Volume 35 Issue 6
Nov.  2018
Turn off MathJax
Article Contents

ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li. An overview of Sedum spp. Research[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
Citation: ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li. An overview of Sedum spp. Research[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022

An overview of Sedum spp. Research

doi: 10.11833/j.issn.2095-0756.2018.06.022
  • Received Date: 2017-12-31
  • Rev Recd Date: 2018-04-13
  • Publish Date: 2018-12-20
  • Sedum plants have characteristics of effective aesthetic, low maintenance and wide adaption, which are indispensable perennials for creating conservation oriented gardens and maintaining ecosystem stability. Meanwhile, they also have high edible and medicinal values. In order to further study and exploit the resources of Sedum in China, this paper summarized current research progress regarding resource distribution and classification, resource application, cultivation and propagation, and resistance to abiotic stress. Moreover, the existing problems and future development were also prospected in order to stimulate more research and rational exploitation and utilization in the future.
  • [1] CHEN Yong.  Research progress on influencing factors of growing characteristics of Taxus spp. . Journal of Zhejiang A&F University, 2023, 40(6): 1366-1375. doi: 10.11833/j.issn.2095-0756.20230495
    [2] QIU Luhan, HE Wanying, LIU Meihua, CHEN Jingfeng, WEN Guosheng.  Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City . Journal of Zhejiang A&F University, 2018, 35(1): 81-87. doi: 10.11833/j.issn.2095-0756.2018.01.011
    [3] CUI Jing, WU Jigui, HUANG Bogao, JIANG Wanjie, FAN Yaqian, CHENG Jin.  The mechanisms of reproductive isolation in orchids . Journal of Zhejiang A&F University, 2016, 33(4): 695-702. doi: 10.11833/j.issn.2095-0756.2016.04.020
    [4] WU Xue, DU Changxia, YANG Bingbing, FAN Huaifu.  Research progress in plant aquaporins . Journal of Zhejiang A&F University, 2015, 32(5): 789-796. doi: 10.11833/j.issn.2095-0756.2015.05.020
    [5] CHEN Lei, SUN Bing, LIAO Shaobo, CHEN Yong, ZHANG Jing, HUANG Yingfeng.  Research progress on the cultivation of Bombax malabaricum resource and its landscape application . Journal of Zhejiang A&F University, 2014, 31(5): 798-804. doi: 10.11833/j.issn.2095-0756.2014.05.022
    [6] XIAO Jibo, ZHAO Weituo, CHU Shuyi, LU Guoquan.  Research progress on treatment technology and resource utilization of potato starch wastewater . Journal of Zhejiang A&F University, 2013, 30(2): 292-298. doi: 10.11833/j.issn.2095-0756.2013.02.022
    [7] HONG Xin, LI Zhonglin, ZHOU Shoubiao.  A new record of Sedum L. from east China . Journal of Zhejiang A&F University, 2013, 30(5): 797-798. doi: 10.11833/j.issn.2095-0756.2013.05.025
    [8] XU Chen-lu, ZHANG Shou-gong, SUN Xiao-mei.  Conifer genomic resources and its applications in conifer genetics breeding . Journal of Zhejiang A&F University, 2012, 29(5): 768-777. doi: 10.11833/j.issn.2095-0756.2012.05.021
    [9] CHENG Jian-zhong, YANG Ping, GUI Ren-yi.  Research progress on speciation of selenium compounds in plants . Journal of Zhejiang A&F University, 2012, 29(2): 288-395. doi: 10.11833/j.issn.2095-0756.2012.02.020
    [10] MA Jin, LIU Zhi-gao, ZHENG Gang.  Differential proteomics and its application in plant salt stress . Journal of Zhejiang A&F University, 2011, 28(1): 139-143. doi: 10.11833/j.issn.2095-0756.2011.01.022
    [11] CHENG Ying, LI Gen-you, XIA Guo-hua, HUANG Shang-jue, HUANG Yu-feng.  Review on tissue culture of Aralia plants . Journal of Zhejiang A&F University, 2011, 28(6): 968-972. doi: 10.11833/j.issn.2095-0756.2011.06.022
    [12] XIA Guo-hua, LIU Chuan-he.  Sedum tricarpum:a new record of Sedum(Crasulaceae) from China . Journal of Zhejiang A&F University, 2011, 28(2): 254-255. doi: 10.11833/j.issn.2095-0756.2011.02.013
    [13] KONG Hong, CHENG Fang-yun.  Cytological and molecular biological evidence for taxonomic revision of Paeonia delavayi . Journal of Zhejiang A&F University, 2010, 27(4): 601-605. doi: 10.11833/j.issn.2095-0756.2010.04.021
    [14] WU Lu-lu, YAN Xiong-liang, JI Meng-cheng.  Medicinal bryophytes in Zhejiang Province,China . Journal of Zhejiang A&F University, 2009, 26(1): 68-75.
    [15] GAO Feng, YU Li, ZHANG Wen-an, LU Shang-qiong, XU Qing-xiang.  Review on modern communication technology and its application to facility agriculture . Journal of Zhejiang A&F University, 2009, 26(5): 742-749.
    [16] ZHENG Yan-wei, FAN Yi-rong, GUO Chen-ying, FAN Qing-jun, ZHANG Qing-bao.  Investigation on cultivation and application of tree peony in Zhejiang and Anhui . Journal of Zhejiang A&F University, 2009, 26(6): 835-841.
    [17] ZHANG Lan, GAO Su-ping.  Review of researches on allelopathy of ornamental plants . Journal of Zhejiang A&F University, 2007, 24(4): 497-503.
