±1.07 a 6.52±1.27 a 101.58±22.90 b 59.17±16.60 b
    MN85 11.27±0.25 a 6.74±0.25 a 125.47±25.20 a 74.27±9.84 a
    MN70 11.06±0.26 a 5.69±0.74 a 104.74±7.83 b 58.68±14.80 b
      说明:数值为平均值±标准差。不同小写字母表示同一指标相     同作物在不同处理间差异显著(P<0.05)。
    下载: 导出CSV

    表  4  减氮配施有机肥对氮素表观平衡和利用效率的影响

    Table  4.   Effect of nitrogen reduction combined with organic fertilizer on nitrogen apparent balance and use efficiency

    项目 处理 氮输出/
    (kg·hm−2)
    氮投入/
    (kg·hm−2)
    氮素表观平衡/
    (kg·hm−2)
    氮肥表观利
    用率/%
    氮素生理效率/
    (kg·kg−1)
    氮肥农学效率/
    (kg·kg−1)
    氮素内部效率/
    (kg·kg−1)
    氮肥偏生产率/
    (kg·kg−1)
    小麦 ck 27.66 0 −27.66 52.22±2.47 a
    N100 91.21 180.00 88.79 35.31±10.40 a 45.54±6.35 a 15.64±7.64 a 47.27±4.59 a 23.64±7.64 a
    MN85 93.07 294.00 200.93 22.25±9.67 b 45.33±7.88 a 9.95±4.39 b 47.24±5.30 a 14.84±4.39 b
    MN70 65.17 267.00 201.83 14.05±6.82 b 51.44±5.22 a 7.02±3.03 b 51.24±2.42 a 12.40±3.03 b
    水稻 ck 86.97 0 −86.97 74.90±6.72 a
    N100 160.75 210.00 49.25 35.14±18.11 a 29.75±7.07 b 10.78±6.23 b 55.51±6.64 b 41.76±6.23 a
    MN85 199.74 319.50 119.76 35.30±10.86 a 39.70±5.90 a 14.44±6.63 a 55.56±0.89 b 34.80±6.63 a
    MN70 163.42 288.00 124.58 26.55±7.57 b 38.82±3.35 a 10.34±3.17 b 58.22±2.51 b 32.93±3.17 a
    周年 ck 114.63 0 −114.62 69.27±4.60 a
    N100 251.96 390.00 138.04 35.22±14.54 a 37.91±4.56 b 13.02±4.62 a 52.50±5.69 b 33.39±4.62 a
    MN85 292.82 613.50 320.68 29.05±7.43 b 42.05±1.59 a 12.29±3.51 a 52.97±1.10 b 25.23±3.51 b
    MN70 228.60 555.00 326.40 20.54±1.00 b 42.54±1.91 a 8.74±0.69 b 55.97±0.88 b 23.05±0.69 b
      说明:数值为平均值±标准差。−表示无数据。不同小写字母表示同一指标相同项目在不同处理间差异显著(P<0.05)。
    下载: 导出CSV

    表  5  减氮配施有机肥对土壤理化性质的影响

    Table  5.   Effect of nitrogen reduction combined with organic fertilizer on soil physical and chemical properties

    处理 pH 容重/
    (g·cm−3)
    速效钾/
    (mg·kg−1)
    有效磷/
    (mg·kg−1)
    有机质/
    (g·kg−1)
    全氮/
    (g·kg−1)
    ck 7.16±0.08 a 0.859±0.064 a 65.96±1.44 b 8.35±1.93 b 34.01±0.56 b 1.90±0.07 b
    N100 7.14±0.16 a 0.857±0.034 a 64.40±6.84 b 7.96±2.60 b 35.01±1.67 b 2.02±0.02 b
    MN85 7.14±0.08 a 0.851±0.024 a 93.94±19.46 a 20.06±9.54 a 39.29±1.99 a 2.29±0.13 a
    MN70 7.15±0.07 a 0.844±0.040 a 76.81±10.99 b 12.39±2.74 b 39.89±2.54 a 2.23±0.13 a
      说明:数值为平均值±标准差。不同小写字母表示不同处理间差异显著(P<0.05)。
    下载: 导出CSV

    表  6  减氮配施有机肥对土壤活性氮质量分数的影响

    Table  6.   Effect of nitrogen reduction combined with organic fertilizer on soil active nitrogen

    处理 微生物生物量氮/(mg·kg−1) 水溶性氮/(mg·kg−1) 铵态氮/(mg·kg−1) 硝态氮/(mg·kg−1)
    ck 9.98±3.27 b 6.57±0.67 c 4.99±0.61 a 1.99±0.29 c
    N100 10.26±1.18 b 7.41±3.06 bc 5.09±1.33 a 3.09±1.13 b
    MN85 14.74±4.13 a 12.51±4.53 a 6.24±0.77 a 6.41±2.08 a
    MN70 14.17±4.56 a 10.76±4.35 ab 5.37±1.29 a 5.32±3.22 a
    下载: 导出CSV
  • [1] DHILLON A K, SHARMA N, DOSANJH N K, et al. Variation in the nutritional quality of rice straw and grain in response to different nitrogen levels [J]. Journal of Plant Nutrition, 2018, 41(15): 1946−1956.
    [2] GIL-ORTIZ R, NARANJO M A, RUIZ-NAVARRO A, et al. Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice [J/OL]. Plants, 2020, 9 (9): 1183[2024-01-10]. DOI: 10.3390/plants9091183.
    [3] HUANG Jing, DUAN Yinghua, XU Minggang, et al. Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil [J]. Journal of Integrative Agriculture, 2017, 16(9): 2082−2092.
    [4] ZHAO Yanhui, XIONG Xiong, WU Chenxi. Effects of deep placement of fertilizer on periphytic biofilm development and nitrogen cycling in paddy systems [J]. Pedosphere, 2021, 31(1): 125−133.
    [5] NING Chuanchuan, LIU Rui, KUANG Xizhi, et al. Nitrogen fertilizer reduction combined with biochar application maintain the yield and nitrogen supply of rice but improve the nitrogen use efficiency [J/OL]. Agronomy, 2022, 12 (12): 3039[2024-01-10]. DOI: 10.3390/agronomy12123039.
    [6] 李燕青, 温延臣, 林治安, 等. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响[J]. 植物营养与肥料学报, 2019, 25(10): 1669−1678.

    LI Yanqing, WEN Yanchen, LIN Zhi’an, et al. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1669−1678.
    [7] HOU Qiong, NI Yuemin, HUANG Shan, et al. Effects of substituting chemical fertilizers with manure on rice yield and soil labile nitrogen in paddy fields of China: a meta-analysis [J]. Pedosphere, 2023, 33(1): 172−184.
    [8] 柴健, 于爱忠, 李悦, 等. 绿肥还田量结合氮肥减施对绿洲灌区小麦产量和氮素吸收利用的影响[J]. 作物学报, 2023, 49(11): 3131−3140.

