[1] |
刘一星, 赵广杰.木质资源材料科学[M].北京:中国林业出版社, 2004:59-61, 107. |
[2] |
JARVIS M.
Chemistry:cellulose stacks up[J]. Nature, 2003, 426(6967): 611-612.
doi: 10.1038/426611a |
[3] |
陈玉, 张怀强, 赵越.
天然结晶纤维素的生物合成及其去晶化途径[J]. 生物化学与生物物理进展, 2016, 43(8): 747-757.
|
CHEN Yu, ZHANG Huaiqiang, ZHAO Yue.
Biosynthesis of natural crystal cellulose and its decrystallization[J]. Prog Biochem Biophys, 2016, 43(8): 747-757.
|
[4] |
安鑫.毛竹纤维细胞壁微纤丝取向与超微构造研究[D].北京: 中国林业科学研究院, 2016. |
AN Xin. Microfibril Orientations and Ultrastructures of Fibers Wall from Moso Bamboo[D]. Beijing: Chinese Academy of Forestry, 2016. |
[5] |
廖声熙, 杨振寅, 崔凯.
翠柏木材管胞特性及结晶度的径向变异分析[J]. 南京林业大学学报(自然科学版), 2013, 37(1): 87-90.
|
LIAO Shengxi, YANG Zhenyin, CUI Kai.
Radical variation of wood tracheid character and crystallinity of precious Calocedrus macrolepis[J]. J Nanjing For Univ Nat Sci Ed, 2013, 37(1): 87-90.
|
[6] |
曹琳, 赵广杰.
毛白杨微纤丝角在株内的变异[J]. 北京林业大学学报, 2009, 31(suppl 1): 67-70.
|
CAO Lin, ZHAO Guangjie.
Variation of microfibril angles within the tree of Populus tomentosa[J]. J Beijing For Univ, 2009, 31(suppl 1): 67-70.
|
[7] |
范文俊, 涂登云, 彭冲.
热处理对毛白杨木材力学性能的影响机理[J]. 东北林业大学学报, 2015, 43(10): 88-91.
doi: 10.3969/j.issn.1000-5382.2015.10.018 |
FAN Wenjun, TU Dengyun, PENG Chong.
Influence of heat treatment on mechanical properties of Populus tomentosa wood[J]. J Northeast For Univ, 2015, 43(10): 88-91.
doi: 10.3969/j.issn.1000-5382.2015.10.018 |
[8] |
邵亚丽, 邢新婷, 余雁.
长白落叶松早材管胞纵向抗拉强度的研究[J]. 安徽农业大学学报, 2012, 39(1): 67-71.
|
SHAO Yali, XING Xinting, YU Yan.
Research on longitudinal tensile strength of Larix olgensi earlywood tracheids[J]. J Anhui Agric Univ, 2012, 39(1): 67-71.
|
[9] |
LOERBROKS C, RINALDI R, THIEL W.
The electronic nature of the 1, 4-β-glycosidic bond and its chemical environment:DFT insights into cellulose chemistry[J]. Chemistry, 2013, 19(48): 16282-16294.
doi: 10.1002/chem.v19.48 |
[10] |
DING Shiyou, ZHAO Shuai, ZENG Yining.
Size, shape, and arrangement of native cellulose fibrils in maize cell walls[J]. Cellulose, 2014, 21(2): 863-871.
doi: 10.1007/s10570-013-0147-5 |
[11] |
郭翰林.纤维素超分子结构及其降解过程的表征分析[D].济南: 山东大学, 2012. |
GUO Hanlin. Characterization of Degradation Process of Cellulose Superstructure[D]. Jinan: Shandong University, 2012. |
[12] |
CIESIELSKI P N, MNTTHEWS J F, TUCKER M P.
3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils[J]. ACS Nano, 2013, 7(9): 8011-8019.
doi: 10.1021/nn4031542 |
[13] |
OKUDA K, TSEKOS L, Jr BROWN R M.
Cellulose microfibril assembly in Erythrocladia subintegra Rosenv.:an ideal system for understanding the relationship between synthesizing complexes (TCs) and microfibril crystallization[J]. Protoplasma, 1994, 180(1/2): 49-58.
|
[14] |
LENEY L.
