-
近年来,随着城市化、工业化进程的加快,城市空气污染日益严重,强雾霾频繁发生。杭州作为南方城市的典型代表,自2003年开始,年霾日基本都在150 d以上。大气中直径小于或等于2.5 μm的颗粒物(PM2.5)质量浓度连续超标是引发雾霾的直接原因。PM2.5又称可入肺颗粒物,能长期悬浮在空气中,不易沉降,影响范围较广,因而难以控制和治理,可导致居民呼吸道疾病发病率增加30%以上,严重影响人们的日常生活,极大危害居民的身体健康[1]。目前,中国城市中PM2.5的主要污染源是燃煤和汽车尾气排放造成的单一型或混合型污染[2]。由于当前尚不能完全消除污染源,因此借助自然界的清除机制是缓解城市PM2.5污染压力的有效途径。树木能有效吸附和清除空气中的细颗粒物,加速颗粒物的沉降过程[3-7],提高空气负离子含量[8-10],改善大气质量,因此,植物滞尘能力成为城市绿化树种选择的一个重要指标。近几年,中国已有十多个城市开展了绿化树种滞尘能力的研究[6-7, 11-14],多从树种滞尘量的时间变化规律或影响因素等方面进行相关研究,但鲜见树种生理生态变化与净化空气和滞尘能力之间相互关系的综合研究。本实验针对杭州市的气候地理因素以及树种的多样性和代表性,选取广玉兰Magnolia grandiflora,樟树Cinnamomum camphora,珊瑚树Viburnum odoratissinum,苦槠Castanopsis sclerophylla,木荷Schima superba和黄山栾树Koelreuteria bipinnata等6种杭州市常见阔叶树种为代表进行研究,通过比较这6种常见树种的滞尘量、林下空气质量和叶片光合特性变化等差异,分析细颗粒物对各树种的影响。研究结果能间接反映不同树种叶片对雾霾胁迫的抗性强弱,对于了解不同树种对尘污染环境的适应能力及对空气的改善作用, 科学指导城市绿化树种配置建设具有重要借鉴意义。
-
本次测量时间为2015年7-8月。实验树种生长良好,叶片肉质柔软,新陈代谢能力强,在自然状况下能够充分发挥吸附PM2.5等细颗粒物、改善空气状况的能力。雨后第5天及第10天各树种的单位面积滞尘量如图 1所示。雨后第5天,6种树种的单位叶面积滞尘量为0.019~0.102 mg·cm-2,树种间差异显著(P<0.05),其中木荷单位叶面积滞尘量最多,是其他5种树种的2.601~5.475倍(樟树的5.475倍;黄山栾树的4.760倍;珊瑚树的4.349倍),与其他树种间差异极显著(P<0.01);其次为广玉兰,单位叶面积滞尘量为其他4种树种的1.130~2.105倍(樟树的2.105倍),与其他树种间差异极显著(P<0.01);单位叶面积滞尘量最少的为樟树,仅0.019 mg·cm-2,与其他树种(黄山栾树除外)间差异极显著(P<0.01)。雨后第10天木荷的单位叶面积滞尘量达到0.135 mg·cm-2,是其他树种的1.660~5.237倍(是樟树的5.237倍,是珊瑚树的4.650倍),与其他树种间差异极显著(P<0.01);其次为广玉兰,单位叶面积滞尘量是樟树和珊瑚树的3.156倍和2.357倍,与其他树种间差异极显著(P<0.01);珊瑚树最少,仅为0.029 mg·cm-2,与其他树种(苦槠除外)间差异极显著(P<0.01)。
图 1 不同树种滞尘能力变化
Figure 1. Dust removal ability of leaves in 6 tree species at 5 days and 10 days after the rain
不同树种单位叶面积滞尘量随滞尘时间的增加而增加。与雨后第5天相比,雨后第10天各树种单位叶面积滞尘量增加极显著(P<0.01)(苦槠除外),其中,黄山栾树增加最快,雨后第10天为雨后第5天的3.205倍;其次为广玉兰,雨后第10天为雨后第5天的2.082倍;再次为樟树(1.389倍)、木荷(1.328倍)和珊瑚树(1.242倍),苦槠增加最慢,雨后第10天仅为雨后第5天的1.067倍。
-
植物叶绿素相对含量能够表明植物光合产物积累的情况,并与其光合能力大小呈正相关[16]。雨后第5天,珊瑚树叶片叶绿素相对含量最高,与其他树种间差异显著(P<0.05);广玉兰叶片叶绿素相对含量较高,与其他树种间差异极显著(P<0.01),樟树叶片叶绿素相对含量最低,与其他树种间差异显著(P<0.05)。雨后第10天,广玉兰叶片叶绿素相对含量最高,樟树叶片叶绿素相对含量最低,与其他树种间差异极显著(P<0.01)。黄山栾树和广玉兰的叶片叶绿素相对含量在雨后第10天比雨后第5天时增加(差异不显著,P>0.05);其他树种的叶绿素相对含量随滞尘时间增加呈现大致相同的变化趋势(图 2),即随滞尘时间增加,叶片叶绿素相对含量反而呈现下降趋势,其中珊瑚树(P<0.05)和木荷(P<0.01)变化显著。结果表明随滞尘时间增长,大部分植物叶片光合能力受到一定的影响。
图 2 叶绿素相对含量变化
Figure 2. Leaf relative chlorophyll content of 6 tree species at 5 days and 10 days after the rain