    [18] WANG Guo-ming, XUBin-fen, WANG Mei-qin, CHEN Bin.  Resources of wild woody ornamental plants in Zhoushan Archipelago . Journal of Zhejiang A&F University, 2007, 24(1): 55-59.
    [19] ZHANG Lei-fan, GAO Yan-hui, ZHUYu-qiu, LIUZhi-gao, TONG Zai-kang, HUANG Hua-hong.  An inter simple sequence repeats(ISSR)reaction system for Lycoris(Amaryllidaceae) . Journal of Zhejiang A&F University, 2007, 24(2): 156-161.
    [20] CHENG Xiao_jian, LI Zhang_ju, YUWei-wu, DAI Wen-sheng, FUQing-gong.  Distribution and ecological characteristics of Torreya grandis in China . Journal of Zhejiang A&F University, 2007, 24(4): 383-388.
  • [2]
    JING Rui, FENG Li, ZHANG Jie, et al. AHP-based comprehensive evaluation of landscape application of Sedums in Beijing area[J]. J Henan Agric Sci, 2016, 45(10):128-133.
    [3]
    FENG Li, ZHANG Jie, JING Rui, et al. Investigation and analysis of resources and application of Sedum in Beijing[J]. J Northwest For Univ, 2015, 30(5):278-282.
    [4]
    DONG Ya'nan, CHEN Yiyun, ZHANG Fuyong, et al. Sedum sarmentosum experimental and clinical research[J]. J Yunnan Univ Trad Chin Med, 2014, 37(1):93-96.
    [5]
    HU Yangyong, MA Jiawei, YE Zhengqian, et al. Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil[J]. J Zhejiang A & F Univ, 2014, 31(1):136-144.
    [6]
    SU Dan, YU Qiangbo, ZHOU Ji. Research advance on morpholgy and cultivation of Sedum plants[J]. J Northeast Agric Univ, 2010, 41(5):154-158.
    [7]
    PEI Ziyou, WEN Huiqin, CHEN Tianling, et al. Research advance of the abiotic stress tolerance on Sedum plants[J]. Northern Hortic, 2016(16):200-203.
    [8]
    WHITTINGHILL L J, ROWE D B, SCHUTZKI R, et al. Quantifying carbon sequestration of various green roof and ornamental landscape systems[J]. Lands Urban Plann, 2014, 123(1):41-48.
    [9]
    MECHELEN C V, DUTOIT T, HERMY M. Mediterranean open habitat vegetation offers great potential for extensive green roof design[J]. Lands Urban Plann, 2014, 121(1):81-91.
    [10]
    VINSON K L, ZHENG Youbin. Green roof plant suitability analysis for northern climates[J]. Horttechnology, 2013, 23(5):563-574.
    [11]
    JIN Xiaofeng, ZHANG Hongwei, XIE Jianbin, et al. Taxonomic notes on Sedum sstr. (Crasullaceae) from Zhejiang Province, China[J]. J Hangzhou Norm Univ Nat Sci Ed, 2010, 9(3):165-171, 190.
    [12]
    JIN Shuihu, ZHOU Yingying, DING Bingyang, et al. Sedum kuntsunianum (Crassulaceae:Sedoideae), a new species from southern Zhejiang, China[J]. Phytotaxa, 2013, 105(2):33-38.
    [13]
    CHEN Minglin, HAN Xue, ZHANG Lifang, et al. Sedum peltatum (Crassulaceae):a new species from Anhui, China[J]. Bangl J Bot, 2017, 46(3):847-852.
    [14]
    ZHANG Yaoru, ZHANG Hong, CHEN Hao, et al. Three species of vascular plants newly recorded in Anhui Province, China[J]. Subtrop Plant Sci, 2017, 46(3):294-296.
    [15]
    ZHENG Yan. The wild species of Crassulaceae in Anhui Province and prospects for their utilization[J]. J Anhui Norm Univ Nat Sci, 1998, 21(4):73-76.
    [16]
    XIE Dongmei, PENG Daiyin, FANG Chengwu, et al. Sedum spiralifolium (Crassulaceae):a new species from Anhui Province, China[J]. Phytotaxa, 2014, 183(3):171-182.
    [17]
    XIA Guohua, LIU Chuanhe. Sedum tricarpum:a new record of Sedum (Crasulaceae) from China[J]. J Zhejiang A & F Univ, 2011, 28(2):254-255.
    [18]
    YANG Chuandong, WANG Xiaoyu, GOU Guangqian. Sedum fanjingshanensis C. D. Yang et X. Y. Wang:a new species of Sedum L.[J]. Bull Bot Res, 2012, 32(4):389-391.
    [19]
    JIANG Shouzhong. A study of the genus Sedum L. in Guizhou[J]. J Guizhou Norm Univ Nat Sci, 1983(1):65-72.
    [20]
    Chinese Ethnography Editorial Board. Flora of China:Vol. 8[M]. Beijing:Science Press, 2013:202-268.
    [21]
    PÉREZ-CALIX E. Sedum pyriseminum (Crassulaceae), a morphologically remarkable new annual species from the state of Durango, Mexico[J]. Phytotaxa, 2016, 255(3):297-300.
    [22]
    GARCIA-RUIZ I, COSTEA M. A new species of Sedum (Crassulaceae) from northwest Michoacan, Mexico[J]. Phytotaxa, 2015, 212(1):80-86.
    [23]
    SANTIAGO J R, ZORZANO O G, ETTER J. Sedum kristenii (Crassulaceae), a new species from Durango, Mexico[J]. Haseltonia, 2012, 18(1):48-51.
    [24]
    SMITH G F, FIGUEIREDO E. The family Crassulaceae in continental Portugal[J]. Bradleya, 2013, 31(1):76-88.
    [25]
    ZHENG Yan. A pollen morphology study on twelve species of Sedum in Anhui[J]. Bull Bot Res, 1997, 17(2):158-162.
    [26]
    QAISER M, PERVEEN A, SARWAR G R. Pollen morphology of the family Crassulaceae from Pakistan and Kashmir and its taxonomic implications[J]. Pak J Bot, 2015, 47(4):1481-1493.
    [27]
    ZHENG Yan, GONG Jie, LIU Dengyi, et al. Anatomical studies on stem of Sedum from Anhui Province[J]. J Anhui Norm Univ Nat Sci, 2001, 24(3):239-242.
    [28]
