CHEN Wenbo, WANG Xudong, SHI Sibo, et al. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A&F University, 2021, 38(1): 21-30. DOI: 10.11833/j.issn.2095-0756.20200139
Citation: YANG Biao, LIU Zhuangzhuang, PENG Fangren, et al. Growth and photosynthetic characteristics for pecan cultivars during drought stress and recovery[J]. Journal of Zhejiang A&F University, 2017, 34(6): 991-998. DOI: 10.11833/j.issn.2095-0756.2017.06.004

Growth and photosynthetic characteristics for pecan cultivars during drought stress and recovery

DOI: 10.11833/j.issn.2095-0756.2017.06.004
  • Received Date: 2016-12-26
  • Rev Recd Date: 2017-03-15
  • Publish Date: 2017-12-20
  • This study was to determine the changes of water status and photosynthetic characteristics in different pecan cultivars during drought stress and recovery. Pecan cultivars 'Pawnee' 'Mahan' 'Stuart' 'Mohawk' 'Jinhua' 'Shaoxing' and 'Zhongshan 25'were selected to consider indicators of photosynthetic characteristics, chlorophyll, and water use efficiency(WUE). Results showed that with prolonged drought, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), relative water content (RWC) and chlorophyll content of all plants decreased. However, water use efficiency for all plants increased gradually reaching a peak on day 17. After 3 d of watering, all these parameters showed signs of recovery. The fastest recovery rates were 'Pawnee' (Pn had recovered 76.1%) and 'Mahan' (Pn had recovered 69.4%). After watering for 8 d, all tested parameters were restored to almost equivalent levels of the control (ck). Drought resistance of different pecan cultivars was in the order of 'Mahan' > 'Pawnee' > 'Shaoxing' > 'Zhongshan 25' > 'Jinhua' > 'Stuart' > 'Mohawk'.
  • [1] ZHOU Jielu, WU Tianhao, JU Yunwei, YANG Xutao, LIANG Tian, ZHU Haijun.  Biological characteristics and toxicity test of the pathogen of Carya illinoinensis leaf spot . Journal of Zhejiang A&F University, 2023, 40(5): 1018-1025. doi: 10.11833/j.issn.2095-0756.20230029
    [2] PAN Langbo, DUAN Wei, HUANG Youjun.  Prediction on the potential planting area of Carya illinoinensis in China based on MaxEnt model . Journal of Zhejiang A&F University, 2022, 39(1): 76-83. doi: 10.11833/j.issn.2095-0756.20210106
    [3] HUANG Yuancheng, GUO Wenlei, WANG Zhengjia.  Genome-wide identification and bioinformatics analysis of LBD family of transcription factors in Carya illinoensis . Journal of Zhejiang A&F University, 2021, 38(3): 464-475. doi: 10.11833/j.issn.2095-0756.20200454
    [4] YAN Zepu, ZHANG Jiaqi, LIANG Bi, WEI Guangli, ZHANG Qixiang, WANG Zhengjia.  Effects of exogenous gibberellin on growth of Carya illinoensis and its metabolic gene expression . Journal of Zhejiang A&F University, 2020, 37(5): 922-929. doi: 10.11833/j.issn.2095-0756.20190566
    [5] SHANG Yangjuan, TAN Pengpeng, FAN Pinghua, KONG Deyi, PENG Fangren, LI Yongrong.  Evaluation of foliar spraying of zinc in Carya illinoensis . Journal of Zhejiang A&F University, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
    [6] GUO Jing, WANG Guibin, CAO Fuliang.  Photosynthesis and nutrient content with fertilization for Ginkgo biloba leaves . Journal of Zhejiang A&F University, 2016, 33(6): 969-975. doi: 10.11833/j.issn.2095-0756.2016.06.007
    [7] HOU Chuanming, ZHENG Yawen, WANG Zhengjia, XU Yingwu.  Cloning and analysis of a MADS-like gene in Carya cathayensis . Journal of Zhejiang A&F University, 2015, 32(1): 33-39. doi: 10.11833/j.issn.2095-0756.2015.01.005
    [8] ZHU Jingle, YANG Chaowei, DU Hongyan, LI Fangdong, SUN Zhiqiang, DU Lanying.  Photosynthetic capacity of two Eucommia ulmoides clones . Journal of Zhejiang A&F University, 2014, 31(5): 704-709. doi: 10.11833/j.issn.2095-0756.2014.05.007
    [9] YU Chunlian, WANG Zhengjia, XIA Guohua, HUANG Jianqin, LIU Li.  Fat content and fatty acid composition of ten Carya illinoensis cultivars . Journal of Zhejiang A&F University, 2013, 30(5): 714-718. doi: 10.11833/j.issn.2095-0756.2013.05.012
    [10] ZHAO Weiwei, JIANG Hong, MA Yuandan.  Photosynthesis and water use characteristics of Cinnamomum camphora seedlings with simulated acid rain . Journal of Zhejiang A&F University, 2013, 30(2): 179-186. doi: 10.11833/j.issn.2095-0756.2013.02.004
    [11] LI Yuan-chun, SHEN Lin, ZENG Yan-ru.  Establishment of a SRAP analysis protocol in Carya cathayensis and a comparison among SRAP,RAPD,ISSR analysis protocols . Journal of Zhejiang A&F University, 2011, 28(3): 505-512. doi: 10.11833/j.issn.2095-0756.2011.03.025
    [12] YANG Jian-hua, LI Shu-fang, FAN Zhi-yuan, XI Xue-liang, ZOU Wei-lie, LIU Jiao, PAN Li.  Principal component analysis for major economic characteristics of Carya illinoensis and selection of superior cultivars . Journal of Zhejiang A&F University, 2011, 28(6): 907-910. doi: 10.11833/j.issn.2095-0756.2011.06.011
    [13] HU Yu-ling, HU Dong-nan, YUAN Sheng-gui, GUO Xiao-min.  Photosynthesis and seed characteristics of five-year-old Camellia oleifera with fertilizer and brassinolides (BRs) applications . Journal of Zhejiang A&F University, 2011, 28(2): 194-199. doi: 10.11833/j.issn.2095-0756.2011.02.004
    [14] SUI De-zong, WANG Bao-song, SHI Shi-zheng, JIAO Zhong-yi.  Growth and photosynthesis of shrub willow clones with salt stress . Journal of Zhejiang A&F University, 2010, 27(1): 63-68. doi: 10.11833/j.issn.2095-0756.2010.01.010