叶绿素荧光参数是研究植物光合生理状态的重要参数[17]。PSⅡ原初光能转化效率(Fv/Fm)的变化代表PSⅡ光化学效率的变化,且逆境胁迫的轻重与Fv/Fm参数值被抑制程度之间存在正相关,可作为植物逆指标,常根据其变化趋势来判断植物是否受到了光抑制[18]。随滞尘时间增加,不同树种叶片Fv/Fm值(图 3A)呈现下降趋势,表明原初光能转化效率均降低,但差异不显著(P>0.05)。雨后第10天大部分树种的光系统Ⅱ实际光化学量子产量(Yield)均呈现下降趋势,其中,木荷、广玉兰、樟树和苦槠的Yield值随滞尘时间增长呈现下降趋势,差异显著(P<0.05)(樟树差异不显著,P>0.05),表明这几个树种电子传递途径受到破坏(图 3B)。珊瑚树、黄山栾树、广玉兰、木荷、苦槠等的非光学猝灭系数(qN)值随滞尘时间增长呈现上升规律(图 3C)(木荷变化显著,P<0.05;其他树种变化不显著,P>0.05),而樟树的qN值反而呈现下降趋势(变化不显著,P>0.05)。
-
雨后第5天及第10天,6种树种林冠下以及裸地的PM2.5和PM10质量浓度及空气负离子浓度如表 1所示。结果表明:不同树种释放的空气负离子浓度存在差异。比较表 1可知:在相同空气质量条件下,雨后第5天各树种释放空气负离子的能力顺序为珊瑚树>黄山栾树>樟树>木荷>苦槠>广玉兰。雨后第5天除苦槠和广玉兰外,研究区内其余树种林冠下PM2.5质量浓度均小于对照组(裸地),苦槠冠下PM10质量浓度高于其他树种样地,同时释放空气负离子的能力较弱,樟树林冠下PM2.5及PM10质量浓度均低于其他树种,空气负离子浓度为1 520个·cm-3,明显高于背景值(裸地),雨后第10天不同样地空气中固体颗粒物质量浓度变化规律与雨后第5天基本一致。
表 1 不同树种冠下空气质量分析
Table 1. Air quality analysis under different tree species at 5 days and 10 days after the rain
树种 雨后第5天 雨后第10天 PM25/(μg·m-3) PM10/(μg-m-3) 空气负离子/(个·m-3) PM25/(μg·m-3) PM10/(μg-m-3) 空气负离子/(个·m-3) 苦槠 44.00 92.90 1 240 30.70 71.50 1 230 木荷 21.90 72.10 1 260 23.00 64.40 1 220 广玉兰 33.00 71.30 1 120 5.40 65.20 1 000 黄山栾树 20.00 56.00 1 570 24.70 58.10 1 180 樟树 14.50 34.70 1 520 18.90 52.00 1 480 珊瑚树 23.70 72.60 1 820 21.90 58.00 1 070 裸地 28.50 78.50 1 150 23.00 66.80 1 210 -
利用SPSS 18.0对实验数据进行相关性分析(表 2),可知Yield与Fm具有显著正相关(P<0.01),空气质量指标间具有较强的相关性,PM2.5与PM10具有显著正相关(P<0.05),与空气负离子浓度和湿度呈负相关,但相关性不显著(P>0.05),湿度与空气负离子浓度具有显著正相关(P<0.05)。
表 2 各参数相关性分析
Table 2. Correlation analysis of each parameter
叶绿素相对含量 Yield Fm РМ2.5 РМ10 空气负离子浓度 湿度 叶绿素相对含量 1 -0.469 -0.155 0.449 0.628 0.173 0.443 Yield 1 0.942** 0.066 0.214 -0.158 0.029 Fm 1 0.222 0.468 -0.145 0.179 PM2.5 1 0.868** -0.553 -0.298 PM10 1 -0.369 0.088 空气负离子浓度 1 0.837** 湿度 1 说明:*在0.05水平(双侧)上显著相关,**在0.01水平(双侧)上极显著相关。
Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City
-
摘要: 树种滞尘能力成为城市绿化树种选择的一个重要因素。为探究能够有效减少空气中的细颗粒物数量的城市树种类型,对杭州市6种典型阔叶乔木(广玉兰Magnolia grandiflora,樟树Cinnamomum camphora,珊瑚树Viburnum odoratissinum,苦槠Castanopsis sclerophylla,木荷Schima superba和黄山栾树Koelreuteria bipinnata)的夏季滞尘能力进行了研究。夏季雨后第5天和第10天,对叶片滞尘能力,林下空气中直径小于或等于2.5 μm的颗粒物(PM2.5),空气中直径小于或等于10 μm的颗粒物(PM10)及空气负离子浓度、叶片叶绿素荧光参数进行测定。