    CHAI Jian, YU Aizhong, LI Yue, et al. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area [J]. Acta Agronomica Sinica, 2023, 49(11): 3131−3140.
    [9] CHEN Danmei, YUAN Ling, LIU Yiren, et al. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties [J]. European Journal of Agronomy, 2017, 90: 34−42.
    [10] DONG Wenyi, ZHANG Xinyu, DAI Xiaoqin, et al. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China [J]. Applied Soil Ecology, 2014, 84: 140−147.
    [11] ZHANG Shijie, ZHANG Gang, WANG Dejian, et al. Investigation into runoff nitrogen loss variations due to different crop residue retention modes and nitrogen fertilizer rates in rice-wheat cropping systems [J/OL]. Agricultural Water Management, 2021, 247 : 106729[2024-01-10]. DOI: 10.1016/j.agwat.2020.106729.
    [12] 许仙菊, 马洪波, 宁运旺, 等. 缓释氮肥运筹对稻麦轮作周年作物产量和氮肥利用率的影响[J]. 植物营养与肥料学报, 2016, 22(2): 307−316.

    XU Xianju, MA Hongbo, NING Yunwang, et al. Effects of slow-released nitrogen fertilizers with different application patterns on crop yields and nitrogen fertilizer use efficiency in rice-wheat rotation system [J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 307−316.
    [13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    LU Rukun. The Analysis Method of Soil Agricultural Chemistry [M]. Beijing: China Agriculture Science and Technology Press, 2000.
    [14] QIAO Jun, YANG Linzhang, YANA Tingmei, et al. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area [J]. Agriculture, Ecosystems and Environment, 2012, 146: 103−112.
    [15] MUHAMMAD Y N, ZHANG Jianwei, ZHOU Yan, et al. Quantifying the impact of reduced nitrogen rates on grain yield and nitrogen use efficiency in the wheat and rice rotation system of the yangtze river region [J/OL]. Agronomy, 2022, 12 (4): 920[2024-01-10]. DOI: 10.3390/agronomy12040920.
    [16] LI Peipei, HAN Yanlai, HE Jizheng, et al. Soil aggregate size and long-term fertilization effects on the function and community of ammonia oxidizers [J]. Geoderma, 2019, 338: 107−117.
    [17] SHAHID M, NAYAK A K, PUREE C, et al. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil [J]. Soil and Tillage Research, 2017, 170: 136−146.
    [18] HAN Zhe, DI Chengqian, RAHMAN M K U, et al. Repeated application of rice straw stabilizes soil bacterial community composition and inhibits clubroot disease [J/OL]. Agriculture, 2021, 11 (2): 108[2024-01-10]. DOI: 10.3390/agriculture11020108.
    [19] 杨艳华, 苏瑶, 何振超, 等. 还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展[J]. 应用生态学报, 2019, 30(2): 668−676.

    YANG Yanhua, SU Yao, HE Zhenchao, et al. Transformation and distribution of straw-derived carbon in soil and the effects on soil organic carbon pool: a review [J]. China Journal of Applied Ecology, 2019, 30(2): 668−676.
    [20] 胡宏祥, 汪玉芳, 陈祝, 等. 秸秆还田配施化肥对黄褐土氮磷淋失的影响[J]. 水土保持学报, 2015, 29(5): 101−105.

    HU Hongxiang, WANG Yufang, CHEN Zhu, et al. Effects of straw return with chemical fertilizer on nitrogen and phosphorus leaching from yellow cinnamon soil [J]. Journal of Soil and Water Conservation, 2015, 29(5): 101−105.
    [21] LAN Ting, XIE Nan, CHEN Cheng, et al. Effects of biological nitrification inhibitor in regulating NH3 volatilization and fertilizer nitrogen recovery efficiency in soils under rice cropping [J/OL]. Science of the Total Environment, 2022, 838 (1): 155857[2024-01-10]. DOI: 10.1016/j.scitotenv.2022.155857.
    [22] 潘丽霞, 姜振辉, 张雯怡, 等. 秸秆及其生物质炭输入对毛竹林土壤氨氧化微生物与氮循环相关酶活性的影响[J]. 浙江农林大学学报, 2024, 41(1): 1−11.

    PAN Lixia, JIANG Zhenhui, ZHANG Wenyi, et al. Effects of straw and its biochar application on soil ammonia-oxidizing microorganisms and N cycling related enzyme activities in a Phyllostachys edulis forest [J]. Journal of Zhejiang A&F University, 2024, 41(1): 1−11.
    [23] 张闻汉, 陈照明, 张金萍, 等. 硝化抑制剂对稻田土壤氧化亚氮排放及硝化作用的影响[J]. 浙江农林大学学报, 2023, 40(4): 820−827.

    ZHANG Wenhan, CHEN Zhaoming, ZHANG Jinping, et al. Effects of nitrification inhibitors on soil N2O emission and nitrification in a paddy soil [J]. Journal of Zhejiang A&F University, 2023, 40(4): 820−827.
    [24] 史登林, 王小利, 刘安凯, 等. 生物炭氮替代部分化肥氮对黄壤水稻的生物效应[J]. 中国土壤与肥料, 2021(2): 199−205.

    SHI Denglin, WANG Xiaoli, LIU Ankai, et al. Biological effects of biochar nitrogen replacing partial fertilizer nitrogen on rice in yellow soil [J]. Soil and Fertilizer Sciences in China, 2021(2): 199−205.
    [25] 左婷, 王新霞, 侯琼, 等. 稻-麦轮作条件下不同施肥模式土壤水溶性氮的变化与籽粒产量的关系[J]. 中国土壤与肥料, 2021(6): 112−119.

    ZUO Ting, WANG Xinxia, HOU Qiong, et al. Variety of soil water-soluble nitrogen as affected by different fertilization and its relation to grain yields with a rice-wheat rotation [J]. Soil and Fertilizer Sciences in China, 2021(6): 112−119.
    [26] 张祥明, 孙义祥, 王文军, 等. 有机肥部分替代化肥对水稻土壤供氮特征和氮素表观盈亏的影响[J]. 农学学报, 2018, 8(12): 28−34.

    ZHANG Xiangming, SUN Yixiang, WANG Wenjun, et al. Organic manure partial replacing chemical fertilizer: effect on supply ability and apparent budget of rice soil nitrogen [J]. Journal of Agriculture, 2018, 8(12): 28−34.
    [27] LUO Chaoyi, JIANG Jingjing, CHEN Wen, et al. Effect of biochar on soil properties on the Loess Plateau: results from field experiments [J/OL]. Geoderma, 2020, 369 : 114323[2024-01-10]. DOI: 10.1016/j.geoderma.2020.114323.
    [28] MALINSKA K, ZABOCHNICKA-SWIATEK M, DACH J. Effects of biochar amendment on ammonia emission during composting of sewage sludge [J]. Ecological Engineering, 2014, 71: 474−478.
    [29] LIU Zunqi, HE Tianyi, CAO Ting, et al. Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils [J]. Journal of Soil Science and Plant Nutrition, 2017, 17: 515−528.
    [30] MAJOR J, RONDON M, MOLINA D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol [J]. Plant and Soil, 2010, 333: 117−128.
    [31] 杨利, 张建峰, 张富林, 等. 长江中下游地区氮肥减施对稻麦轮作体系作物氮吸收、利用与氮素平衡的影响[J]. 西南农业学报, 2013, 26(1): 195−202.