    [15] ZHU Lan, LI Xue-qin, JIA Xiao-lin, WANG Bin, JIN Song-heng.  High temperature stress with photosynthesis in Festuca arundinacea . Journal of Zhejiang A&F University, 2009, 26(5): 652-655.
    [16] WU Gen-liang, HE Yong, WANG Yong-chuan, SUN Yao, ZHU Zhu-jun.  Diurnal changes of photosynthesis and chlorophyll fluorescence in Cattleya × hybrida and Phalaenopsis amabilis with different light intensities . Journal of Zhejiang A&F University, 2008, 25(6): 733-738.
    [17] GONG Wei, GONG Yuan-bo, HU Ting-xing, CHEN Lin-wu, ZHANG Fa-hui, WANG Jing-yan, ZHU Zhi-fang.  Diurnal variation and effective factors of photosynthesis on the canopy layer of young Pinus elliottii forest . Journal of Zhejiang A&F University, 2006, 23(1): 29-34.
    [18] GAO Jian-she, FU Jun, LIU Yong-hong, CHEN Zhu-jun.  Effects of N and P fertilizers on photosynthesis and transpiration of Eucommia ulmoides . Journal of Zhejiang A&F University, 2004, 21(3): 254-257.
    [19] YUE Chun-lei, GAO Zhi-hui, CHEN Shun-wei.  Photosynthetic characteristics of Pinus elliottii , Elaeocarpus sylvestris and Myrica rubra and their relationship with ecological factors . Journal of Zhejiang A&F University, 2002, 19(3): 247-250.
    [20] ZHENG Bing-song, ZHENG Yong-ping, YU You-xiang, CHENG Xiao-jian, WU Jia-sen, ZHAN Wei-jun, PAN Hui-qun.  Relationship between photosynthetic characteristics of Cyclamen persicum and environmental factors . Journal of Zhejiang A&F University, 2001, 18(4): 366-370.
  • [1]
    LOMBARDINI L, RESTREPO-DIAZ H, VOLDER A. Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves[J]. J Am Soc Hortic Sci, 2009, 134(2):372-378.
    [2]
    FGHIRE R, ANAYA F, ALI O I, et al. Physiological and photosynthetic responses of quinoa to drought stress[J]. Chilean J Agric Res, 2015, 75(2):174-183.
    [3]
    SUN Long, PENG Zuodeng, WANG Chong, et al. Effect of drought stress on photosynthetic characteristics of two energy resource sandy shrubs[J]. J Nanjing For Univ Nat Sci Ed, 2014, 38(2):99-104.
    [4]
    PEI Bin, ZHANG Guangcan, ZHANG Shuyong, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedlings[J]. Acta Ecol Sin, 2013, 33(5):1386-1395.
    [5]
    HONG Zhen, LIAN Faliang, LIU Shuxin, et al. Physiological response of three native garden ground cover plant seedlings to increasing drought stress[J]. J Zhejiang A & F Univ, 2016, 33(4):636-642.
    [6]
    LI Dongqin, ZENG Pengcheng, CHEN Guikui, et al. Effects of drought stress on biomass distribution and physiological characteristics in three kinds of leguminous shrubs[J]. J Cent South Univ For Technol, 2016, 36(1):33-39.
    [7]
    COREIA B, PINTÓ-MARIJUAN M, NEVES L, et al. Water stress and recovery in the performance of two Eucalyptus globulus clones:physiological and biochemical profiles[J]. Physiol Plant, 2014, 150(4):580-592.
    [8]
    EFEOǦLU B, EKMEKÇI Y, ÇIÇEK N. Physiological responses of three maize cultivars to drought stress and recovery[J]. South African J Bot, 2009, 75(1):34-42.
    [9]
    TOSCANO S, SCUDERI D, GIUFFRIDA F, et al. Responses of Mediterranean ornamental shrubs to drought stress and recovery[J]. Sci Hortic, 2014, 178(8):145-153.
    [10]
    LOMBARDINI L, RESTREPO-DIAZ H, VOIDER A. Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves[J]. J Am Soc Hortic Sci, 2009, 134(3):372-378.
    [11]
    do PRADO A C P, MANION B A, SEETHARAMAN K, et al. Relationship between antioxidant and chemical composition of the oil and shell of pecan nuts[Carya illinoinensis (Wangenh.) C. Koch] [J]. Industr Crop Prod, 2012, 45:64-73.
    [12]
    ALIZADEH A, ALIZADE V, NASSERY L, et al. Effect of drought stress on apple dwarf rootstocks[J]. Tech J Eng Appl Sci, 2011, 1(3):86-94.
    [13]
    HU Yi, HU Tingxing, CHEN Hong, et al. Physiological properties and growth of Cinnamomum camphora saplings under drought stress and rewatering[J]. Acta Bot Boreal-Occident Sin, 2015, 35(2):294-301.
    [14]
    HE Caiyun, LI Mengying, LUO Hongmei, et al. Comprehensive evaluation on drought resistance of Hippophae rhamnoides[J]. For Res, 2015, 28(5):634-639.
    [15]
    CHANG Jun, YAO Xiaohua, YANG Shuiping, et al. Effect of water stress on the growth of pecan[J]. For Res, 2009, 22(1):134-138.
    [16]
    SUN Fan, ZHAO Jingming, YAO Xiaohua, et al. Effect of water stress on physiological characteristics of Carya illinoinensis:an economical plant for soil and water conservation[J]. J Southwest Univ Nat Sci Ed, 2014, 36(4):1-7.
    [17]
    LIU Guangqin, ZHU Haijun, ZHOU Beibei, et al. Effects of drought and flooding stress on photosynthetic characteristics of pecan Carya illinoinensis Wangenh. and ultrastructure of its chloroplasts[J]. Jiangsu J Agric Sci, 2012, 28(6):1429-1433.
    [19]
    LIU Duling, PENG Shaobing, SUN Hongmei, et al. Comprehensive evaluation on drought resistance of early fruiting walnut cultivars[J]. Acta Hortic Sin, 2014, 41(5):967-974.
    [20]
    MA Fanglei, CHEN Ying, NIE Jingjing, et al. Physiological response of 4 species of Miscanthus ornamental grass to drought stress[J]. J For & Environ, 2016, 36(2):180-187.
    [21]
    SANG Ziyang, MA Lüyi, CHEN Faju. Growth and physiological characteristics of Magnolia wufengensis seedlings under drought stress[J]. Acta Bot Boreal-Occident Sin, 2011, 31(1):109-115.
    [22]
    KHOYERDI F F, SHAMSHIRI M H, ESTAJI A. Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress[J]. Sci Hortic, 2016, 198(11):44-51.
    [23]
    KARIMI S, YADOLLAHI A, ARZANI K. Responses of almond genotypes to osmotic stress induced in vitro[J]. J Nuts, 2013, 4(4):1-7.