结果显示:6种树种能够有效滞尘,且滞尘能力差异显著(P < 0.05),木荷和广玉兰滞尘能力最强,与其他树种间差异极显著(P < 0.01);不同树种单位叶面积滞尘量随滞尘时间的增加而增加;雨后第5天和雨后第10天,樟树冠下PM2.5和PM10质量浓度最低,空气负离子浓度比较高,削减颗粒物(PM)能力高于其他树种;随滞尘时间增加,大部分树种叶片叶绿素相对含量、Fv/Fm和Yield呈现下降趋势,光合特性受到抑制。根据研究结果,具有高滞尘能力同时叶绿素荧光参数受影响小的树种,如广玉兰和樟树,可以作为城市绿化的优选树种。Abstract: Dust removal ability is an important factor in the choice of green tree species when environmental pollution of a city is becoming serious. To reduce particulate matter in the air, differences among six tree species commonly cultivated (Magnolia grandiflora, Cinnamomum camphora, Viburnum odoratissimum, Castanopsis sclerophylla, Schima superba, and Koelreuteria bipinnata) in Hangzhou City were studied. At the 5th day and 10th day after rain in summer, the dust capturing capacity of tree leaves was measured by immersion weighing method and chlorophyll-fluorescence indexes of tree leaves were mearsured using PAM-2100, as well as the concentration of particulate matter(PM2.5, PM10), and the air negative ions under these trees were surveyed by air quality minitoring instruments. Results showed that leaves of these six urban trees species captured dust from the air effectively with significant differences among the six tree species (P < 0.05). Leaves of S. superba and M. grandiflora compared to the other tree species absorbed dust most effectively with highly significant differences(P < 0.01). The amount of dust absorption per unit leaf area for the trees 10 days after rain was increased significantly(P < 0.01) than that of 5 days after rain. For most tree species, relative chlorophyll content, Fv/Fm (the ratio of variable fluorescence from dark-adapted material and maximum fluorescence signal from dark-adapted material), and yield showed a decrease with an increase of dust residence time on leaf surfaces. Thus, the photosynthetic characteristics of these six tree species were inhibited with PM stress. Almost all of the trees can reduce the particulate matter, and release the negative air irons. According our results, the trees with high dust removal capability and small effect on photosynthetic characteristics, such as Magnolia grandiflora and Cinnamomum camphora, can be selected as the preferred tree species for urban greening.