    YANG Li, ZHANG Jianfeng, ZHANG Fulin, et al. Effects of reducing N application on crop N uptake’ utilization and soil N balance under rice-wheat rotation system on middle and lower reaches of Yangtze River Region [J]. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 195−202.
    [32] ZHOU Chunhuo, ZHAO Zunkang, PAN Xiaohua, et al. Integration of growing milk vetch in winter and reducing nitrogen fertilizer application can improve rice yield in double-rice cropping system [J]. Rice Science, 2016, 23(3): 132−143.
    [33] HUANG Min, FAN Long, CHEN Jiana, et al. Continuous applications of biochar to rice: effects on nitrogen uptake and utilization [J/OL]. Scientific Reports, 2018, 8 : 11461[2024-01-10]. DOI: 10.1038/s41598-018-29877-7.
    [34] SONG Weifeng, SHU Aiping, LIU Jia, et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil [J]. Pedosphere, 2022, 32(4): 637−648.
    [35] DAI Xianglin, SONG Dali, ZHOU Wei, et al. Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China [J/OL]. Soil and Tillage Research, 2021, 205 : 104753[2024-01-10]. DOI: 10.1016/j.still.2020.104753.
    [36] GAI Xiapu, LIU Hongbin, LIU Jian, et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain [J]. Agricultural Water Management, 2018, 208: 384−392.
    [37] 孟琳, 张小莉, 蒋小芳, 等. 有机肥料氮替代部分无机氮对水稻产量的影响及替代率研究[J]. 植物营养与肥料学报, 2009, 15(2): 290−296.

    MENG Lin, ZHANG Xiaoli, JIANG Xiaofang, et al. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and its proper substitution rate [J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 290−296.
    [38] 刘彦伶, 李渝, 张雅蓉, 等. 西南黄壤性水稻土长期不同施肥模式下作物产量及氮肥利用率演变特征[J]. 中国土壤与肥料, 2017(3): 20−27.

    LIU Yanling, LI Yu, ZHANG Yarong, et al. The dynamic of crop yield and nitrogen use efficiency under different long-term fertilization patterns in paddy soil from yellow earth in Southwest China [J]. Soil and Fertilizer Sciences in China, 2017(3): 20−27.
    [39] YANG Yonghui, LI Minjie, WU Jicheng, et al. Impact of combining long-term subsoiling and organic fertilizer on soil microbial biomass carbon and nitrogen, soil enzyme activity, and water use of winter wheat [J/OL]. Frontiers in Plant Science, 2022, 12 : 788651[2024-01-10]. DOI: 10.3389/fpls.2021.788651.
    [40] MA Peng, FAN Ping, YANG Zhiyuan, et al. Increasing the contents of paddy soil available nutrients and crop yield via optimization of nitrogen management in a wheat-rice rotation system [J/OL]. Plants, 2022, 11(17): 2209[2024-01-10]. DOI: 10.3390/plants11172209.
  • [1] 宋鹏, 李慧, 江厚龙, 赵鹏宇, 李理想, 赵彪, 张均.  生物质炭基肥对重庆植烟区烤烟根系发育及产量和品质的影响 . 浙江农林大学学报, 2023, 40(6): 1232-1240. doi: 10.11833/j.issn.2095-0756.20230161
    [2] 周水灯, 孙健, 江建铭, 邵将炜, 邓惠敏, 邵清松, 王志安.  不同生育期施肥对浙贝母产量和品质的影响 . 浙江农林大学学报, 2023, 40(4): 756-764. doi: 10.11833/j.issn.2095-0756.20220613
    [3] 张红桔, 马闪闪, 赵科理, 叶正钱, 汪智勇, 白珊.  山核桃林地土壤肥力状况及其空间分布特征 . 浙江农林大学学报, 2018, 35(4): 664-673. doi: 10.11833/j.issn.2095-0756.2018.04.012
    [4] 魏玮, 郭嘉莲, 万琳涛, 徐林峰, 丁明全, 周伟.  小麦粒重形成的分子调控机制研究综述 . 浙江农林大学学报, 2016, 33(2): 348-356. doi: 10.11833/j.issn.2095-0756.2016.02.022
    [5] 孙颖, 王旭东, 王莺, 泮吴洁, 陆荣杰, 阮忠强, 屠雯雯.  硅磷配施对水稻土中速效养分和水稻产量的影响 . 浙江农林大学学报, 2015, 32(4): 551-556. doi: 10.11833/j.issn.2095-0756.2015.04.009
    [6] 陈凤, 苏淑钗, 张兵, 陈志刚, 王文浩.  叶面喷肥对杂交榛产量和品质的影响 . 浙江农林大学学报, 2014, 31(6): 932-939. doi: 10.11833/j.issn.2095-0756.2014.06.016
    [7] 吴根良, 郑积荣, 李许可.  不同LED光源对设施越冬辣椒果实品质和产量的影响 . 浙江农林大学学报, 2014, 31(2): 246-253. doi: 10.11833/j.issn.2095-0756.2014.02.013
    [8] 孟赐福, 姜培坤, 曹志洪, 徐秋芳, 周国模.  杨梅的硼素营养及施硼技术 . 浙江农林大学学报, 2006, 23(6): 684-688.
    [9] 刘兴泉, 闵凡国, 杨靖民, 李洁, 陈晓佳.  聚丙烯酰胺缓释肥料的玉米肥效试验 . 浙江农林大学学报, 2003, 20(2): 124-127.
    [10] 陈龙安, 余学军, 韩春, 宣涛涛, 李中居.  ABT 生长剂在毛竹笋材两用林上的应用 . 浙江农林大学学报, 1999, 16(2): 131-134.
    [11] 石亚珍.  板栗整形修剪对栗实早期产量的影响 . 浙江农林大学学报, 1999, 16(2): 214-215.
    [12] 王白坡, 戴文圣, 程晓建, 喻卫武, 王利忠, 鲍李洪, 鄢荣保.  8 种经济树种在低丘红壤上的表现及对土壤养分变化的影响 . 浙江农林大学学报, 1999, 16(4): 358-364.
    [13] 沈月琴, 程云行, 徐秀英, 蔡细平, 章滨森.  竹笋产品市场供求分析和预测 . 浙江农林大学学报, 1998, 15(4): 333-339.
    [14] 王赵民, 张建忠, 倪荣新, 陈奕良, 吴隆高, 王伟安, 陈锡连.  杉木种子园产量和品质的影响因子分析 . 浙江农林大学学报, 1998, 15(1): 13-21.
    [15] 范义荣, 毛迎春, 方陆明, 余其龙, 奚鑫基, 王国英.  黄山松种子园营建技术及初步效果 . 浙江农林大学学报, 1997, 14(2): 111-119.
    [16] 王白坡, 程晓建, 沈湘林, 朱国军, 童品璋.  8个板栗品种开花特性及其与低产的关系 . 浙江农林大学学报, 1997, 14(3): 242-246.
    [17] 管康林, 管宇.  杉木种子园产量构成分析 . 浙江农林大学学报, 1997, 14(3): 213-219.
    [18] 梁月荣, 陆建良, 张友炯, 朱永兴.  茶树催发素对春茶萌发的影响 . 浙江农林大学学报, 1996, 13(4): 435-440.
    [19] 王寿东, 秦玉亮, 姚新爱.  山楂栽植密度与早期产量的关系 . 浙江农林大学学报, 1996, 13(1): 109-111.
    [20] 何福基, 吴明安, 倪荣新, 谢正成, 张建忠.  杉木种子园郁闭度对种子产量的影晌 . 浙江农林大学学报, 1995, 12(3): 311-315.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240149