    [24]
    JOGAIAH S, RAMTEKE S D, SHARMA J, et al. Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars[J]. Int J Agron, 2014(2):1-8.
    [25]
    HE Haiyang, PENG Fangren, ZHANG Rui, et al. Photosynthetic characteristics of grafting plants of different pecan varieties[J]. J Nanjing For Univ Nat Sci Ed, 2015, 39(4):19-25.
    [26]
    SHI Qin, YIN Yunlong, WANG Zhiquan, et al. Response in cuttings of Taxodium hybrid 'Zhongshanshan' and their parents to drought and re-hydration[J]. Chin J Appl Ecol, 2016, 27(11):3435-3443.
    [27]
    CAO Dan, CHEN Daoqian, WU Xi, et al. Research on rewatering post-drought growth recovery capacity and physiological characteristics of different maize varieties[J]. Acta Bot Boreal-Occident Sin, 2015, 35(6):1222-1228.
    [28]
    XIAO Jiaodi. Physiological and biochemical responses of three spiny plants to drought stress[J]. J Northwest A & F Univ Nat Sci Ed, 2015, 43(7):155-160.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.1 %FULLTEXT: 14.1 %META: 83.1 %META: 83.1 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.4 %其他: 11.4 %其他: 2.0 %其他: 2.0 %Adrian: 0.1 %Adrian: 0.1 %Austin: 0.3 %Austin: 0.3 %Brazil: 0.0 %Brazil: 0.0 %Canada: 0.1 %Canada: 0.1 %Canton: 0.1 %Canton: 0.1 %Carrboro: 0.1 %Carrboro: 0.1 %Chile: 0.0 %Chile: 0.0 %China: 0.7 %China: 0.7 %Egypt: 0.0 %Egypt: 0.0 %France: 0.0 %France: 0.0 %Germany: 0.0 %Germany: 0.0 %Italy: 0.0 %Italy: 0.0 %Japan: 0.2 %Japan: 0.2 %Lafayette: 0.0 %Lafayette: 0.0 %Malvern: 0.0 %Malvern: 0.0 %Mexico: 0.2 %Mexico: 0.2 %Norman: 0.2 %Norman: 0.2 %Pecos: 0.1 %Pecos: 0.1 %Poland: 0.1 %Poland: 0.1 %Raeford: 0.1 %Raeford: 0.1 %Rochester: 0.3 %Rochester: 0.3 %Russian Federation: 0.0 %Russian Federation: 0.0 %Spain: 0.1 %Spain: 0.1 %Switzerland: 0.0 %Switzerland: 0.0 %Turkey: 0.0 %Turkey: 0.0 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 5.1 %United States: 5.1 %Wixom: 0.0 %Wixom: 0.0 %[]: 3.6 %[]: 3.6 %上海: 3.7 %上海: 3.7 %临汾: 0.1 %临汾: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %休斯敦: 0.1 %休斯敦: 0.1 %伦敦: 0.1 %伦敦: 0.1 %伯明翰: 0.3 %伯明翰: 0.3 %佛森: 0.0 %佛森: 0.0 %佛罗里达: 0.1 %佛罗里达: 0.1 %俄亥俄: 0.0 %俄亥俄: 0.0 %保定: 0.1 %保定: 0.1 %兰州: 0.0 %兰州: 0.0 %凤凰城: 0.1 %凤凰城: 0.1 %加利福尼亚: 0.3 %加利福尼亚: 0.3 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %加拿大多伦多: 0.1 %加拿大多伦多: 0.1 %加拿大魁北克: 0.0 %加拿大魁北克: 0.0 %北京: 9.1 %北京: 9.1 %匹兹堡: 0.3 %匹兹堡: 0.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南昌: 0.0 %南昌: 0.0 %南通: 0.0 %南通: 0.0 %南阳: 0.1 %南阳: 0.1 %博伊西: 0.2 %博伊西: 0.2 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %印度: 0.0 %印度: 0.0 %台州: 0.0 %台州: 0.0 %合肥: 0.3 %合肥: 0.3 %吕梁: 0.2 %吕梁: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %坦佩: 0.0 %坦佩: 0.0 %堪萨斯城: 0.0 %堪萨斯城: 0.0 %塔拉哈西: 0.0 %塔拉哈西: 0.0 %大克罗伊茨: 0.0 %大克罗伊茨: 0.0 %大急流城: 0.0 %大急流城: 0.0 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %奥地利维也纳: 0.0 %奥地利维也纳: 0.0 %娄底: 0.0 %娄底: 0.0 %安大略: 0.0 %安大略: 0.0 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.9 %密蘇里城: 0.9 %布鲁克林区: 0.1 %布鲁克林区: 0.1 %广州: 0.6 %广州: 0.6 %开封: 0.0 %开封: 0.0 %张家口: 1.1 %张家口: 1.1 %成都: 0.1 %成都: 0.1 %扬州: 0.1 %扬州: 0.1 %抚州: 0.0 %抚州: 0.0 %拉斯维加斯: 0.1 %拉斯维加斯: 0.1 %新乡: 0.0 %新乡: 0.0 %新里奇港: 0.3 %新里奇港: 0.3 %日本东京: 0.1 %日本东京: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普雷斯科特山谷: 0.0 %普雷斯科特山谷: 0.0 %杭州: 2.3 %杭州: 2.3 %格兰特县: 0.0 %格兰特县: 0.0 %森尼韦尔: 0.3 %森尼韦尔: 0.3 %榆林: 0.0 %榆林: 0.0 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.0 %沧州: 0.0 %河源: 0.1 %河源: 0.1 %泰勒: 0.0 %泰勒: 0.0 %泰州: 0.0 %泰州: 0.0 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %海口: 0.2 %海口: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %湛江: 0.0 %湛江: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %潍坊: 0.0 %潍坊: 0.0 %石家庄: 0.9 %石家庄: 0.9 %石河子: 0.1 %石河子: 0.1 %福州: 0.0 %福州: 0.0 %穆列塔: 0.0 %穆列塔: 0.0 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %绍姆堡: 0.1 %绍姆堡: 0.1 %绍曾德奥克斯: 0.1 %绍曾德奥克斯: 0.1 %罗利: 0.1 %罗利: 0.1 %美国: 0.4 %美国: 0.4 %美国弗吉尼亚阿什本: 0.1 %美国弗吉尼亚阿什本: 0.1 %美国德克萨斯圣安东尼奥: 0.1 %美国德克萨斯圣安东尼奥: 0.1 %美国怀俄明夏延: 0.1 %美国怀俄明夏延: 0.1 %美国爱荷华得梅因: 0.2 %美国爱荷华得梅因: 0.2 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 6.1 %芒廷维尤: 6.1 %芝加哥: 0.6 %芝加哥: 0.6 %芬兰赫尔辛基: 0.1 %芬兰赫尔辛基: 0.1 %苏州: 0.4 %苏州: 0.4 %萨默维尔: 0.1 %萨默维尔: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 31.6 %西宁: 31.6 %西安: 0.1 %西安: 0.1 %西雅图: 0.0 %西雅图: 0.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.0 %贵阳: 0.0 %运城: 1.5 %运城: 1.5 %郑州: 0.6 %郑州: 0.6 %都伯林: 0.1 %都伯林: 0.1 %重庆: 0.1 %重庆: 0.1 %金华: 0.3 %金华: 0.3 %铜仁: 0.1 %铜仁: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %阜新: 0.0 %阜新: 0.0 %阿什本: 0.0 %阿什本: 0.0 %阿克苏: 0.2 %阿克苏: 0.2 %阿布奎基: 0.2 %阿布奎基: 0.2 %随州: 0.0 %随州: 0.0 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.0 %鞍山: 0.0 %韦科: 0.0 %韦科: 0.0 %韩国釜山: 0.0 %韩国釜山: 0.0 %香港: 0.0 %香港: 0.0 %马德里: 0.1 %马德里: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %其他其他AdrianAustinBrazilCanadaCantonCarrboroChileChinaEgyptFranceGermanyItalyJapanLafayetteMalvernMexicoNormanPecosPolandRaefordRochesterRussian FederationSpainSwitzerlandTurkeyUnited KingdomUnited StatesWixom[]上海临汾丽水乌鲁木齐休斯敦伦敦伯明翰佛森佛罗里达俄亥俄保定兰州凤凰城加利福尼亚加利福尼亚州加拿大多伦多加拿大魁北克北京匹兹堡十堰南京南昌南通南阳博伊西博阿努瓦印度台州合肥吕梁呼和浩特哈尔滨哥伦布嘉兴圣彼得堡坦佩堪萨斯城塔拉哈西大克罗伊茨大急流城天津太原奥地利维也纳娄底安大略宣城密蘇里城布鲁克林区广州开封张家口成都扬州抚州拉斯维加斯新乡新里奇港日本东京昆明晋城普雷斯科特山谷杭州格兰特县森尼韦尔榆林武汉沈阳沧州河源泰勒泰州洛杉矶洛阳海口淄博淮南淮安深圳温州湖州湛江漯河漳州潍坊石家庄石河子福州穆列塔纽瓦克纽约绍兴绍姆堡绍曾德奥克斯罗利美国美国弗吉尼亚阿什本美国德克萨斯圣安东尼奥美国怀俄明夏延美国爱荷华得梅因舟山芒廷维尤芝加哥芬兰赫尔辛基苏州萨默维尔衢州西宁西安西雅图诺沃克贵阳运城郑州都伯林重庆金华铜仁长沙长治阜新阿什本阿克苏阿布奎基随州青岛鞍山韦科韩国釜山香港马德里马鞍山Highcharts.com
  • Cited by