    HU Jing, CHEN Yujie, LI Cong, et al. Microscopic and TLC identification of the plant medicine 'Zhuyajingtian' (Sedum bulbiferum Makino)[J]. Plant Sci J, 2011, 29(4):519-523.
    [29]
    LI Ni, CHEN Keli, LIU Zhen, et al. Identification of medicinal plants from genus Sedum based on DNA barcoding[J]. World Sci Technol Mod Trad Chin Med Mat Med, 2010, 12(3):463-467.
    [30]
    CARRILLO-REYES P, SOSA V, MORT M E. Molecular phylogeny of the Acre clade (Crassulaceae):dealing with the lack of definitions for Echeveria and Sedum[J]. Mol Phylogenet Evol, 2009, 53(1):267-276.
    [31]
    KIM H J, AHN J H, BAEK S H, et al. Genetic relationship based on RAPD analysis of Sedum sarmentosum in Korea[J]. Korean J Hortic Sci Technol, 2008, 26(1):68-74.
    [32]
    JOVANOVIĆ S Č, ZLATKOVIĆ B K, STOJANOVIĆ G S. Chemotaxonomic approach to the central balkan Sedum species based on distribution of triterpenoids in their epicuticular waxes[J]. Chem Biodivers, 2016, 13(4):459-465.
    [33]
    XU Ran, CHEN Yujie, WAN Dingrong, et al. Identification of four Sedum plant medicines by fourier transform infrared spectra[J]. Pharmacogn Mag, 2012, 8(30):107-110.
    [34]
    GUO Yanchao, WANG Wencheng, ZHENG Lijin, et al. A new Sedum cultivar 'Binhai Changsan'[J]. Acta Hortic Sin, 2014, 41(9):1959-1960.
    [35]
    GUO Meifang, WEN Huiqin, PEI Ziyou, et al. Study on cold resistance of new varieties of Sedum 'Jinmei'[J]. J Shanxi Agric Sci, 2017, 45(3):371-373.
    [36]
    [37]
    [38]
    WANG Huanhuan. The Effect of 60Co-γ Irradiation on Sedum spectabile Bareau and Analysis of Variant[D]. Harbin: Northeast Agricultural University, 2010.
    [39]
    LIU Huan, ZHAO Haixia, WU Longhua, et al. A genetic transformation method for cadmium hyperaccumulator Sedum plumbizincicola and non-hyperaccumulating ecotype of Sedum alfredii[J]. Front Plant Sci, 2017, 8:1-10.
    [40]
    DVORAK B D, VOLDER A. Plant establishment on unirrigated green roof modules in a subtropical climate[J]. Aob Plants, 2013, 5(5):315-349.
    [41]
    SEMPEL F, GORBACHEVSKAYA O, MEWIS I, et al. Modellversuch zur feinstaubbindung:extensive dachbegrünung vs. schotterdach (Fine dust binding potential of extensive roof top greening systems compared to roof gravel cover)[J]. Gesunde Pflanzen, 2013, 65(3):113-118.
    [42]
    BUTLER C, ORIANS C M. Sedum cools soil and can improve neighboring plant performance during water deficit on a green roof[J]. Ecol Eng, 2011, 37(11):1796-1803.
    [43]
    DVORAK B, VOLDER A. Green roof vegetation findings for North American ecoregions:a literature review[J]. Lands Urban Plann, 2010, 97(4):197-213.
    [44]
    CHEN Jing, WANG Jingbo, XU Pan, et al. Medicinal plant resources of Sedum in Zhejiang Province[J]. Chin J Trad Chin Med Pharm, 2016, 31(8):3201-3203.
    [45]
    WANG Jue, WANG Junli, MA Linxi, et al. Research and applications of Hylotelephium plants[J]. J MUC Nat Sci Ed, 2013, 22(1):14-18, 23.
    [46]
    BAI Yongheng, CHEN Bicheng, HONG Weilong, et al. Anti-fibrotic effect of Sedum sarmentosum Bunge extract in kidneys via the hedgehog signaling pathway[J]. Mol Med Rep, 2017, 16(1):737-745.
    [47]
    BAI Yongheng, CHEN Bicheng, HONG Weilong, et al. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway[J]. Oncol Rep, 2016, 35(5):2775-2784.
    [48]
    ZHENG Yanfei, GAO Jiangqiang, ZHENG Lixiang, et al. Research on the cutting propagation potential of Sedum sarmentosum and Sedum lineare[J]. J Tongren Univ, 2016, 18(4):10-14.
    [49]
    CAI Limin, DONG Li. Study on cuttage of Sedum 'Autumn Joy'[J]. Acta Agric Boreal-Occident Sin, 2009, 18(1):277-280.
    [51]
    KANG Hongmei, FU Baochun, WANG Song, et al. Studies on the cuttage-seedling with leaf of Sedum spectabile Borea reproduction[J]. J Shanxi Agric Sci, 2014, 42(11):1186-1187.
    [52]
    MARTÍNEZ-VILLEGAS J A, OROZCO-SEGOVIA A, SÁNCHEZ-CORONADO M E, et al. Germination of Sedum oxypetalum (Crassulaceae) in a primary lava-field shrubland[J]. Plant Ecol, 2012, 213(5):871-881.
    [53]
    SU Yanbin, LIU Lujiang, QI Deming, et al. Study on seed germination characteristics of Sedum aizoon[J]. Northern Hortic, 2016(19):168-170.
    [54]
    REN Shuangying, DONG Li. Tissue culture and rapid propagation of Sedum spectabile 'Star Dust'[J]. Plant Physiol Commun, 2006, 42(2):246.
    [55]
    LEE S Y, AHN J H, KIM H S. Factors influencing callus and shoot formation from in vitro propagation of Sedum sarmentosum[J]. Hortic Environ Biotechnol, 2009, 50(6):576-581.
    [56]
    ZHAO Sujuan, ZHANG Zhongchun, GAO Xiang, et al. Plant regeneration of the mining ecotype Sedum alfredii and cadmium hyperaccumulation in regenerated plants[J]. Plant Cell Tiss Org, 2009, 99(1):9-16.
    [57]
    ZHANG Lu, DING Han, GUI Herong. Callus induction from leaf and plant regeneration of Sedum plumbizincicola[J]. J Zhejiang A & F Univ, 2018, 35(6):567-571.