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2025/1/175

图(1) / 表(6)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  82
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-28
  • 修回日期:  2024-09-24
  • 录用日期:  2024-10-11
  • 网络出版日期:  2025-01-22
  • 刊出日期:  2025-02-20

缓释氮肥配施有机肥对稻麦轮作体系作物生长和土壤养分的影响

doi: 10.11833/j.issn.2095-0756.20240149
    基金项目:  国家重点研发计划政府间国际科技创新合作重点专项项目(2022YFE0127800);国家自然科学基金资助项目(32271845)
    作者简介:

    姚权(ORCID: 0009-0003-5097-6220),从事土壤碳氮循环研究。E-mail: yaoquanzafu@163.com

    通信作者: 李永夫(ORCID: 0000-0002-8324-5606),教授,博士,从事土壤碳氮循环研究。E-mail: yongfuli@zafu.edu.cn
  • 中图分类号: S714.8

摘要:   目的  过度使用无机氮肥会导致严重的环境问题。适当减少氮肥并配合有机肥的施用,不仅可以保持作物产量,还能确保稻麦轮作体系的长期可持续耕作。  方法  通过田间试验,以常规施氮量(小麦Triticum aestivum季180 kg·hm−2、水稻Oryza sativa季210 kg·hm−2)为基准,氮肥种类为缓控释尿素,设置4个处理:不施氮肥(ck)、常规施氮(N100)、减氮15%配施有机肥(MN85)和减氮30%配施有机肥(MN70),明确氮肥减量配施有机肥对稻麦轮作体系作物产量、植株氮和土壤养分的影响。  结果  氮肥增产贡献率为46.0% (小麦季为66.2%,水稻季为25.8%),施氮肥显著提高了作物产量(P<0.05),尤其是MN85处理的作物产量增幅最大。与N100相比,MN85处理的水稻有效穗数提高了16.8% (P<0.05)。与MN70相比,N100和MN85处理的小麦籽粒氮质量分数分别提高了8.7%和9.0% (P<0.05),秸秆氮质量分数分别提高了16.6%和16.0% (P<0.05)。与N100和MN70相比,MN85处理的水稻籽粒吸氮量分别提高了23.5%和19.8% (P<0.05),秸秆吸氮量分别提高了25.5%和26.6%。施肥处理均导致一部分氮素累积在土壤中,尤其是减氮配施有机肥处理拥有更多的氮素盈余量。与N100相比,小麦氮肥表观利用率、氮肥农学效率和氮肥偏生产率在MN85处理下分别降低了37.0%、36.4%和41.5%,在MN70处理下分别降低了60.2%、55.1%和47.5%;但水稻季减氮配施有机肥处理的氮素生理效率提高了30.5%~33.4% (P<0.05),MN85处理的氮肥农学效率提高了33.3%。与N100相比,减氮配施有机肥处理的土壤有机质和全氮质量分数分别增加了12.2%~13.9%和10.4%~13.0% (P<0.05);微生物生物量氮和硝态氮分别增加了37.9%~42.7%和72.2%~107.4% (P<0.05);而且MN85处理的土壤速效钾和有效磷也增加了45.9%和152.0% (P<0.05),水溶性氮增加了68.8% (P<0.05)。  结论  缓控释尿素减量15%配施有机肥能够提升土壤养分质量分数,促进作物对氮素的吸收,从而提高作物产量和氮肥利用效率,可作为一种有效的氮肥减量增效措施。图1表6参40

English Abstract

颜顾浙, 方伟, 卢络天, 等. 土壤酶活性对不同植物连作的差异响应[J]. 浙江农林大学学报, 2023, 40(3): 520-530. DOI: 10.11833/j.issn.2095-0756.20220494
引用本文: 姚权, 唐旭, 肖谋良, 等. 缓释氮肥配施有机肥对稻麦轮作体系作物生长和土壤养分的影响[J]. 浙江农林大学学报, 2025, 42(1): 175−184 doi:  10.11833/j.issn.2095-0756.20240149
YAN Guzhe, FANG Wei, LU Luotian, et al. Differential response of soil enzyme activity to continuous cropping of different plants[J]. Journal of Zhejiang A&F University, 2023, 40(3): 520-530. DOI: 10.11833/j.issn.2095-0756.20220494
Citation: YAO Quan, TANG Xu, XIAO Mouliang, et al. Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system[J]. Journal of Zhejiang A&F University, 2025, 42(1): 175−184 doi:  10.11833/j.issn.2095-0756.20240149
  • 氮素是植物生长所必需的大量营养元素之一,然而自然环境中的氮素无法满足作物的需求。施用氮肥可以缓解作物生长中的氮限制,是提高作物产量的有效措施。目前中国是世界上最大的氮肥消费国之一,其氮肥投入约占世界总消费量的32%[1]。长期过量施用氮肥,会导致作物倒伏、产量品质下降等一系列问题[23],而适当减施氮肥不仅不会影响作物产量,还有助于提高氮肥利用效率,减轻环境负荷,是农业可持续发展的重要举措[46]。但减氮是否可行,取决于减氮量和土壤本身的供氮水平。值得注意的是,即使在高氮水平的稻田中,如果土壤氮素一直处于亏缺状态,短期内减少氮肥可能不会影响作物产量,但随着作物的连续种植,作物产量必然会下降[5]