    Periodical cited type(21)

    1. 吴思蕊,尚幸甜,李雪丽,李慧莹,徐悦,王晶,郭美霞. 生物炭固定化菌剂的制备及其多环芳烃降解性能研究. 化学研究. 2025(01): 65-72 .
    2. 魏雅冬,郭海滨. 平菇菌渣与化肥配施对番茄产量、土壤团聚体结构及腐殖质组分的影响. 江苏农业科学. 2025(02): 199-205 .
    3. 叶子壮,王松燕,陆潇,史多鹏,吕慎强,李嘉,杨泽宇,王林权. 秸秆还田、覆膜和施氮对旱地麦田土壤质量的影响. 环境科学. 2024(04): 2292-2303 .
    4. 黄文洁,李明. 广藿香-薄荷轮作和广藿香连作对其品质及其根际土壤微生态的影响. 西南农业学报. 2024(02): 276-285 .
    5. 张娜娜,龚雪梅,刘明广,王文丽. 阜阳地区砂姜黑土耕作层土壤肥力调查与评价. 现代园艺. 2024(16): 1-4 .
    6. 张发丽,王沁,曾涛,蒋明金,何志旺,张恒栋. 施用菌渣对水稻产量、直链淀粉和氨基酸含量的影响. 中国稻米. 2024(06): 55-59 .
    7. 高佩,李希来,柴瑜,王朝慧,李成一,杨鹏年. 羊板粪与枯草芽孢杆菌配施对退化高寒草甸土壤养分及酶活性的影响. 中国土壤与肥料. 2024(11): 29-36 .
    8. 翟挺楷,储玉凡,林碧英,钟路明,林黄昉. 食用菌菌渣在蔬菜基质化利用中的研究进展. 中国蔬菜. 2023(03): 29-36 .
    9. 徐爽. 香菇菌渣对不同质地土壤团聚体组成的影响. 生态与农村环境学报. 2023(04): 540-546 .
    10. 张传梅. 长期施肥对土壤微生态及作物生长和光合的影响. 四川农业科技. 2023(03): 63-66 .
    11. 徐爽,阚雨晨. 食(药)用菌菌糠对砂壤土团聚体性状的影响. 农学学报. 2023(05): 58-65 .
    12. 杨海滨,李中林,徐泽,盛忠雷,胡方洁,邓敏. 不同施肥措施对重庆茶园土壤微生物学特性的影响. 中国土壤与肥料. 2023(08): 59-66 .
    13. 洪琦,赵勇,陈明杰,黄建春,冯志勇,陈辉,张津京. 大球盖菇菌渣原位还田对土壤有机质、酶活力及细菌多样性的影响. 食用菌学报. 2022(01): 27-35 .
    14. 刘志平,周怀平,解文艳,杨振兴,马晓楠,胡雪纯. 长期氮磷配施对褐土细菌多样性及土壤酶活性的影响. 干旱地区农业研究. 2022(02): 163-171 .
    15. 陈云,刘昆,李婷婷,李思宇,李国明,张伟杨,张耗,顾骏飞,刘立军,杨建昌. 结实期干湿交替灌溉对水稻根系、产量和土壤的影响. 中国水稻科学. 2022(03): 269-277 .
    16. 张翰林,郭惠宝,杨业凤,施俭,陆利民,吕卫光. 化肥有机肥配施对稻麦轮作系统作物产量和土壤肥力的影响. 上海农业学报. 2022(03): 48-53 .
    17. 张涵苡,张敏,王静,王澄宇,周伟,邓良基. 不同菌渣配施化肥对土壤肥力和酶活性的影响. 水土保持学报. 2022(06): 364-370 .
    18. 刘唯佳,毛昆明,唐祺超,杨元智,邓良基. 菌渣替代部分化肥养分施用对土壤养分含量及稻麦产量的影响. 四川农业大学学报. 2021(03): 323-330+340 .
    19. 饶中秀,李龙涛,黄凤球,孙继民. 菇渣与菌肥配施对百合鳞茎的增产提质效果. 湖南农业科学. 2021(12): 51-54 .
    20. 何强,王宇莹,王雪艳,颜杰,龚会蝶,刘耘华,陈波浪,张凯,盛建东. 有机肥、有机酸配施化肥对绿洲棉田土壤微生物生物量和酶活性的影响. 新疆农业大学学报. 2021(06): 436-442 .
    21. 吴彪,柯智,陈喜蓉,钟剑锋,林芳能,阳记萍. 不同肥料对无籽青柠檬种植地土壤肥效、微生物与酶活性的影响. 热带林业. 2020(04): 20-24 .

