-
叶绿素荧光与光合作用中各个反应过程密切相关,植物体内的叶绿素荧光信号能够快速灵敏地反映植物光合生理状况。与“表观性”的气体交换指标相比,叶绿素荧光参数更具“内在性”的特点[1-3]。目前,植物叶片叶绿素荧光特性已经被广泛应用到植物光合机制和逆境生理等研究领域[4-5]。毛竹Phyllostachys edulis属禾本科Gramineae植物,广泛分布于中国南方亚热带地区。中国毛竹林面积已达270万hm2,是中国竹类植物中分布最广、面积最大的竹种[6]。毛竹有着与其他树种不同的生长方式即“爆发式生长”[7]。“爆发式生长”又称快速生长,指毛竹出笋后的伸长生长,从3月底开始约60 d内,从笋长成10 m以上的竹秆。为探讨毛竹快速生长的机制,从毛竹不同生长期的蒸腾速率、气孔导度、水分利用关系、器官变化、水势变化及液流特征和环境因子的关系等方面进行了研究[8-11],但是针对毛竹快速生长期的叶片叶绿素荧光参数的研究较为匮乏。本研究测定了毛竹快速生长不同时期叶片叶绿素荧光参数,分析其变化规律,试图探究毛竹快速生长与毛竹叶片叶绿素荧光参数之间的关系,为揭示毛竹快速生长机制提供一定的理论依据。
HTML
-
Fv/Fm指最大光化学效率,是用来研究植物逆境响应的重要参数,主要用于判断植物是否受到了光抑制。Fv/Fm在非胁迫下变化极小,且不受物种和生长条件影响,在受到胁迫的情况下Fv/Fm显著降低[7]。正常情况下植物叶片Fv/Fm的数值为0.75~0.85[12]。
不同生长期不同竹龄毛竹的Fv/Fm如表 1所示。在同一生长期内,毛竹叶片的Fv/Fm测定值无明显日变化。毛竹叶片在快速生长的前期和中期Fv/Fm测定值均低于0.75,表明在这一阶段毛竹叶片受到了环境胁迫。在同一生长期内,不同竹龄毛竹叶片的Fv/Fm测定值差异显著。不同生长期毛竹叶片的Fv/Fm测定值均为1年生毛竹<2年生毛竹。表明2年生毛竹叶片在快速生长期内有更高的光能利用率。不同生长期内,同一竹龄毛竹叶片的Fv/Fm测定值均为前期<中期<后期。不同生长期对同一竹龄毛竹叶片Fv/Fm影响达到了显著水平(P<0.05)。反映在整个生长期内,毛竹叶片光能利用率后期最强,中期居中,前期最弱,2年生毛竹大于1年生毛竹。
测定时间 前期 中期 后期 1年生 2年生 1年生 2年生 1年生 2年生 8:30 0.675 ± 0.011 bc 0.691 ± 0.008 ac 0.693 ± 0.017 bb 0.722 ± 0.044 ab 0.740 ± 0.015 ba 0.759 ± 0.014 aa 10:30 0.678 ± 0.027 bc 0.684 ± 0.013 ac 0.711 ± 0.022 bb 0.739 ± 0.028 ab 0.743 ± 0.017 ba 0.761 ± 0.005 aa 12:30 0.679 ± 0.006 bc 0.695 ± 0.039 ac 0.703 ± 0.030 bb 0.726 ± 0.010 ab 0.756 ± 0.003 ba 0.773 ± 0.009 aa 14:30 0.672 ± 0.010 bc 0.684 ± 0.005 ac 0.708 ± 0.017 bb 0.732 ± 0.013 ab 0.760 ± 0.013 ba 0.771 ± 0.021 aa 16:30 0.676 ± 0.016 bc 0.693 ± 0.008 ac 0.707 ± 0.026 bb 0.729 ± 0.021 ab 0.750 ± 0.008 ba 0.768 ± 0.016 aa 说明:数字后第1个小写字母不相同代表同一生长期内不同竹龄之间差异显著, 第2个小写字母不相同代表不同生长期内同一竹龄之间差异显著 Table 1. Diurnal changes of Fv/Fm of Phyllostachys edulis in different growth stages
-
Fo表示PSⅡ反应中心全部开放式即原初电子受体全部氧化时的荧光水平,理论上用来指反应中心未能发生光化学反应时的叶绿素荧光。Fv/Fo常用来度量PSⅡ的潜在光化学效率,它对环境引起的变化比Fv/Fm更加敏感。毛竹快速生长期不同时期的Fv/Fo测定值见表 2。在毛竹快速生长期的不同时期,毛竹叶片Fv/Fo值无明显日变化,表明在同一时期实验区的环境较为稳定无明显变化。
测定时间 前期 中期 后期 1年生 2年生 1年生 2年生 1年生 2年生 8:30 2.068 ± 0.128 bc 2.312 ± 0.105 ac 2.254 ± 0.148 bb 2.489 ± 0.351 ab 2.671 ± 0.142 ba 2.984 ± 0.140 aa 10:30 2.121 ± 0.166 bc 2.178 ± 0.136 ac 2.377 ± 0.186 bb 2.701 ± 0.314 ab 2.788 ± 0.189 ba 3.019 ± 0.073 aa 12:30 2.144 ± 0.085 bc 2.349 ± 0.249 ac 2.301 ± 0.225 bb 2.533 ± 0.123 ab 3.121 ± 0.056 ba 3.231 ± 0.105 aa 14:30 2.099 ± 0.119 bc 2.181 ± 0.071 ac 2.378 ± 0.142 bb 2.657 ± 0.141 ab 3.044 ± 0.135 ba 3.205 ± 0.246 aa 16:30 2.146 ± 0.144 bc 2.357 ± 0.114 ac 2.356 ± 0.229 bb 2.588 ± 0.246 ab 2.916 ± 0.107 ba 3.144 ± 0.151 aa 说明:数字后第1个小写字母不相同代表同一生长期内不同竹龄之间差异显著,第2个小写字母不相同代表不同生长期内同一竹龄之间差异显著。 Table 2. Diurnal changes of Fv/Fo of Phyllostcwhys edulis in different growth stages