    有机肥中富含植物所需的营养物质,增施有机肥可以大幅提高土壤中有机质的持续供应能力。然而,由于有机肥中速效养分水平较低且释放速度较慢,单独施用有机肥可能会因为土壤养分供应不足而导致作物产量降低[7]。与此同时,适当施用氮肥并配施有机肥可以提高土壤碳氮磷等养分质量分数,从而提高作物产量[89]。可见,有机肥和化肥的配合施用对促进作物生长、提高土壤的氮素供应能力和可持续性生产、改善土壤理化性质和土壤养分状况都具有积极影响[4]。不同地区的作物产量、土壤肥力和施肥方式等对氮肥配施有机肥的响应存在差异。全国每年的水稻Oryza sativa和小麦Triticum aestivum产量约占谷物生产总量的72%。稻麦轮作是长江中下游地区主要的农田耕作模式之一,对于保障粮食供给和维护粮食安全均具有重大意义[10]。其季节性的干湿交替导致土壤氧化与还原过程交替进行,影响了土壤养分的转化及其有效性,对肥料的响应在水旱两季存在差异[11]。因此,在水旱轮作条件下,探讨作物生长和土壤肥力如何响应施肥模式的变化具有重要意义。

    缓控释尿素是一种新型肥料,它通过减缓氮肥在土壤中的转化过程和释放速率,使氮素释放与作物需氮同步,从而减少施氮量及施肥次数,降低劳动力成本,实现高产高效的目的[12]。目前,对于缓控释尿素肥效的研究集中在单独施用或与普通尿素配施,而关于缓控释尿素和有机肥配施条件下对周年轮作作物和土壤肥力的影响报道较少。研究表明:减氮15%~30%并不会对作物产量造成影响[56]。因此,本研究以稻麦轮作田为试验区,在缓释氮肥和有机肥配施的条件下,研究不同氮肥减量水平配施有机肥对稻麦轮作体系作物产量、氮素吸收利用以及土壤养分的影响,以期为化肥减量和有机肥施用提质增效提供科学依据。

    • 浙江省嘉兴市海宁市许村镇杨渡村(30o26′07″N,120o24′23″E)处于浙北平原区,海拔为3~4 m;气候为北亚热带季风气候,年均气温为16~17 ℃,≥10 ℃的积温为4 800~5 200 ℃,年降水量为1 500~1 600 mm,无霜期为240~250 d,年日照时数为1 900~2 000 h,年太阳辐射量为100~115 J·cm−2。土壤属于水稻土类渗育型水稻土亚类黄松田土属。试验地块农田排灌便利,其耕层土壤(0~20 cm)基本理化性状为:容重0.898 g·cm−3、pH 7.17、有机质35.00 g·kg−1、全氮1.87 g·kg−1、全磷0.82 g·kg−1、全钾14.70 g·kg−1、铵态氮5.01 mg·kg−1、硝态氮2.12 mg·kg−1、有效磷14.10 mg·kg−1和速效钾94.40 mg·kg−1

    • 试验设置4个处理:①对照(ck),不施氮肥;②常规施氮(N100),当地农户的习惯施肥量,小麦季氮(N)、磷(P2O5)、钾(K2O)肥用量分别为180.0、34.5和90.0 kg·hm−2,水稻季分别为210.0、40.5和90.0 kg·hm−2;③无机氮肥减施15%并配施有机肥(MN85);④无机氮肥减施30%并配施有机肥(MN70)。每个处理重复3次,共12个小区,每个小区面积为30 m2 (5 m×6 m),随机区组排列。各处理田块间使用塑料薄膜将田埂包裹住,使其单排单灌,避免串灌串排,试验区域外围设置保护行,保护行种植作物但不施肥,其他田间管理措施一致。

      氮肥用缓释尿素(N质量分数为44%,山东多益成肥料农业科技有限公司,释放期60 d),磷肥用过磷酸钙(P2O5质量分数为12%),钾肥用氯化钾(K2O质量分数为60%)。稻麦两季的有机肥施用量相同,以当地常用的有机肥施用量为依据,均设置为7 500 kg·hm−2,有机肥以猪粪为基质的颗粒有机肥,pH为7.60,其养分质量分数分别为:N 1.88%、P2O5 2.07%、K2O 1.58%和碳 (C) 32.3%。各处理有机无机养分投入量见表1。所有肥料均作为基肥在小麦播种或水稻移栽前随翻地一次性施入。

      表 1  施肥处理养分投入量

      Table 1.  Amount of pure nutrient input in fertilization treatments

      项目 处理 氮素投入量/(kg·hm−2) 磷素投入量/(kg·hm−2) 钾素投入量/(kg·hm−2)
      有机 无机 合计 有机 无机 合计 有机 无机 合计
      小麦 ck 0 0 0 0 34.50 34.50 0 90.00 90.00
      N100 0 180.00 180.00 0 34.50 34.50 0 90.00 90.00
      MN85 141.00 153.00 294.00 155.25 34.50 189.75 118.50 90.00 208.50
      MN70 141.00 126.00 267.00 155.25 34.50 189.75 118.50 90.00 208.50
      水稻 ck 0 0 0 0 40.50 40.50 0 90.00 90.00
      N100 0 210.00 210.00 0 40.50 40.50 0 90.00 90.00
      MN85 141.00 178.50 319.50 155.25 40.50 195.75 118.50 90.00 208.50
      MN70 141.00 147.00 288.00 155.25 40.50 195.75 118.50 90.00 208.50
      总计 ck 0 0 0 0 75.00 75.00 0 180.00 180.00
      N100 0 390.00 390.00 0 75.00 75.00 0 180.00 180.00
      MN85 282.00 331.50 613.50 310.50 75.00 385.50 237.00 180.00 417.00
      MN70 282.00 273.00 555.00 310.50 75.00 385.50 237.00 180.00 417.00

      田间管理按当地常规栽培措施进行。小麦于2021年11月1日播种,2022年5月19日收获,供试小麦品种为‘浙华1号’‘Zhehua No.1’,播种密度为187.5 kg·hm−2;水稻于2022年6月15日播种育苗,7月6日进行人工移栽,10月27日收获,供试水稻品种为‘秀水134’ ‘Xiushui 134’,种植密度为15×104株·hm−2

    • 采用人工收获,作物产量来源于整个小区,小麦收获的同时采集取样框内(0.5 m2)的所有植株样品,水稻收获的同时采集有代表性植株样品10穴,植株样品除选取部分样品用于室内考种外,其余样品经风干、脱粒后粉碎,用于植株全氮分析。

      水稻收获后,利用直径3.5 cm的不锈钢土钻采集耕层(0~20 cm)土壤样品,每个小区按“梅花型”采集5个点,混匀后,将其分成2份,一份过2.000 mm筛后,用作土壤微生物生物量氮、水溶性氮、铵态氮和硝态氮的测定;另一份在室内风干,分别过2.000和0.149 mm筛后用于土壤养分分析。