    Other cited types(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(3)

Article views(3024) PDF downloads(456) Cited by(39)

Related
Proportional views

Growth and photosynthetic characteristics for pecan cultivars during drought stress and recovery

doi: 10.11833/j.issn.2095-0756.2017.06.004

Abstract: This study was to determine the changes of water status and photosynthetic characteristics in different pecan cultivars during drought stress and recovery. Pecan cultivars 'Pawnee' 'Mahan' 'Stuart' 'Mohawk' 'Jinhua' 'Shaoxing' and 'Zhongshan 25'were selected to consider indicators of photosynthetic characteristics, chlorophyll, and water use efficiency(WUE). Results showed that with prolonged drought, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), relative water content (RWC) and chlorophyll content of all plants decreased. However, water use efficiency for all plants increased gradually reaching a peak on day 17. After 3 d of watering, all these parameters showed signs of recovery. The fastest recovery rates were 'Pawnee' (Pn had recovered 76.1%) and 'Mahan' (Pn had recovered 69.4%). After watering for 8 d, all tested parameters were restored to almost equivalent levels of the control (ck). Drought resistance of different pecan cultivars was in the order of 'Mahan' > 'Pawnee' > 'Shaoxing' > 'Zhongshan 25' > 'Jinhua' > 'Stuart' > 'Mohawk'.

CHEN Wenbo, WANG Xudong, SHI Sibo, et al. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A&F University, 2021, 38(1): 21-30. DOI: 10.11833/j.issn.2095-0756.20200139
Citation: YANG Biao, LIU Zhuangzhuang, PENG Fangren, et al. Growth and photosynthetic characteristics for pecan cultivars during drought stress and recovery[J]. Journal of Zhejiang A&F University, 2017, 34(6): 991-998. DOI: 10.11833/j.issn.2095-0756.2017.06.004
  • 全球有1/3以上土地处于干旱和半干旱状态,干旱胁迫导致的植物减产甚至超过其他因素造成的减产的总和[1-2]。干旱胁迫下,植物会受到不同程度的影响,其中光合作用是受影响最明显的生理过程之一[3]。干旱胁迫时沙棘Hippophae rhamnoides的净光合速率显著降低[4]。干旱胁迫限制植物生长,会引起生物量分配和形态的变化[5]。李冬琴等[6]研究表明,随着干旱胁迫程度的加剧,3种灌木的生物量下降,根冠比增加,水分利用效率明显提高。干旱胁迫解除后的研究表明,复水能够弥补干旱对植物造成的损失,对植物的生长产生补偿效应甚至超补偿效应;但不同植物或同一植物的不同品种,复水后其恢复速度和能力却存在明显差异[7-9]。因此,研究植物耐旱能力和旱后恢复能力均有重要生产意义。薄壳山核桃Carya illinoinensis又名美国山核桃、长山核桃,是胡桃科Juglandaceae山核桃属Carya落叶乔木,原产于美国和墨西哥北部,具有种仁营养丰富,种子油脂以及不饱和脂肪酸含量高等特性[10-11];其树形高大,树干通直,木材坚固强韧,是具有显著生态效益的优良树种。目前,关于干旱胁迫对植物光合生理影响的研究集中在苹果Malus domestica[12],樟树Cinnamomum camphora[13]和沙棘[14]等树种中,而对干旱胁迫下薄壳山核桃光合特性的研究相对较少,且主要集中在实生苗或单一品种[15-17]。本试验选择7个薄壳山核桃品种1年生嫁接苗为试材,研究持续干旱胁迫和复水下,不同薄壳山核桃品种生长特性、水分状态、光合参数等变化规律,评价其耐旱差异性,筛选耐旱品种,以期为薄壳山核桃在干旱地区的推广提供参考。

  • 供试材料采自南京林业大学薄壳山核桃试验基地(31° 52′45″N,119°09′06″E),分别为‘波尼‘Pawnee’‘马罕’‘Mahan’‘斯图尔特’‘Stuart’‘莫汉克’‘Mohawk’‘金华’‘Jinhua’‘绍兴’ ‘Shaoxing’‘钟山25号’‘Zhongshan 25’等1年生嫁接苗。

  • 2016年3月底,试验苗萌动前,选取大小、长势基本一致的不同品种幼苗,移植于相同规格的盆中(高26 cm,上口直径34 cm,下口直径28 cm),1株·盆-1;基质质量约8 kg,配方为m(蛭石):m(珍珠岩):m(草炭土):m(黄土)=3:3:4:10,盆底放置托盘,防止正常灌溉过程中土壤流失。