-
表 1 不同树种冠下空气质量分析
Table 1. Air quality analysis under different tree species at 5 days and 10 days after the rain
树种 雨后第5天 雨后第10天 PM25/(μg·m-3) PM10/(μg-m-3) 空气负离子/(个·m-3) PM25/(μg·m-3) PM10/(μg-m-3) 空气负离子/(个·m-3) 苦槠 44.00 92.90 1 240 30.70 71.50 1 230 木荷 21.90 72.10 1 260 23.00 64.40 1 220 广玉兰 33.00 71.30 1 120 5.40 65.20 1 000 黄山栾树 20.00 56.00 1 570 24.70 58.10 1 180 樟树 14.50 34.70 1 520 18.90 52.00 1 480 珊瑚树 23.70 72.60 1 820 21.90 58.00 1 070 裸地 28.50 78.50 1 150 23.00 66.80 1 210 表 2 各参数相关性分析
Table 2. Correlation analysis of each parameter
叶绿素相对含量 Yield Fm РМ2.5 РМ10 空气负离子浓度 湿度 叶绿素相对含量 1 -0.469 -0.155 0.449 0.628 0.173 0.443 Yield 1 0.942** 0.066 0.214 -0.158 0.029 Fm 1 0.222 0.468 -0.145 0.179 PM2.5 1 0.868** -0.553 -0.298 PM10 1 -0.369 0.088 空气负离子浓度 1 0.837** 湿度 1 说明:*在0.05水平(双侧)上显著相关,**在0.01水平(双侧)上极显著相关。 -
[1] 陈仁杰, 阚海东.雾霾污染与人体健康[J].自然杂志, 2013, 35(5): 342-344. CHEN Renjie, KAN Haidong. Haze/Fog and human health: a literature review [J]. Chin J Nat, 2013, 35(5): 342-344. [2] 吴海龙, 余新晓, 师忱, 等. PM2.5特征及森林植被对其调控研究进展[J].中国水土保持科学, 2012, 10(6): 116-122. WU Hailong, YU Xinxiao, SHI Chen, et al. Advances in the study of PM2.5 characteristic and the regulation of forests to PM2.5 [J]. Sci Soil Water Conserv, 2012, 10(6): 116-122. [3] 贺勇, 李磊, 李俊毅.北方30种景观树种净化空气效益分析[J].东北林业大学学报, 2010, 38(5): 37-39. HE Yong, LI Lei, LI Junyi. Air purification efficiency of thirty species of landscape trees in northern China [J]. J Northeast For Univ, 2010, 38(5): 37-39. [4] FREER-SMITH P H, HOLLOWAY S, GOODMAN A. The uptake of particulates by an urban woodland:site description and particulate composition [J]. Environ Pollut, 1997, 95(1): 27-35. [5] 王亚超. 城市植物叶面尘理化特性及源解析研究[D]. 南京: 南京林业大学, 2007. WANG Yachao. Study on the Source Apportionment and Physicochemical Characteristics of Foliar Dust on Urban Plants[D]. Nanjing: Nanjing Forestry University, 2007. [6] 王赞红, 李纪标.城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态[J].生态环境学报, 2006, 15(2): 327-330. WANG Zanhong, LI Jibiao. Capacity of dust uptake by leaf surface of Euonymus japonicus Thunb. and the morphology of captured particle in air polluted city [J]. Ecol Environ Sci, 2006, 15(2): 327-330. [7] 王会霞, 石辉, 李秧秧.城市绿化植物叶片表面特征对滞尘能力的影响[J].应用生态学报, 2010, 21(12): 3077-3082. WANG Huixia, SHI Hui, LI Yangyang. Relationships between leaf surface characteristics and dust-capturing capability of urban greening plant species [J]. Chin J Appl Ecol, 2010, 21(12): 3077-3082. [8] 吴志萍, 王成, 许积年, 等. 6种城市绿地内夏季空气负离子和颗粒物[J].清华大学学报(自然科学版), 2007, 42(12): 2153-2157. WU Zhiping, WANG Cheng, XU Jinian, et al. Air-borne anions and particulate matter in six urban green spaces during the summer [J]. J Tsinghua Univ Sci Technol, 2007, 42(12): 2153-2157. [9] 贺江华, 谭益明, 周兰芳.室内空气负离子浓度与PM2.5、PM10浓度的关系[J].