    • 根据鲁如坤[13]的土壤农业化学分析方法,容重采用环刀法测定,pH采用电位法(土水质量体积比为1.0∶2.5),有机质采用重铬酸钾外加热法测定,土壤全钾和全磷使用氢氧化钠熔融后分别采用火焰光度计和钼锑抗比色法测定,速效钾用乙酸铵浸提后采用火焰光度计测定,有效磷采用碳酸氢钠浸提-钼锑抗比色法测定,硝态氮采用双波长紫外分光光度法测定,铵态氮采用靛酚蓝比色法测定,土壤水溶性氮和微生物生物量氮分别采用去离子水浸提和氯仿熏蒸-硫酸钾浸提后,使用总有机碳(TOC)分析仪测定,植株全氮质量分数使用元素分析仪测定。

      参照QIAO等[14]的方法计算作物吸氮量、氮肥表观利用率(%)、氮肥农学效率(kg·kg−1)、氮肥偏生产率(kg·kg−1)、氮素内部效率(kg·kg−1)和氮素生理效率(kg·kg−1)。作物收获指数=籽粒产量/(籽粒产量+秸秆产量)×100;作物地上部吸氮量=(籽粒产量×籽粒氮质量分数+秸秆产量×秸秆氮质量分数)/1 000;氮肥表观利用率=(UNU0)/FN×100;氮肥农学效率=(YNY0)/FN;氮素内部效率=YN/UN;氮肥偏生产率=YN/FN;氮素生理效率=(YNY0)/(UNU0)。其中:UN指施氮肥处理的作物地上部吸氮量;U0指不施氮肥处理的作物地上部吸氮量;FN指施氮量;YN指施氮肥处理的作物产量;Y0指不施氮肥处理的作物产量。

    • 使用Excel整理数据,SPSS 22.0对数据进行统计分析。采用单因素方差分析(one-way ANOVA)检验模型,各处理间的显著性使用新复极差法(Duncan)分析。同时使用Origin 2019绘图。

    • 不施氮肥处理周年轮作体系作物产量为7 945 kg·hm−2 (小麦1 439 kg·hm−2、水稻6 506 kg·hm−2)(图1),占常规施氮处理(N100)的54.0%(小麦和水稻分别占33.8%和74.2%),这说明在本试验条件下的氮肥增产贡献率为46.0% (小麦季66.2%、水稻季25.8%)。与ck相比,施用氮肥处理下小麦和水稻产量分别提高了176.4%和50.5% (P<0.05)。无论是小麦还是水稻,MN85处理的产量均最高。尽管施氮处理间小麦产量差异不显著,但与N100相比,MN85处理的水稻产量提高了26.8% (P<0.05)。这说明在本研究条件下MN85处理能提高作物产量,稻季增产效果更好。

      图  1  减氮配施有机肥对作物籽粒产量的影响

      Figure 1.  Effect of nitrogen reduction combined with organic fertilizer on crop yields

      在小麦种植季,作物收获指数无显著差异(表2);在水稻种植季,ck处理的水稻收获指数最高,为53.20%,比MN70处理的高了5.02% (P<0.05);与N100相比,减氮配施有机肥处理的收获指数无显著差异。无论是小麦还是水稻,ck处理的有效穗均最低,分别只有219和134万个·hm−2。MN85处理的有效穗高于N100和MN70,尤其是在水稻季,相比N100,MN85处理使有效穗提高了16.8% (P<0.05)。与有效穗变化规律相似,ck处理的千粒重和穗粒数均最低。水稻千粒重和穗粒数在施肥处理间无显著差异。

      表 2  减氮配施有机肥对作物构成因素的影响

      Table 2.  Effect of nitrogen reduction combined with organic fertilizer on crop composition

      作物处理收获指数/%有效穗/
      (万个·hm−2)
      千粒重/g穗粒数/粒
      小麦ck48.06±2.61 a219±70 b41.35±2.35 b22±6 b
      N10050.35±0.77 a306±90 a45.09±0.93 a38±3 a
      MN8550.09±2.50 a325±107 a45.48±2.28 a41±8 a
      MN7048.90±1.64 a281±43 a45.42±0.41 a40±11 a
      水稻ck53.20±2.52 a134±3 c20.80±0.42 a207±28 a
      N10049.32±0.26 ab196±27 b20.95±0.56 a233±5 a
      MN8550.07±0.76 ab229±36 a21.03±0.78 a230±3 a
      MN7048.18±1.12 b213±25 ab21.65±0.60 a213±21 a
        说明:数值为平均值±标准差。不同小写字母表示同一指     标相同作物在不同处理间差异显著(P<0.05)。
    • 施氮肥提高了作物中氮质量分数(籽粒和秸秆)(表3)。与ck相比,施氮处理的水稻籽粒和秸秆氮质量分数分别提高了11.3%~15.3%和46.3%~73.3% (P<0.05)。与N100和MN85处理相比,MN70处理显著降低了小麦籽粒和秸秆氮质量分数(P<0.05)。

      表 3  减氮配施有机肥对作物氮质量分数和吸氮量的影响

      Table 3.  Effect of nitrogen reduction combined with organic fertilizer on crop nitrogen content and uptake

      作物
      处理
      氮质量分数/(g·kg−1) 吸氮量/(kg·hm−2)
      籽粒 秸秆 籽粒 秸秆
      小麦 ck 16.54±0.56 b 2.43±0.11 b 23.84±3.09 b 3.81±0.78 b
      N100 18.42±1.67 a 2.89±0.29 a 78.93±16.10 a 12.29±2.85 a
      MN85 18.47±2.11 a 2.88±0.38 a 80.23±22.90 a 12.85±5.60 a
      MN70 16.94±0.80 b 2.48±0.11 b 56.54±15.30 ab 8.63±2.44 ab
      水稻 ck 9.97±0.46 b 3.89±0.61 b 64.77±6.87 c 22.20±3.89 c
      N100 11.49±1.07 a 6.52±1.27 a 101.58±22.90 b 59.17±16.60 b
      MN85 11.27±0.25 a 6.74±0.25 a 125.47±25.20 a 74.27±9.84 a
      MN70 11.06±0.26 a 5.69±0.74 a 104.74±7.83 b 58.68±14.80 b
        说明:数值为平均值±标准差。不同小写字母表示同一指标相     同作物在不同处理间差异显著(P<0.05)。

      与植株氮质量分数变化趋势相似,施氮肥促进了作物对氮的吸收(表3)。在小麦季,施氮处理下籽粒和秸秆吸氮量分别比ck提高了11.3%~15.3%和46.3%~73.3% (P<0.05);与N100处理相比,减氮配施有机肥处理的籽粒和秸秆吸氮量无显著差异。在水稻季,MN85处理下籽粒和秸秆吸氮量比其他处理提高了19.8%~93.7%和25.5%~234.7% (P<0.05)。