    2016年6月初,待嫁接芽已萌发成枝条时将苗木移入南京林业大学人工气候室,保持2次·周-1充分灌溉,适应1个月。设置人工气候室环境为温度35 ℃,相对湿度75%,光照12 h·d-1,光强为560 μmol·m-2·s-1。设对照组(ck)和试验组(干旱胁迫,ds)2个处理,10株·处理-1,试验方法为完全随机设计。对照组于每天17:00充分浇水至底部有水排出,并将流失到托盘内土壤倒回盆中。试验组连续干旱17 d后恢复正常浇水。分别于第0天,第11天,第17天,复水第3天,复水第8天的9:00-11:00取样,获取植株中上部复叶第3~5片完全展开的健康成熟叶并测定各指标。

  • 利用土壤水分传感器(SM-2,康拉德,中国)于每天17:00测定各盆土壤体积含水量(CSW),测量深度≥8 cm。测定试材在试验前和试验后的株高和地径,计算株高相对增长率和地径相对增长率。株高相对增长率(%)=(试验后株高-试验前株高) /试验前株高;地径相对增长率(%)=(试验后地径-试验前地径) /试验前地径。

    试验结束后随机选取试材4株·处理-1,测定根、茎和叶干质量,计算总生物量与根冠比。根冠比=(根干质量/茎叶总干质量)。

    利用Ciras-2便携式光合仪(PP-system,英国)测量光合参数。以红蓝光为光源,叶室二氧化碳摩尔分数为380 μmol·mol-1,光强为1 200 μmol·m-2·s-1。测定净光合速率(Pn),气孔导度(Gs)和蒸腾速率(Tr),计算水分利用效率(EWU),EWUPn/Tr。测量时,使叶片均匀夹于叶夹内,并保持叶片方向、角度基本相同。采用浸提法[18]测定叶绿素质量分数(wChl)。利用CI-203激光叶面积仪(CID,美国)测定叶面积,烘干后测定叶片干质量(mDW1);计算比叶面积(ASL),ASL=叶面积/ mDW1。取大小一致的叶片称量,记录鲜质量(mFW);随后浸泡于超纯水中,24 h后取出,擦干水分并称量其饱和质量(mTW);放置于70 ℃烘箱24 h烘至恒质量,记录干质量(mDW2)。计算叶片相对含水量(CRW),CRW=(mFW-mDW2) / (mTW-mDW2)×100%。

  • 所得数据通过SPSS 22.0软件进行单因素方差分析(one-way ANOVA),通过Duncan法(P<0.05)进行多重比较。采用隶属函数法,对不同薄壳山核桃品种的耐旱能力进行综合评价。若所测指标与耐旱性为正相关时计算公式为:R(xi)=(xi-xmin)/(xmax-xmin)。若所测指标与耐旱性为负相关时计算公式为:R(xi)=1-(xi-xmin)/(xmax-xmin)。i=1,2,3,…,n。其中:R(xi)为每个生理指标的隶属值,xi为某一指标的测定值,xminxmax分别表示测定指标的最小值和最大值[19]

  • 试验期间,测得对照组土壤体积平均含水量为24.8%。试验组土壤体积含水量随干旱胁迫程度增加而逐渐下降;试验第11天,试验组平均含水量为13.4%,此时部分植株叶片出现萎蔫症状;第17天,试验组平均含水量仅为8.1%,部分植株叶片重度萎蔫,枯死,甚至脱落。对试验组植株进行复水后,各盆含水量陆续恢复至对照水平。

  • 与对照组相比,试验组各试材株高增长率显著降低(P<0.05),其中受干旱胁迫影响最大的是‘金华’,最小的是‘绍兴’。除‘马罕’外,试验组地径增长率显著低于对照组(P<0.05),其中‘斯图尔特’受影响最大,‘马罕’最小。与对照组相比,‘波尼’‘马罕’‘绍兴’试验组根冠比差异达到显著水平(P<0.05)。总体而言,干旱胁迫下,不同薄壳山核桃品种株高、地径、生物量均减小,根冠比增大,说明干旱胁迫对不同薄壳山核桃品种生长有显著的抑制作用(表 1)。

    品种处理株高增长率/%地径增长率/%生物量/g根冠比/%
    ‘波尼'ck26.48 ± 1.63 316.58 ± 0.62 348.13 ± 2.34 341.61 ± 2.22 6
    ds16.50 ± 0.92 68.19 ± 0.54 645.26 ± 1.62 351.42 ± 3.82 3
    ‘马罕'ck27.19 ± 1.58 39.47 ± 0.37 345.81 ± 1.63 338.71 ± 2.23 6
    ds18.03 ± 0.9169.16 ± 0.55 343.24 ± 1.42 349.10 ± 3.12 3
    ‘斯图尔特'ck23.13 ± 2.11314.52 ± 0.32 339.71 ± 3.72 337.41 ± 2.913
    ds17.34 ± 1.62 64.48 ± 0.38 630.83 ± 1.31635.33 ± 2.63 3
    ‘莫汉克'ck17.18 ± 2.13 39.03 ± 0.67 336.89 ± 4.54 339.67 ± 4.12 3
    ds9.22 ± 0.72 66.87 ± 0.51629.21 ± 3.12 643.21 ± 3.213
    ‘金华'ck28.51 ± 1.82 313.38 ± 0.66 341.78 ± 1.71335.22 ± 2.92 3
    ds16.32 ± 0.91611.55 ± 0.32 335.22 ± 1.92 637.41 ± 3.32 3
    ‘绍兴'ck28.29 ± 1.98 311.86 ± 0.27 337.31 ± 2.81339.52 ± 5.24 6
    ds22.61 ± 1.5169.65 ± 0.21335.23 ± 3.63 346.18 ± 3.83 3
    ‘钟山25号'ck24.72 ± 0.31314.24 ± 0.81334.91 ± 3.11337.56 ± 3.22 3
    ds18.03 ± 0.27 66.87 ± 0.17 634.62 ± 2.62 338.12 ± 4.23 3
    说明: ck表示对照; ds表示干旱处理。同列不同小写字母表示差异显著(P<0.05)。

    Table 1.  Changes of growth characteristics in different pecan cultivars during drought stress and recover phase