    [58]
    STARRY O, LEA-COX J D, KIM J, et al. Photosynthesis and water use by two Sedum species in green roof substrate[J]. Environ Exp Bot, 2014, 107(22):105-112.
    [59]
    RABAS A R, MARTIN C E. Movement of water from old to young leaves in three species of succulents[J]. Ann Bot, 2003, 92(4):529-536.
    [60]
    DOMENGHINI J C, BREMER D J, FRY J D, et al. Prolonged drought and recovery responses of Kentucky bluegrass and ornamental groundcovers[J]. Hortscience, 2013, 48(9):1209-1215.
    [61]
    WU Yonghua, XU Honggang, ZHANG Jianqi, et al. Comparison of drought resistance of Sedum plants[J]. Pratac Sci, 2012, 29(6):904-908.
    [62]
    FU Baochun, BO Wei, QIN Guojie, et al. Physiological response of drought stress in Sedum species and evaluation of drought resisrance[J]. Mol Plant Breed, 2017, 15(3):1096-1103.
    [63]
    YANG Liuqing, ZENG Hong, ZHU Xiaoqing, et al. Research of water stress on four kinds of plants such as Sedum yvesii, etc.[J]. J Hunan For Sci Technol, 2016, 43(1):1-5.
    [64]
    BU Fengqin, ZHANG Min, YAN Kunjiao. Study on the adaptability of seven sedums on light roof garden in Jin'an[J]. J Shandong Jianzhu Univ, 2011, 26(6):551-555.
    [65]
    WHITTINGHILL L J, ROWE D B. Salt tolerance of common green roof and green wall plants[J]. Urban Ecosyst, 2011, 14(4):783-794.
    [66]
    LI Xiaobin, KANG Yaohu, WAN Shuqin, et al. A vegetation reconstruction method to plant Sedum spectabile Boreau using drip-irrigation with saline water on a coastal saline soil in region around Bohai Gulf[J]. Paddy Water Environ, 2016, 14(4):491-498.
    [67]
    TIAN Xiaoyan, LIU Yanji, ZHANG Lei, et al. Effects of salt stress on four Sedum species[J]. Grassland Turf, 2010, 30(3):57-60.
    [68]
    KIM I H, HUH K Y, HUH M R. Cold tolerance assessment of Sedum species for shallow-extensive green roof system[J]. Korean J Hortic Sci Technol, 2010, 28(1):22-30.
    [69]
    RYU J H, LEE H B, KIM C M, et al. Cold tolerance of ground cover plants for use as green roofs and walls[J]. Korean J Hortic Sci Technol, 2014, 32(5):590-599.
    [70]
    ZHANG Jie, LI Haiying. Research on cold stress of Sedum in light rooftop greening[J]. Chin Agric Sci Bull, 2010, 26(23):249-253.
    [71]
    ZHANG Wenjuan, LI Lianguo, GUO Jinli, et al. Studies on morphological characters and physiological response under high temperature stress in six Sedum plants[J]. J Inner Mongolia Agric Univ, 2012, 33(4):41-45.
    [72]
    GUO Jinli, ZHANG Wenjuan, HOU Yaqiong, et al. Effects of high temperature stress on lipid peroxidation and protective enzyme activities in Sedum plants[J]. Chin Agric Sci Bull, 2012, 28(34):230-233.
    [73]
    YE Haibo, YANG Xiaoe, HE Bing, et al. Response of Sedum alfredii Hance towards Cd/Zn complex-pollution and accumulation of the heavy metals[J]. J Agro-Environ Sci, 2003, 22(5):513-518.
    [74]
    ZHAO Ting, HAN Xiaojiao, LIU Mingying, et al. Isolation and expression of a cadmium-resistant gene(SaFer) from Sedum alfredii[J]. J Zhejiang A&F Univ, 2015, 32(1):25-32.
    [75]
    GAO Jun, SUN Ling, YANG Xiao'e, et al. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance[J]. PLoS One, 2013, 8(6):e64643.
    [76]
    ZHANG Min, ZHANG Jie, LU Lingli, et al. Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii[J]. Biol Plant, 2016, 60(1):37-47.
    [77]
    HAN Xiaojiao, YIN Hengfu, SONG Xixi, et al. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation[J]. J Plant Biotechnol J, 2016, 14(6):1470-1483.
    [78]
    LIU Wuxing, WANG Beibei, WANG Qingling, et al. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola[J]. Environ Sci Pollut Res Int, 2016, 23(18):18621-18629.
    [79]
    XIAO Wendao, LI Dan, YE Xuezhu, et al. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments[J]. Environ Sci Pollut Res Int, 2017, 24(5):5060-5067.
    [80]
    WU Binyan, SHAO Bingjie, ZHAO Huien, et al. Cd accumulation and tolerance characteristics of 11 species in Sedum sensulato[J]. Acta Sci Circum, 2017, 37(5):1947-1956.
    [81]
    CHEN Ting, LI Chao, YANG Jinyan. Effects of V5+ on growth and nutrients absorption of Sedum spurium cv. 'Coccineum' in high iron solutions[J]. J Southwest China Agric Sci, 2015, 28(1):359-365.
    [82]
    CHEN Keke. Enrichment of Sedum aizoon Linn. on the heavy metal copper[J]. J Shanxi Agric Sci, 2017, 45(8):1318-1320.
    [83]
    WANG Yan, DAI Baoqing, XIN Shigang, et al. Physiological responses and absorption of heavy metals by Sedum spectabile Boreau under the stress of combined heavy metal pollution[J]. J Agro-Environ Sci, 2008, 27(3):1051-1056.
    [84]
    JIAO Yinan, ZHU Hong. Physiological and morphological response of Sedum spectabile Boreau under cadmium stress[J]. Acta Bot Boreal-Occident Sin, 2014, 34(6):1173-1178.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(5301) PDF downloads(660) Cited by()