中南林业科技大学学报, 2014, 34(5): 96-100. HE Jianghua, TAN Yiming, ZHOU Lanfang. Relationship between indoor air anion concentration and PM2.5 and PM10 [J]. J Cent South Univ For Technol, 2014, 34(5): 96-100. [10] 陈佳瀛, 宋永昌, 陶康华, 等.上海城市绿地空气负离子研究[J].生态环境, 2006, 15(5): 1024-1028. CHEN Jiaying, SONG Yongchang, TAO Kanghua, et al. Study on the air anions of the urban greenery patches in Shanghai [J]. Ecol Environ, 2006, 15(5): 1024-1028. [11] 黄慧娟. 保定常见绿化植物滞尘效应及尘污染对其光合特征的影响[D]. 石家庄: 河北农业大学, 2008 HUANG Huijuan. Study on Dust Catching and Effectiveness of Dust Pollution on Photosynthetic Parameters of Common Landscape Plants in Baoding [D]. Shijiazhuang: Hebei Agricultural University, 2008. [12] 周瑞玲, 庄强, 李鹏, 等.徐州市故黄河风光带园林植物的滞尘效应[J].林业科技开发, 2010, 24(6): 44-47. ZHOU Ruiling, ZHUANG Qiang, LI Peng, et al. Study on dust-retention effect of garden plants along the Old Yellow River scenic zone of Xuzhou City [J]. China For Sci Technol, 2010, 24(6): 44-47. [13] 范舒欣, 晏海, 齐石茗月, 等.北京市26种落叶阔叶绿化树种的滞尘能力[J].植物生态学报, 2015, 39(7): 736-745. FAN Shuxin, YAN Hai, QI Shimingyue, et al. Dust capturing capacities of twenty-six deciduous broad-leaved trees in Beijing [J]. Chin J Plant Ecol, 2015, 39(7): 736-745. [14] 杨佳, 王会霞, 谢滨泽, 等.北京9个树种叶片滞尘量及叶面微形态解释[J].环境科学研究, 2015, 28(3): 384-392. YANG Jia, WANG Huixia, XIE Binze, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing [J]. Res Environ Sci, 2015, 28(3): 384-392. [15] 张伏, 张亚坤, 毛鹏军, 等.植物叶绿素测量方法研究现状及发展[J].农机化研究, 2014(4): 238-241. ZHANG Fu, ZHANG Yakun, MAO Pengjun, et al. Status and development of measuring method in plant chlorophyll content [J]. J Agric Mechan Res, 2014(4): 238-241. [16] 马锦丽, 江洪, 舒海燕, 等.竹炭有机肥对有机卷心菜叶绿素荧光特性和相对叶绿素含量的影响[J].东北农业大学学报, 2015, 46(3): 29-36. MA Jinli, JIANG Hong, SHU Haiyan, et al. Effect of bamboo charcoal organic fertilizer on chlorophyll fluorescence characteristics and relative chlorophyll content of organic cabbage [J]. J Northeast Agric Univ, 2015, 46(3): 29-36. [17] 刘悦秋, 孙向阳, 王勇, 等.遮荫对异株荨麻光合特性和荧光参数的影响[J].生态学报, 2007, 27(8): 371-378. LIU Yueqiu, SUN Xiangyang, WANG Yong, et al. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica [J]. Acta Ecol Sin, 2007, 27(8): 371-378. [18] WOOD T, BORMANN F H. Short-term effects of simulated acid rain upon the growth and nutrient relations of Pinus strobus [J]. Water Air Soil Poll, 1977, 6(4): 479-488. [19] 柴一新, 祝宁, 韩焕金.城市绿化树种的滞尘效应:以哈尔滨市为例[J].应用生态学报, 2002, 13(9): 1121-1126. CHAI Yixin, ZHU Ning, HAN Huanjin. Dust removal effect of urban tree species in Harbin [J]. Chin J Appl Ecol, 2002, 13(9): 1121-1126. [20] BECKETT K P, FREER-SMITH P H, TAYLOR G. The capture of particulate pollution by trees at five contrasting urban sites[J]. Arboric J, 2000, 24(2/3): 209-230. [21] DEMMIG-ADAMS B, ADAMS Ⅲ W W. Photoprotection and other responses of plants to high light stress [J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 599-626. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.01.011