  • 表 2可知:随着干旱胁迫程度的加深,所有植株的PnTrGs均逐渐降低;复水后,所有参数均逐渐恢复。同一品种不同时期光合参数变幅差异明显。干旱胁迫第17天时,所有试材GsTr都接近于0,Pn也达到最低值。与对照相比,‘莫汉克’和‘斯图尔特’Pn最低,分别降低了84.6%和79.8%,降幅显著高于其他品种(P<0.05);‘波尼’和‘马罕’分别仅降低了56.7%和57.1%。与对照相比,‘莫汉克’的Gs下降89.5%,而‘波尼’和‘马罕’的Gs分别降低了69.0%和79.4%。与对照相比,‘莫汉克’Tr降低86.6%,而‘金华’和‘马罕’分别降低了67.2%和71.6%。综合来看,干旱胁迫条件下,‘马罕’光合作用受影响最小,其次是‘波尼’;而‘莫汉克’所受影响最大。

    品种天数净光合速率/(μmol·m-2·s-1)蒸腾速率/(mmol·m-2·s-1)气孔导度/(mol·m-2·s-1)水分利用效率/(mmol·mol-1)
    ‘波尼'0 d(ck)10.91±0.92 a6.24±0.14 a0.24±0.03 a1.75±0.09 b
    11 d7.52±0.37 b4.20±0.21 b0.13±0.02 b1.79±0.16 b
    17 d4.32±0.26 c1.69±0.17 c0.07±0.02 c2.51±0.13 a
    复水3 d8.30±0.57 b3.57±0.42 b0.12±0.01 b2.32±0.22 a
    复水8 d10.11±0.32 a6.25±0.13 a0.20±0.01 a1.60±0.09 b
    ‘马罕'0 d(ck)12.24±1.02 a6.31±0.56 a0.22±0.02 a1.94±0.11 b
    11 d8.33±0.22 b4.44±0.45 b0.13±0.02 b1.90±0.14 b
    17 d5.25±0.24 c1.79±0.03 c0.06±0.01 c2.87±0.15 a
    复水3 d8.29±0.43 b3.71±0.23 bc0.12±0.01 b2.25±0.10 a
    复水8 d11.66±0.88 a6.29±0.11 a0.19±0.02 a1.85±0.93 b
    ‘斯图尔特'0 d(ck)8.85±0.78 a5.74±0.12 a0.15±0.02 a1.54±0.11 a
    11 d4.66±0.27 b2.96±0.18 b0.09±0.02 b1.58±0.15 a
    17 d1.82±0.16 c1.11±0.36 c0.02±0.01 c1.84±0.88 a
    复水3 d4.51±0.26 b4.04±0.08 b0.08±0.01 b1.09±0.08 a
    复水8 d7.91±0.49 a5.63±0.21 a0.11±0.02 a1.41±0.12 a
    ‘莫汉克'0 d(ck)9.21±0.54 a4.99±0.13 a0.13±0.02 a1.85±0.13 b
    11 d5.47±0.28 b2.47±0.35 b0.08±0.01 b2.23±0.21 a
    17 d1.42±0.13 c0.67±0.25 c0.01±0.01 c2.42±1.16 a
    复水3 d5.45±0.29 b2.51±0.52 b0.07±0.01 b2.28±0.60 a
    复水8 d8.81±0.16 a4.89±0.32 a0.09±0.01 bc1.8 1±0.15 b
    ‘金华'0 d(ck)11.78±0.81 a5.53±0.31 a0.20±0.01 a2.13±0.14 a
    11 d8.71±0.42 b3.26±0.23 b0.15±0.01 b2.68±0.22 a
    17 d4.50±0.25 c1.81±0.14 c1.6±0.02 c2.41±0.17 a
    复水3 d8.18±0.08 b3.94±0.11 b1.7±0.02 c2.08±0.16 a
    复水8 d11.21±0.33 a5.56±0.32 a0.15±0.03 b2.02±0.17 a
    ‘绍兴'0 d(ck)10.13±0.71 a5.65±0.18 a0.18±0.02 a1.77±0.13 a
    11 d6.70±0.40 b3.38±0.37 b0.11±0.02 b2.03±0.34 a
    17 d2.65±0.31 c1.33±0.18 c0.02±0.01 c2.04±0.03 a
    复水3 d5.95±0.25 b3.44±0.32 b0.09±0.01 b1.73±0.09 a
    复水8 d9.56±0.46 a5.23±0.16 a0.12±0.01 b1.83±0.11 a
    ‘钟山25号'0 d(ck)10.40±0.69 a5.46±0.46 a0.15±0.02 a1.92±0.23 b
    11 d6.10±0.18 b3.04±0.08 b0.10±0.02 b2.02±0.15 b
    17 d3.00±0.18 c1.01±0.14 c0.04±0.01 c3.01±0.40 a
    复水3 d6.93±0.43 b2.71±0.08 b0.08±0.01 b2.55±0.18 a
    复水8 d9.25±0.13 a5.23±0.16 a0.14±0.01 a1.77±0.11 b
    说明: ck 表示对照。同列不同小写字母表示差异显著(P<0.05)。

    Table 2.  Changes of photosynthetic characteristics in different pecan cultivars during drought stress and recovery phase

    复水3 d后所有植株叶片的光合指标均有不同程度的回升。其中,‘波尼’‘金华’‘马罕’恢复速率相对较快,Pn分别为各自对照的76.1%,69.4%和67.7%。复水8 d后,所有植株Pn均恢复至接近对照水平,其中‘马罕’‘莫汉克’‘金华’均恢复至对照值的95%以上。试验期间,除‘马罕’外,其余各品种EWU均呈现先升高后降低的趋势;除‘金华’‘斯图尔特’‘绍兴’外,其他品种不同时期EWU差异均达到显著水平(P<0.05)。第17天时,‘钟山25号’的TrGs虽然接近于0,但却保持最高的水分利用效率;而‘斯图尔特’的EWU在试验期间变化较小,始终保持着较低的水平。总体而言,经历短期干旱胁迫后,不同品种薄壳山核桃光合指标在复水后均能恢复至对照或接近对照水平。

  • 干旱胁迫和复水阶段,除‘斯图尔特’外,其余各试材叶绿素质量分数均呈现先下降后上升的趋势,不同时期不同品种变幅存在差异(图 1)。干旱胁迫第11天,与对照相比,‘斯图尔特’‘绍兴’叶绿素质量分数显著降低(P<0.05)。第17天,‘金华’‘斯图尔特’‘钟山25号’‘莫汉克’‘绍兴’叶绿素质量分数显著降低(P<0.05)。干旱阶段,‘莫汉克’和‘斯图尔特’叶绿素质量分数下降幅度最大,降幅分别为35.0%和32.6%。复水8 d后,除‘斯图尔特’‘金华’外,其余各品种叶绿素质量分数基本恢复至对照水平。整个试验期间,‘马罕’‘波尼’叶绿素质量分数差异不显著,说明其维持叶绿素稳定的能力较强。