Related
Proportional views

An overview of Sedum spp. Research

doi: 10.11833/j.issn.2095-0756.2018.06.022

Abstract: Sedum plants have characteristics of effective aesthetic, low maintenance and wide adaption, which are indispensable perennials for creating conservation oriented gardens and maintaining ecosystem stability. Meanwhile, they also have high edible and medicinal values. In order to further study and exploit the resources of Sedum in China, this paper summarized current research progress regarding resource distribution and classification, resource application, cultivation and propagation, and resistance to abiotic stress. Moreover, the existing problems and future development were also prospected in order to stimulate more research and rational exploitation and utilization in the future.

ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li. An overview of Sedum spp. Research[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
Citation: ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li. An overview of Sedum spp. Research[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
  • 景天属Sedum植物隶属于景天科Crassulaceae,为1年生或多年生草本,是景天科分布最为广泛的,数量最多的属。全属约470种,主要分布在北半球,在西半球以墨西哥种类最为丰富,中国约150种,分布遍及全国,其中西南地区种类繁多[1]。景天属植物具有观赏价值高、适应性强、耐瘠薄、低维护等特性,是创建节约型及生态型园林中不可或缺的优良植物材料[2-3]。不仅于此,景天属植物在药用、生态修复[4-5]等方面同样具有相当高的应用价值和潜力。中国虽是重要的种质资源分布区,目前大多植物资源还处于野生状态,仅有少量景天属植物成功被人工引种驯化栽培及应用,开发力度远远不够。近年来,随着对景天属植物重视程度的提高,国内外对景天属的研究逐渐增多,国内研究多集中在资源分布与分类、园林应用、药用价值、植物修复及抗逆性研究[5-7]等方面,而在分子生物学方面的研究较为少见,国外对景天属的研究主要侧重在屋顶绿化应用[8-10]。中国具有丰富的景天属植物资源,合理开展种质资源的调查、保存和利用,对选育优质、抗逆、抗病新品种具有重要意义。为了更好地了解其特性及合理利用,现对近年来国内外景天属植物的研究进展进行概述,探讨研究中存在的问题,旨在为后续发展提供一定的理论依据。

  • 中国景天属植物资源丰富,但关于景天属植物资源分布和统计的文献仅有少量报道。目前,对景天属植物野生资源研究较多的地区主要集中在浙江、安徽、贵州等地。金孝锋等[11]对浙江景天属进行了系统整理,共报道22种1亚种1变种,发表了新变种虎耳草状景天Sedum drymarioides var. saxifragiforme,且并归了新异名2个,将无距景天归并到江南景天S. kiangnanense,狭叶垂盆草归并入垂盆草S. sarmentosum。随后又分别发现3个新种:伴矿景天S. plumbizincicola,细叶景天S. elatinoides和坤俊景天S. kuntsunianum[12]。安徽省记载景天属植物共计29种[13-16],其中新种高岭景天S. tricarpum仅分布于安徽省金寨县[17]。贵州省共计发现景天属植物资源21种[18-19]。此外,2013年出版的《Flora of China》也对景天属植物进行了较为全面的修订[20]

    国外对景天属种质资源分布与调查更新、分类修订及系统发育等方面均有研究,其中以墨西哥的研究较为全面和深入,不断有大量新种被发现,并对景天属植物的地理分布进行了更新[21-23]。SMITH等[24]在对葡萄牙内陆地区景天科植物调查的基础上,重新修订了各属植物名录,记录的植物种类从36种扩充到了76种,并明确了景天属与翅景天属Petrosedum间的差异。

  • 形态学分类主要是指通过植物的外部形态,包括根、茎、叶、花及果实等特征的异同进行植物种类的区分。JIN等[12]在浙江发现了坤俊景天,该种近似于圆叶景天S. makinoi,但该种匍匐特性不同于圆叶景天,且基生叶交互对生,成对的不育枝生于基生叶腋处,萼片和花瓣均长于圆叶景天。GARCIA-RUIZ等[22]发表了S. moniliforme,该种与S. longipes相似,但为3~4片叶轮生,萼片不叠生,较小的花及花粉并具有不育花。SANTIAGO等[23]在墨西哥发现的新种S. kristenii,虽然与S. lumholtziiS. copalenseS. bellum类似,但其根系、蜜腺颜色、植株高度及叶片大小均有不同。

  • 孢粉学、解剖学的分类研究主要是通过显微镜对花粉、叶表皮及茎等部分进行观察。郑艳等[25]利用光学及扫描电子显微镜对安徽省景天属12种植物花粉结构的观察发现:景天是一个很好的自然分类群,且首次从孢粉学角度证实江南景天和凹叶景天S. emarginatum同属一个自然分类群,但又为2个不同的种。QAISER等[26]对景天科中9个属28种植物花粉形态的观察发现,不同属的花粉形状、外壁纹饰等特性差异显著,并借此进行了亲缘关系鉴定。郑艳等[27]利用形态解剖学的方法,首次报道了安徽产8种植物景天属茎的解剖结构,结果表明景天属植物茎由表皮(1层)、皮层(数层)、维管柱(木质部、韧皮部、髓)3个部分构成,并明确提出了肉质植物茎的解剖学处理方法。珠芽景天S. bulbiferum具有非常明显的鉴别特征,如茎横切面的皮层外侧及中柱薄壁组织散布有紫红色细胞,髓部细胞较小,壁不增厚[28]