      此外,小麦吸收的86.4%氮和水稻吸收的66.1%氮被储存在籽粒中,而秸秆还田只能将13.6%和33.9%的氮素重新归还到土壤中(表3)。

    • 表4可见:不施氮处理土壤周年氮素亏缺114.63 kg·hm−2 (小麦季27.66 kg·hm−2,水稻季86.97 kg·hm−2),水稻种植过程中土壤氮素亏损更严重。施氮能有效缓解氮素亏缺,甚至出现盈余,尤其在增施有机肥的MN85和MN70处理中,周年氮素盈余量比单施无机肥的(138.04 kg·hm−2)分别提高了182.64和188.36 kg·hm−2

      表 4  减氮配施有机肥对氮素表观平衡和利用效率的影响

      Table 4.  Effect of nitrogen reduction combined with organic fertilizer on nitrogen apparent balance and use efficiency

      项目 处理 氮输出/
      (kg·hm−2)
      氮投入/
      (kg·hm−2)
      氮素表观平衡/
      (kg·hm−2)
      氮肥表观利
      用率/%
      氮素生理效率/
      (kg·kg−1)
      氮肥农学效率/
      (kg·kg−1)
      氮素内部效率/
      (kg·kg−1)
      氮肥偏生产率/
      (kg·kg−1)
      小麦 ck 27.66 0 −27.66 52.22±2.47 a
      N100 91.21 180.00 88.79 35.31±10.40 a 45.54±6.35 a 15.64±7.64 a 47.27±4.59 a 23.64±7.64 a
      MN85 93.07 294.00 200.93 22.25±9.67 b 45.33±7.88 a 9.95±4.39 b 47.24±5.30 a 14.84±4.39 b
      MN70 65.17 267.00 201.83 14.05±6.82 b 51.44±5.22 a 7.02±3.03 b 51.24±2.42 a 12.40±3.03 b
      水稻 ck 86.97 0 −86.97 74.90±6.72 a
      N100 160.75 210.00 49.25 35.14±18.11 a 29.75±7.07 b 10.78±6.23 b 55.51±6.64 b 41.76±6.23 a
      MN85 199.74 319.50 119.76 35.30±10.86 a 39.70±5.90 a 14.44±6.63 a 55.56±0.89 b 34.80±6.63 a
      MN70 163.42 288.00 124.58 26.55±7.57 b 38.82±3.35 a 10.34±3.17 b 58.22±2.51 b 32.93±3.17 a
      周年 ck 114.63 0 −114.62 69.27±4.60 a
      N100 251.96 390.00 138.04 35.22±14.54 a 37.91±4.56 b 13.02±4.62 a 52.50±5.69 b 33.39±4.62 a
      MN85 292.82 613.50 320.68 29.05±7.43 b 42.05±1.59 a 12.29±3.51 a 52.97±1.10 b 25.23±3.51 b
      MN70 228.60 555.00 326.40 20.54±1.00 b 42.54±1.91 a 8.74±0.69 b 55.97±0.88 b 23.05±0.69 b
        说明:数值为平均值±标准差。−表示无数据。不同小写字母表示同一指标相同项目在不同处理间差异显著(P<0.05)。

      小麦在所有处理中,N100处理下氮肥表观利用率、氮肥农学效率和氮肥偏生产率均最高。配施有机肥的处理间氮素生理效率和内部效率没有显著变化。施氮处理下小麦氮素内部效率为47.27~51.24 kg·kg−1,平均为48.58 kg·kg−1,说明在施氮肥条件下每生产100.00 kg小麦籽粒,需要吸收氮2.06 kg。施氮处理的氮肥偏生产率为12.40~23.64 kg·kg−1,平均为16.96 kg·kg−1,与N100处理相比,MN85和MN70处理的氮肥偏生产率分别降低了59.5%和90.3% (P<0.05)。

      水稻在所有处理中,MN85处理下氮肥表观利用率为35.3%,比MN70处理提高了33.2% (P<0.05)。与N100相比,MN85和MN70处理的氮素生理效率分别提高了33.2%和30.2% (P<0.05)。在3个施氮处理中,MN85处理的氮肥农学效率最高,分别比N100和MN70处理提高了33.3%和39.8% (P<0.05)。ck处理的水稻氮素内部效率最高,比施氮处理显著提高了32.8% (28.7%~35.0%)。施氮处理间水稻氮素内部效率为55.51~58.20 kg·kg−1,说明在施氮肥条件下每生产100.00 kg籽粒,需要水稻吸收氮1.83 kg。同样,施氮处理间氮肥偏生产率也没有显著差异。

      周年轮作的氮肥效率中,N100处理的氮肥表观利用率、氮肥偏生产率分别比MN85和MN70处理提高了21.4%、32.5%和71.7%、44.6% (P<0.05)。与N100处理相比,减氮配施有机肥处理的氮肥生理效率提高了11.1%~12.1%。MN70处理的氮肥农学效率最低,分别比N100和MN85处理降低了32.9%和28.9% (P<0.05)。与ck处理相比,施氮处理使内部利用效率降低了19.2%~24.2% (P<0.05),而不同施氮处理间没有显著差异。

    • 表5可见:土壤pH为7.14~7.16,平均为7.14,均为中性,处理间无显著差异。减氮配施有机肥处理的土壤容重有变小的趋势,但处理间差异不显著。MN85处理的速效钾和有效磷质量分数显著高于其他3个处理(P<0.05),而其他处理间没有显著差异。与N100相比,配施有机肥使土壤有机质和全氮质量分数显著提高(P<0.05)。

      表 5  减氮配施有机肥对土壤理化性质的影响

      Table 5.  Effect of nitrogen reduction combined with organic fertilizer on soil physical and chemical properties

      处理 pH 容重/
      (g·cm−3)
      速效钾/
      (mg·kg−1)
      有效磷/
      (mg·kg−1)
      有机质/
      (g·kg−1)
      全氮/
      (g·kg−1)
      ck 7.16±0.08 a 0.859±0.064 a 65.96±1.44 b 8.35±1.93 b 34.01±0.56 b 1.90±0.07 b
      N100 7.14±0.16 a 0.857±0.034 a 64.40±6.84 b 7.96±2.60 b 35.01±1.67 b 2.02±0.02 b
      MN85 7.14±0.08 a 0.851±0.024 a 93.94±19.46 a 20.06±9.54 a 39.29±1.99 a 2.29±0.13 a
      MN70 7.15±0.07 a 0.844±0.040 a 76.81±10.99 b 12.39±2.74 b 39.89±2.54 a 2.23±0.13 a
        说明:数值为平均值±标准差。不同小写字母表示不同处理间差异显著(P<0.05)。
    • 表6可见:施氮处理提高了土壤中微生物生物量氮、水溶性氮、铵态氮和硝态氮质量分数,尤其是在氮肥减量配施有机肥的处理中增幅更大。其中,MN85处理的土壤微生物生物量氮、水溶性氮和硝态氮质量分数最高,分别比N100处理提高了42.7%、68.8%和107.4% (P<0.05)。此外,与N100相比,MN70处理的土壤微生物生物量氮和硝态氮质量分数也提高了37.9%和72.2% (P<0.05)。