    Figure 1.  Changes of wChl, ASL and CRW in different pecan cultivars during drought stress and recovery

    干旱胁迫和复水对各试材叶片相对含水量和比叶面积都有明显影响,除‘斯图尔特’CRW先上升后下降再上升外,其余各品种CRWASL均呈现先下降后上升的趋势(图 1)。干旱第17天,不同品种薄壳山核桃试验组和对照组叶片相对含水量和比叶面积差异均达到显著水平(P<0.05),与对照相比,‘钟山25号’CRW下降幅度最大,为27.8%,ASL降幅为27.3%;而‘金华’仍保持较高的CRWASL,降幅分别仅为14.8%和15.4%。复水8 d后,所有品种CRWASL均得到恢复,但都低于对照。

  • 植物的抗旱性是多种指标综合作用的结果,评价植物的抗旱性时,为避免单项指标评价的片面性,通常采用多种指标综合评价的方法,隶属函数法是目前被普遍应用于树种抗旱性评价的一种方法,其均值越大,抗旱性越强[20]。对不同品种薄壳山核桃各指标进行隶属函数分析,结果表明:耐旱性从强到弱依次为‘马罕’>‘波尼’>‘绍兴’>‘钟山25号’>‘金华’>‘斯图尔特’>‘莫汉克’(表 3)。

    品种净光合速率气孔导度蒸腾速率水分利用效率相对水含量比叶面积叶绿素质量分数R(xi)
    ‘波尼'0.7220.4810.5930.4430.6780.4900.5450.565
    ‘马罕'0.5580.5170.6010.3050.9160.5450.5980.577
    ‘斯图尔特'0.5310.5180.6020.5350.5650.5100.4430.529
    ‘莫汉克'0.5970.5470.5640.5040.4360.3640.4600.496
    ‘金华'0.6010.4950.5800.3570.5910.5800.5410.535
    ‘绍兴'0.5810.5220.5730.4890.6460.5970.4660.553
    ‘钟山25号'0.5590.5300.5570.3880.8370.3820.6100.552

    Table 3.  Subordinate function values of different pecan cultivars

  • 生物量是植物应对干旱胁迫的综合反映,也是评估干旱胁迫程度下植物抗旱能力强弱的可靠标准。干旱胁迫时,植物生长受到抑制,胁迫程度越高,受抑制现象越明显[21]。本研究表明:随着土壤体积含水量的下降,各试材试验组株高和地径显著低于对照,同时生物量也有不同程度的降低;除‘斯图尔特’外,其余品种根冠比均有不同程度的提升,其中:‘波尼’‘马罕’根冠比得到显著提高,表明干旱胁迫促进了‘波尼’‘马罕’的根系发育,通过地上与地下生物量的合理分配,植物的水分利用效率及干旱适应能力均有了提高。

    叶片相对含水量是植株叶片细胞水分生理状态的反映,可以评估不同基因型植物抗旱性程度[22]。已有研究表明:一些果树品种,如杏仁Amydalus commnis [23]和葡萄Vitis vinifera [24]等在干旱下CRW降低。本试验中,干旱胁迫条件下,土壤中可利用水分减少,植株组织水分亏缺,叶片相对含水量逐渐降低,但仍维持在较高水平。干旱胁迫下,含量较高的CRW可能是保持叶绿体结构完整的基础。

    光合作用是植物生长最基本的生理过程,干旱逆境下,净光合速率是植物光合能力最直接的体现,其大小直接决定着植物光合作用的强弱[25]。孙龙等[3]对多花柽柳Tamarix hohenackeri和沙枣Elaeagnus angustifolia的研究发现,随着干旱胁迫程度加重,多花柽柳和沙枣的净光合速率、蒸腾速率、气孔导度均呈下降的趋势;干旱胁迫达到中度时,净光合速率和蒸腾速率下降更为明显。本试验发现,干旱胁迫过程中,不同薄壳山核桃品种Gs逐渐降低,Tr下降,光合能力变弱,叶片CRW降低,导致叶片形态发生变化,ASL逐渐减小;而EWU却呈现上升的状态,并在干旱处理17 d时达到最高水平。ASL的减少和EWU的提高可能使叶片受光面积减小、避免高温损伤[26]。此外,叶绿素作为植物光合作用的物质基础,其质量分数的高低直接影响光合能力[27]。研究发现,不同薄壳山核桃品种叶绿素质量分数在干旱胁迫时均有不同程度的降低,与KHOYERDI等[22]和肖姣娣[28]的研究结果一致;推测原因可能是干旱胁迫影响叶绿素的合成,加快了叶绿素的降解导致叶绿素质量分数的减少。但本研究发现叶绿素总体上仍维持在较高水平,且在复水后迅速升高,以此推测,干旱胁迫下维持较高水平的CRW和叶绿素质量分数、EWU与根冠比的增大可能是不同薄壳山核桃品种应对干旱胁迫的光合与形态策略。

    旱后复水下植物能快速恢复生长,解除干旱对植物生长的抑制,甚至产生超补偿效应,弥补干旱对植物造成的损失[27]。复水3 d后,‘波尼’‘马罕’‘金华’的Pn恢复最快,展现出更强的恢复潜力,能更好地进行光合作用,相比于其他品种,生物量累积更高。复水8 d后,各试材各项指标均恢复至接近对照水平,说明薄壳山核桃旱后复水的恢复相对迅速;但不同品种间恢复能力差异明显,‘马罕’恢复速率明显高于其他品种,说明干旱胁迫过程中,‘马罕’叶片形态、光合系统等方面受到的伤害更小,从而恢复更快。总体而言,复水后不同薄壳山核桃品种各项指标均有不同程度的恢复,表现出一定的耐旱潜力;耐旱性越强,则恢复能力越强。

    综上所述,干旱和复水对不同薄壳山核桃品种的生长、水分状态以及光合参数产生显著的影响。干旱抑制植株地上部分生长和生物量积累,提高根冠比,促进根系发育,降低叶绿素含量,影响光合生理。复水后不同薄壳山核桃品种各项指标均有不同程度的恢复。隶属函数分析表明,不同薄壳山核桃品种抗旱性强弱顺序为‘马罕’>‘波尼’>‘绍兴’>‘钟山25号’>‘金华’>‘斯图尔特’>‘莫汉克’;相比其他品种,‘马罕’和‘波尼’抗旱性更强。

Reference (28)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return