  • 利用DNA条形码候选序列(ITS2,rbcL,matK和psbA-trnH序列)对景天属药用植物及其混伪品的鉴别发现,ITS2序列能准确鉴定景天属植物,是景天属首选的DNA条形码序列[29]。CARRILLO-REYES等[30]利用外转录间隔区(ETS)、内转录间隔区(ITS)及核糖体蛋白S16(rpS16)、叶绿体赖氨酸-tRNA内含子成熟酶基因(matK)序列首次对广义Arce分支系统发育架构进行了研究,结果表明Arce分支下共有4个进化枝,其中2个进化枝主要由亚洲组景天组成,另外2个进化枝分别由欧洲-马卡罗尼西和美国景天组组成。此外,随机扩增多态性DNA(RAPD)技术也是鉴定景天属植物种类及亲缘关系划分的有效方法[31]。除以上分类手法,目前还有利用气相色谱、质谱法(GC/MS and GCvFID)及傅立叶变换红外光谱法进行分析比较及分类划分[32-33]

  • 随着人们对园林景观构建效果及人类居住环境质量要求的提高,对园林植物种质资源多样性及优质性的要求也随之提高,培育及利用新优品种,特别是观赏价值高、抗逆性强、低维护的品种显得尤为重要。目前,已培育出大量具有不同观赏特性的景天品种,如观株型、观叶色、观花果等,其中以国外品种居多。而这些新优种质资源的创新途径主要分为4种:野生资源的筛选、常规杂交育种、诱变育种和分子育种。

    国内景天属植物的育种工作只有少量报道,通过对景天属野生植物资源的收集和选育,仅筛选出‘滨海长伞’ Sedum ‘Binhai Changsan’[34]和‘晋美’ S. ‘Jinmei’[35]2个品种。虽然国内杂交育种技术体系成熟,然而目前尚无针对景天属植物开展的杂交育种。国外通过杂交育种已获得了许多优良的景天品种,并申请了诸多专利[36-37]。据2017年英国皇家园艺协会网站记录显示,现有景天属植物种及品种已达545个。

    王欢欢[38]利用60 Co-γ射线对八宝景天S. spectabile进行辐射诱变育种,筛选出观赏价值高的变异植株5株。LIU等[39]利用农杆菌Agrobacterium介导法,建立了东南景天S. alfredii和伴矿景天的遗传转化体系,获得了潮霉素高产的转基因植株。

  • 景天属植物的园林应用方式较为丰富,不仅可用于岩石园、专类园、花坛花境的营建,还可用于地被、边坡绿化、屋顶绿化造景及盆栽观赏等。充分利用景天属植物自身观赏特性,与1~2年生花卉、宿根花卉及草坪地被合理搭配,不仅可以改变景天园林应用品种单调、应用模式单一的问题,还可以丰富园林植物多样性,改善人类居住环境。

    国外对景天属植物应用研究较早,且研究较为深入,主要集中在屋顶绿化种植物材料筛选及生态功能研究等方面。研究发现:景天属植物不仅是一类非常适宜于屋顶绿化的材料[40],能够抵抗屋顶气候多变的恶劣环境,如大风、极端气温、基质干旱、空气污染等,而且具有良好的固碳、滞尘、降温、改善其他植物适应的能力[8, 41-43]

  • 景天科是最常见的十类补益型植物药之一,国内外对红景天植物的药用价值研究及开发利用较多,但对景天属植物的研究开发相对较少。景天属植物是一类颇有发展前途的药用植物资源,广泛用于多种炎症、各种出血、烧烫伤、疮痈疔毒等的治疗[44],其次生代谢产物主要以苷类、生物碱、黄酮、萜类、植物甾醇及多糖等为主[45]。现代药理研究表明:垂盆草具有抗菌消炎、保肝降酶、改善免疫调节、抗肿瘤及增强肌力等作用[46-47],为临床使用其治疗急慢性肝病提供了科学理论依据。最新的研究从分子层面揭示了垂盆草抗肝纤维化作用机制,即通过抑制刺猬Erinaceus europaeus信号通路,达到抑制肌成纤维细胞表型和肾间质纤维化的作用[46]

    在药用开发方面,仅研发出少量以景天属植物为原料的产品,如景天三七S. aizoon糖浆、养心片、垂盆草护肝胶囊等。随着现代分离及鉴定技术的提高,不断有新的次生代谢成分被识别,为研究景天属植物药用价值的利用与开发奠定理论基础。

  • 随着引种驯化工作相继展开,部分景天属植物得以推广应用。景天属植物主要采用叶插、嫩枝扦插和分株繁殖,也有少数采用撒茎繁殖和播种繁殖。由于景天属植物多样性差异,致使植株扦插生根特性也有所不同,影响的主要因素有栽培时间、环境、基质、植物生长调节剂等。

  • 扦插繁殖主要包括叶插和茎插。景天属植物易繁殖,且繁殖系数较高,对扦插基质要求不高,在露地全光条件下成活率高达100%[48]。在对Sedum ‘Autumn Joy’的扦插研究中发现,扦插在全年生长季内任一时间段都可进行,且不需要施用任何植物生长调节剂, 在一般温室内即可进行,生产成本低,非常适合大面积繁殖[49]。IIJIMA等[50]研究发现:松叶景天S. mexicanum和玉米石S. album利用茎插繁殖效果更好,而圆叶景天及垂盆草均可利用茎插和叶插方式繁殖,且在25~30 ℃、全光照或者相对30%光照条件下,生根效果更好。八宝景天叶片扦插育苗时,采用纯草炭作为扦插基质,生根率可达90%[51]

  • 不同景天属植物种子萌发对光的需求不尽相同。MARTÍNEZ-VILLEGAS等[52]研究发现:S. oxypetalum种子为需光种子,储藏4个月以上的种子在20~30 ℃变温环境条件下萌发率较高。而景天三七种子萌发对光照不敏感,为光中性种子,其最适萌发温度为25 ℃,发芽率达92.8%,在发芽率上虽滤纸床和土床培养条件无显著差异,但是土床可显著提高种子的发芽速率和发芽整齐度[53]