      表 6  减氮配施有机肥对土壤活性氮质量分数的影响

      Table 6.  Effect of nitrogen reduction combined with organic fertilizer on soil active nitrogen

      处理 微生物生物量氮/(mg·kg−1) 水溶性氮/(mg·kg−1) 铵态氮/(mg·kg−1) 硝态氮/(mg·kg−1)
      ck 9.98±3.27 b 6.57±0.67 c 4.99±0.61 a 1.99±0.29 c
      N100 10.26±1.18 b 7.41±3.06 bc 5.09±1.33 a 3.09±1.13 b
      MN85 14.74±4.13 a 12.51±4.53 a 6.24±0.77 a 6.41±2.08 a
      MN70 14.17±4.56 a 10.76±4.35 ab 5.37±1.29 a 5.32±3.22 a
    • 施用有机肥可以改善土壤结构,促进团粒结构的形成,为土壤微生物的活动提供能量,提高土壤微生物的活性和养分供应能力[15]。有研究指出:有机无机配施能够显著提高土壤中的有机质、全氮等质量分数[1618]。在本研究中,缓释氮肥减量配施有机肥能提高土壤的有机质、全氮、速效钾和有效磷质量分数,这是由于有机肥中可利用的养分直接或间接地刺激了微生物的活动,加速有机质分解为土壤有效养分[19]。此外,施入的无机氮会改善土壤氮素的供给水平,降低土壤中的碳氮比,这更有利于微生物的增殖和土壤中可溶性物质的转化,从而增强了土壤中养分的可利用性,提升了土壤中速效养分的质量分数[20]。LAN等[21]研究表明:配施有机肥增加了土壤有机质和全氮质量分数,并且提高了氮利用率。因此,减氮配施有机肥不仅可以提高土壤碳、氮、磷、钾质量分数,同时也能保持较高水平的作物产量。

      土壤微生物生物量氮是土壤活性氮的重要储备库,是植物氮营养的重要来源,是评估土壤活性养分库的重要指标[2223]。在本研究中,减氮配施有机肥增加了土壤微生物生物量氮、水溶性氮和硝态氮质量分数。可能是施加有机肥改善了土壤结构,且有机肥中的有效养分可以激活微生物活性,引起激发效应,从而促进土壤中有机氮的释放[24],因此,土壤水溶性氮和硝态氮质量分数随之提高,这些速效氮可以直接被作物吸收利用,有利于作物的生长发育[2526]。此外,有机肥可以通过吸附土壤中的氮,减少氮淋溶,增加氮矿化,对提高土壤氮质量分数和有效性具有积极作用[2728]。有机肥中的氮主要以有机氮的形态存在,速效氮质量分数较低,并且有机肥的种类和施用量、试验时间、土壤性质甚至气候等因素都会影响研究结果[29]。因此,土壤氮对缓释氮肥减量配施有机肥的响应仍需进一步监测。

    • 在本研究中,与常规施氮处理的作物产量相比,减氮配施有机肥处理使水稻增产8.2%~26.8%,但减氮30%配施有机肥处理的小麦产量比常规施氮处理的降低了28.5%,这可能是因为减氮30%所供应的速效养分较少,小麦季有机肥分解所提供的养分不能满足小麦生长所需[3031]。而在水稻种植期间,由于有机肥经过较长时间转化,土壤中积累的养分可以补足由于减氮处理而缺少的速效养分,使得养分供应可以满足水稻生长的需求[3233]。以往研究表明:有机氮肥占比大于30%时,作物产量基本呈下降趋势[34]。而DAI等[35]的长期研究表明:有机氮肥占比较高的处理反而提高了作物产量,可能是因为有机肥改良土壤是一个长期的工程,随着种植年限的增长,有机肥发挥的作用越强,对作物的增产效果越明显[36]

    • 在本研究中,无机肥比例为85%的处理中,作物地上部吸氮量最高;随着无机肥比例降到70%时,作物地上部吸氮量也随之降低。这可能是因为随着减氮比例的提高,土壤中的速效氮质量分数就会降低,从而影响作物生长,导致吸氮量下降[6]。不同施氮处理均有较多氮素盈余,尤其是2个配施有机肥处理,且减氮30%配施有机肥处理中的氮素盈余更多,这主要是因为速效氮肥减少,而配施有机肥中氮的有效性较低,释放缓慢,大部分氮素以有机氮形态留存于土壤[37],使得土壤中有了更多的氮素盈余。而在养分充足的情况下,作物可以将吸收的养分分配至其他部分,提高作物地上部整体的氮素积累量,作物产量也不会减少,从而保证作物的正常发育[38]。因此,不施氮肥处理的氮素内部利用率比施氮处理提高了23.8%~32.0%,尤其是在水稻季。这可能是由于不施氮肥处理土壤中氮供应不足,作物可吸收的氮较少,使不施氮肥处理的作物吸氮量较低,为了保障作物生殖生长,需要相对比例的氮素转移到籽粒中[39]。因此,较低的地上部氮素积累量往往会导致较高的氮素内部利用率[6]

      在本研究中,小麦减氮配施有机肥处理的氮素表观利用率、氮肥农学效率和氮肥偏生产率均低于单施化肥处理,尤其是减氮30%配施有机肥的处理。但是水稻减氮15%配施有机肥处理的氮素表观利用率、氮素生理效率和氮素农学效率要高于单施化肥处理。这是由于速效氮质量分数减少,有机肥中氮的有效性较低,再加上小麦种植季气温较低,微生物活性降低,分解能力减弱,使可供小麦吸收的氮始终处于较低水平,进而出现施用有机肥处理的小麦吸氮量处于较低水平[40]。在水稻种植季,气温较高,微生物活性增强,有机氮分解较快,氮素吸收利用的水平较高,且无机氮减量较少的情况下(减氮15%),速效氮养分能充分满足水稻对氮的生长需求,进而提高了水稻的产量和吸氮量,从而获得较高的利用效率[32]。综上所述,缓释氮肥减量配施有机肥增强了氮素的利用效率,尤其是减氮15%配施有机肥处理。

    • 施用有机肥对于提升土壤养分质量分数作用显著,缓释氮肥减量配施有机肥的土壤中有机质、全氮、水溶性氮和硝态氮均显著提高。并且缓释氮肥减量配施有机肥增强了作物对氮素的吸收能力,从而提高了作物产量和吸氮量,提高了氮素的利用效率,尤其是缓释氮肥减量15%配施有机肥,对作物产量和氮素吸收的提升最为显著。此外,使用缓释肥料还可以通过减少肥料使用量和施用次数来降低生产成本和人工成本。因此,合理的施用缓释氮肥,通过化肥减量配施有机肥的方式,可以提高土壤肥力,促进粮食增收增产。

参考文献 (40)

目录

/

返回文章
返回