在不同生长期内,毛竹叶片的Fv/Fo的差异均达到显著水平(P<0.05),呈现为前期<中期<后期。在同一生长期内,不同竹龄毛竹叶片Fv/Fo差异显著。在毛竹快速生长的前期、中期、后期,2年生毛竹叶片Fv/Fo均大于1年生毛竹。表明2年生毛竹叶片对环境胁迫有着更强的适应性。
-
实际光化学量子产量(Yield)是指植物光合作用下PSⅡ总的光化学量子产量,它一定程度上反映了PSⅡ反应中心在部分关闭情况下的实际原初光能捕获效率[10-11]。较高的Yield值代表了更高的光能转换效率,能够为植物暗反应的光合碳同化积累更多的能量,促进碳同化的高效运转和有机物的积累[13]。
从表 3可以看出:不同生长期毛竹叶片的Yield值,从8:30开始随着时间推移不断降低,在14:30达到最低点并开始回升。多重比较表明,2种竹龄的毛竹叶片在毛竹快速生长的不同时期,其实际光化学量子产量存在显著差异(P<0.05)。在同一生长期中,2年生毛竹的Yield值均大于1年生毛竹,表明2年生毛竹的光合转化率要优于1年生的毛竹。在毛竹快速生长的不同阶段,不同竹龄毛竹的Yield值均为前期<中期<后期,反映了毛竹叶片光能利用率随着毛竹的快速生长而提高。这变化规律与毛竹Fv/Fm和Fv/Fo基本保持一致。
测定时间 前期 中期 后期 1年生 2年生 1年生 2年生 1年生 2年生 8:30 0.416 ± 0.021 bc 0.433 ± 0.008 ac 0.565 ± 0.023 bb 0.585 ± 0.017 ab 0.598 ± 0.019 ba 0.617 ± 0.023 aa 10:30 0.402 ± 0.011 bc 0.426 ± 0.016 ac 0.524 ± 0.017 bb 0.557 ± 0.013 ab 0.567 ± 0.029 ba 0.591 ± 0.013 aa 12:30 0.371 ± 0.013 bc 0.393 ± 0.012 ac 0.484 ± 0.011 bb 0.500 ± 0.012 ab 0.535 ± 0.017 ba 0.551 ± 0.016 aa 14:30 0.357 ± 0.009 bc 0.375 ± 0.015 ac 0.469 ± 0.014 bb 0.479 ± 0.015 ab 0.513 ± 0.008 ba 0.538 ± 0.015 aa 16:30 0.389 ± 0.015 bc 0.428 ± 0.005 ac 0.485 ± 0.012 bb 0.508 ± 0.020 ab 0.525 ± 0.013 ba 0.558 ± 0.007 aa 说明:数字后第1个小写字母不相同代表同一生长期内不同竹龄之间差异显著,第2个小写字母不相同代表不同生长期内同一竹龄之间差异显著。 Table 3. Diurnal changes of yield of Phyllostachys edulis in different growth stages
-
非光化学猝灭系数(qNP)反映PSⅡ吸收的光能中不能用于光合电子传递而是以热的形式耗散掉的光能部分,是表示热耗散多少的指标[14]。
不同生长期不同竹龄毛竹叶片qNP日变化见表 4。毛竹不同生长期内,叶片qNP从8:30开始随着时间推移不断升高,峰值出现在12:30至14:30,之后逐渐下降。这主要是因为随着光照强度的增加,叶片把吸收的光能较多地转化到热耗散,用于光化学反应上的能量随之减少。
测定时间 前期 中期 后期 1年生 2年生 1年生 2年生 1年生 2年生 8:30 1.769 ± 0.102 c 1.745 ± 0.088 c 1.492 ± 0.069 a 1.514 ± 0.055 a 1.693 ± 0.101 b 1.705 ± 0.073 b 10:30 1.835 ± 0.099 c 1.833 ± 0.096 c 1.594 ± 0.058 a 1.602 ± 0.056 a 1.833 ± 0.059 b 1.845 ± 0.076 b 12:30 2.011 ± 0.083 c 1.997 ± 0.112 c 1.728 ± 0.081 a 1.745 ± 0.062 a 1.887 ± 0.067 b 1.916 ± 0.081 b 14:30 2.015 ± 0.097 c 1.991 ± 0.056 c 1.766 ± 0.078 a 1.779 ± 0.073 a 1.893 ± 0.092 b 1.922 ± 0.084 b 16:30 1.879 ± 0.075 c 1.871 ± 0.081 c 1.630 ± 0.042 a 1.641 ± 0.050 a 1.750 ± 0.063 b 1.801 ± 0.091 b 说明:数字后小写字母不相同代表不同生长期内同一竹龄之间差异显著。 Table 4. Diurnal changes of qNP of Phyllostachys edulis in different growth stages
在同一生长期内,不同竹龄的毛竹qNP差异不显著。在毛竹快速生长的前期、中期、后期,毛竹叶片qNP呈现出先下降后上升的规律,不同竹龄毛竹叶片qNP均为中期<后期<前期。这说明在毛竹快速生长的中期,毛竹叶片能更充分地利用吸收的光能进行光合作用,光合利用率更高。