  • 目前,国内外景天属植物的组织培养研究报道还相对较少,大多以幼嫩茎段和叶片为外植体,一般继代周期为30~60 d,生根容易,移栽成活率高。任爽英等[54]以八宝景天‘Star Dust’顶芽茎段为外植体,在芽增殖培养基MS(Murashige and Skoog)+6-苄氨基腺嘌呤(6-BA) 0.1 mg·L-1+α-萘乙酸(NAA) 0.1 mg·L-1上培养,增殖系数可达22倍,在1/2MS上培养30 d后,生根率达100%。LEE等[55]以不同地区垂盆草的叶和茎段为外植体,发现叶片更利于愈伤组织形成和增殖,且不同地区垂盆草由于基因型差异,愈伤组织和再生能力也有所不同。ZHAO等[56]以东南景天叶片和茎段为外植体,分别在MS+2, 4-D 1.0 mg·L-1+6-BA 0.5 mg·L-1和MS+2, 4-D 0.1 mg·L-1+6-BA 0.1 mg·L-1条件下愈伤组织诱导率最高,达70%和83%。两者最佳增殖培养基均为MS+2, 4-D 0.2 mg·L-1+噻苯隆(TDZ) 0.05 mg·L-1,以MS+6-BA 2.0 mg·L-1+NAA 0.3 mg·L-1不定芽诱导效果最佳,不定芽诱导率达93%。最佳不定芽生长培养基为MS+GA 3.0 mg·L-1,将不定芽接种到MS+吲哚丁酸(IBA) 2.0 mg·L-1中生根率最高,平均生根数达21.4条。张路等[57]以伴矿景天嫩叶为外植体,确定适宜的愈伤组织诱导分化的最佳培养基和芽增殖、生根培养基。

  • 景天属植物具有较强的耐旱性,玉米石,勘察加景天S. kamtschaticum,德国景天S. hybridum ‘Immergrunchen’,八宝景天已先后被证实是兼性景天酸代谢(CAM)植物[58-59],可通过CAM途径活化提高植株抗旱性,如玉米石在长达254 d的持续干旱下才会出现死亡[60]。吴永华等[61]采用持续控水法,结合形态观察与生理测定对14个景天属植物品种进行了抗旱性综合评价,结果表明乡巴佬景天S. spectabile ‘Mossback’,长药景天S. spectabile ‘ Boreau’,何布景天S. telephium ‘Herbstfreude’,冰山奇观景天S. spectabile ‘Iceberg’和奇观景天S. spectabile ‘Rosenteller’的抗旱性最强;‘詹姆士’景天S. spectabile ‘Jameson’,主妇景天S. matrona,粉红景天S. spectabile ‘Rosebloom’,红景天S. spectabile ‘Brilliant’,德国景天和粗壮景天S. engleri的抗旱性次之;反曲景天S. reflexum,胭脂红景天S. spurium ‘Coccineum’和景天三七的抗旱性最弱。付宝春等[62]通过对抗旱相关生理生化指标测定发现:经隶属函数法分析得出3种景天的抗旱性依次为玫红景天>八宝景天>德国景天。

  • 虽然景天属植物抗逆性强,但在生长中也会受到极端降雨、季节性积水、排水不畅等的影响。目前,对于景天耐涝性的研究较少,仅有少量文章进行报道。杨柳青等[63]对短蕊景天S. yvesii等4种植物水分胁迫的研究发现:水涝导致了叶片水分饱和亏缺,质膜相对透性增大;叶绿素含量、PSⅡ最大光化学量子产量(Fv /Fm),表观电子传递速率(RETR),光化学猝灭系数(qP)减小,结合外部形态变化和模糊隶属函数法,耐涝能力从大到小为景天三七,垂盆草,凹叶景天,短蕊景天。布凤琴等[64]研究表明:耐涝性从大到小为佛甲草S. lineare,垂盆草,景天三七,胭脂红景天,白叶景天S. pallescens,花叶八宝景天,八宝景天。

  • WHITTINGHILL等[65]对常用于屋顶绿墙绿化植物耐盐性的研究中发现,不管是叶面喷施或液体灌溉,Sedum ellecombianum均具有较强的耐盐性,而反曲景天S. reflexum则耐盐性较差。在对八宝景天滨海砂砾盐渍土耕作的研究中发现:利用垄作结合6 mm的滴头及盐浓度小于7.8 dS·m-1时,八宝景天均能全部成活[66],为滨海地区盐碱地的保护和开发提供新的观点和理论支持。田晓艳等[67]利用不同浓度盐溶液处理发现:4种景天耐盐性从大到小依次为景天三七,德国红景天S. spectabile ‘German Rhodiola’,粉八宝景天S. spectabile ‘Pink’,红八宝景天S. spectabile ‘Ruber’,且在低于100 mmol·L-1盐浓度的盐碱地中,4种景天均可用于绿化,在200~400 mmol·L-1盐浓度的盐碱地中景天三七和德国红景天可供选择。

  • KIM等[68]研究发现:除了大唐米S. oryzifolium外,反曲景天,六棱景天S. sexangulare,苔景天S. acre,玉米石,高加索景天S. spurium,岩景天S. rupestre等6种景天抗寒能力较强,均能在韩国南部越冬。RYU等[69]利用逐级降温的方法对7种已用于韩国屋顶绿化的植物进行了抗寒性比较,通过图像及半致死温度测定分析研究发现:反曲景天和蓝云杉岩景天S. rupestre ‘Blue Spruce’抗寒性及恢复生长的能力均较强,能够忍受-16 ℃的温度,非常适宜于韩国中部运用。景天新品种晋美的抗寒性研究发现:此品种耐寒、延绿特性较好,以新生茎绿体越冬,比三七景天和八宝景天绿期长约120 d,可在山西最低气温极值为-20 ℃以上的地区推广[35]。张杰等[70]为筛选出适应郑州地区轻型屋顶绿化免维护植物材料,对9种植物进行了耐寒性研究,综合各项指标发现:耐寒性从大到小为夏辉景天S. spurium ‘Coccineum’,苔景天,金银花Lonicera japonica,佛甲草,玉米石,六角景天S. sexangulare,吉祥草Reineckia carnea,藓状景天S. polytrichoide,勘察加景天,且与大田试验观察结果相符。

  • 高温会导致景天出现叶片卷曲、黄化、甚至干枯脱落等症状,严重影响景观效果。张文娟等[71]研究了45 ℃下6种景天的形态特征及生理响应,结果表明高温导致叶片含水量变化不大,但叶绿素含量降低、电导率和丙二醛质量分数上升,综合形态特征及生理变化,耐热性由强到弱依次为黄花德景天S. hybridum,八宝景天,早花德景天S. hybridum,垂盆草,红花德景天S. hybridum ‘Immergrunchell’,红叶景天S. spurium ‘Coccineum’。郭金丽等[72]对5种景天植物进行了45/30 ℃(昼13 h/夜11 h)高温胁迫,研究表明高温胁迫下增强超氧化物歧化酶(SOD),过氧化物酶(POD)和过氧化氢酶(CAT)活性以减轻膜脂过氧化程度是景天植物适应高温胁迫的重要生理机制。

  • 重金属污染物排放和扩散对环境已造成日趋严重的污染问题,如何有效消除环境中重金属污染物已成为世界性难题。与物理和化学途径相比,植物修复是一项廉价高效、对环境副作用小的修复方式,可通过收获地上部来达到降低土壤重金属浓度的目的。作为生态修复领域研究的重要方向之一,筛选超富集和耐性的植物及修复强化技术已成为生态修复的关键。

    矿生型东南景天不仅具有很强的耐锌、镉及铅性,而且对3种重金属都具有超富集效应[5, 73-74],无论是三者的单一或复合处理,均具有优良的修复表现[73],对于重金属胁迫的响应机制主要包括根际活化、跨膜运输、螯合作用等[5]。GAO等[75]利用现代分子学技术,通过转录组学分析,研究了超积累生态型东南景天在锌镉胁迫下的分子响应机制,成功克隆得到3个ZIP家族基因SaZIP1,SaZIP4和SaZIP11,并初步研究了其基因特性与功能。对转运蛋白的功能性分析发现:SaCAXh基因负责将钙、锰固定到液泡,且基因过表达能增强铬在转基因烟草中的积累[76]。最近,HAN等[77]系统分析及鉴定了超积累型东南景天镉胁迫下的关键调控MiRNA-靶基因,并构建了镉胁迫下的基因表达调控网络。

    此外,研究发现还可通过添加螯合剂、微生物及利用农艺措施来强化植物修复能力。接种隐球酵母NSE1可增加伴矿景天地上部生物量,提高对镉的积累,显著降低土壤重金属有效态含量[78]。添加猪粪堆肥或腐殖酸与切换极性直流电场的组合能显著提高东南景天的镉富集能力[79]

    吴彬艳等[80]对11种景天属植物镉的耐性和积累特性的研究表明:在400.00 mg·kg-1质量分数下,反曲景天、垂盆草、勘察加景天、六棱景天及‘胭脂红’景天具有很好的耐受性,并且‘胭脂红’景天具有很好的富集能力,地上部镉高达749.72 mg·kg-1。‘胭脂红’景天不仅耐镉,同时也是钒富集能力较强的植物[81]。景天三七对重金属铜具有良好的耐受性,推测其可用于低浓度铜污染的土壤、水体修复等[82]。长药景天对铬、铅、镉、汞、钴均具有较强的耐性,且对镉、汞及钴的富集能力较强[83],且能够耐受浓度为100 μmol·L-1镉的胁迫[84]

  • 中国虽然是景天属植物资源的重要分布区,但大多数景天属植物仍处于野生状态,真正被开发利用的仅有少数,缺乏对乡土植物资源的合理利用。近年来,由于野生资源挖掘或破坏严重,植物志记载入册的部分景天属植物已未见分布,如何更有效合理地保护和利用野生植物资源显得尤为重要。开展野生植物资源的调查,摸清分布情况,合理搜集野生资源,建立种质资源库,并对其生物学特性、生态习性、抗逆性及观赏价值等进行研究、观测记录,建立完善的个体资料,建立科学、系统的评价及筛选体系,对景天属植物的合理应用提供理论依据。在形态学的基础上,结合现代分子学技术,建立可靠的分类依据,并对分类系统进行修正和补充,有利于深入了解景天属植物的进化和亲缘关系。

  • 了解各种质资源的优良特性及生态习性,根据观赏特性、用途筛选优质种质,利用现代育种技术有目的的进行种质资源创新,对筛选出的优质资源进行配套产业化技术研究,不仅可以丰富园林绿化植物及景观多样性,提高城乡人居生态环境质量,而且还可解决资源数量限制药用价值研究等问题,蕴含着巨大的市场前景和社会效益。同时,结合现代化学与药理学研究手段,加强对景天属植物资源药用价值的挖掘与利用,对丰富我国药用植物资源具有重要的现实意义。

  • 景天属植物种类的多样性及环境的可变性和综合性,导致植物对非生物胁迫的响应也各有不同,单纯依靠部分指标来表示复杂的耐逆境生理过程,并不能有益于揭示植物逆境生理的响应机制,应该加强对其建立综合评价的研究。完善评价指标体系,能有效评价双重或多重逆境胁迫的复合耐性表现,为更合理利用景天属植物资源提供科学依据。

    目前,景天属植物的逆境胁迫研究多集中在生理生化层面。随着现代分子生物学和基因工程技术手段在植物研究领域中的应用,在今后的研究中综合利用生物信息学、生理生化及分子生物学等手段,更有利于揭示景天属植物逆境胁迫下形态解剖、生理及分子层面的响应机制,为后续进行遗传改良奠定理论基础。

Reference (84)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return