A technique for measuring fibril angle using polarized light[J]. Wood Fiber, 1981, 13(1): 13-16.
|
[15] |
罗蓓, 杨守禄, 赵广杰.
木材细胞壁纳米纤维分形构造径向和弦向变异规律[J]. 西南林业大学学报, 2011, 31(6): 59-62.
doi: 10.3969/j.issn.2095-1914.2011.06.014 |
LUO Bei, YANG Shoulu, ZHAO Guangjie.
The variability of fractal ultra-structure of nano-fibrils in wood cell wall along radial and tangential direction[J]. J Southwest For Univ, 2011, 31(6): 59-62.
doi: 10.3969/j.issn.2095-1914.2011.06.014 |
[16] |
陈红, 田根林, 吴智慧.
AFM技术观察慈竹纤维和薄壁细胞断面微纤丝聚集体特征[J]. 林业科学, 2016, 52(2): 99-105.
|
CHEN Hong, TIAN Genlin, WU Zhihui.
Cellulose microfibril aggregates in cross-section of bamboo fiber and parenchyma cell wall with atomic force microscopy[J]. Sci Silv Sin, 2016, 52(2): 99-105.
|
[17] |
阮锡根, 尹思慈, 孙成志.
应用X射线衍射(002)衍射弧法测定木材纤维次生壁的微纤丝角[J]. 林业科学, 1982, 18(1): 64-69.
|
RUAN Xigen, YIN Sici, SUN Chengzhi.
The microfibril angle measurement of the wood fiber secondary walls by X-ray diffraction, the methods of the (002) diffraction arc[J]. Sci Silv Sin, 1982, 18(1): 64-69.
|
[18] |
WANG Yurong, LEPPÄNEN K, ANDERSSOM S.
Studies on the nanostructure of the cell wall of bamboo using X-ray scattering[J]. Wood Sci Technol, 2012, 46(1-3): 317-332.
doi: 10.1007/s00226-011-0405-3 |
[19] |
WANG Xiaoqing, KEPLINGER T, GIERLINGER N.
Plant material features responsible for bamboo's excellent mechanical performance:a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels[J]. Ann Bot, 2014, 114(8): 1627-1635.
doi: 10.1093/aob/mcu180 |
[20] |
SUN Lan, SINGH S, JOO M.
Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy[J]. Biotechnol Bioeng, 2016, 113(1): 82-91.
doi: 10.1002/bit.25690 |
[21] |
杨海艳, 郑志锋, 王堃.
原子力显微镜在纤维素研究中的应用[J]. 林产化学与工业, 2017, 37(1): 14-20.
doi: 10.3969/j.issn.0253-2417.2017.01.002 |
YANG Haiyan, ZHENG Zhifeng, WANG Kun.
Application of atomic force microscope in cellulosic investigation[J]. Chem Ind For Prod, 2017, 37(1): 14-20.
doi: 10.3969/j.issn.0253-2417.2017.01.002 |
[22] |
李新宇, 张明辉.
利用X射线衍射法探究木材含水率与结晶度的关系[J]. 东北林业大学学报, 2014, 42(2): 96-99.
doi: 10.3969/j.issn.1000-5382.2014.02.023 |
LI Xinyu, ZHANG Minghui.
Relationship of wood moisture content and the degree of crystallinity by X-ray diffraction[J]. J Northeast For Univ, 2014, 42(2): 96-99.
doi: 10.3969/j.issn.1000-5382.2014.02.023 |
[23] |
马晓娟, 黄六莲, 陈礼辉.
纤维素结晶度的测定方法[J]. 造纸科学与技术, 2012, 31(2): 75-78.
|
MA Xiaojuan, HUANG Liulian, CHEN Lihui.
Determination methods for crystallinity of cellulose[J]. Paper Sci Technol, 2012, 31(2): 75-78.
|
[24] |
马建峰, 杨淑敏, 田根林.
拉曼光谱在天然纤维素结构研究中的应用进展[J]. 光谱学与光谱分析, 2016, 36(6): 1734-1739.
|
MA Jianfeng, YANG Shumin, TIAN Genlin.
Study on the application of Raman spectroscopy to the research on natural cellulose structure[J]. Spectrosc Spectral Anal, 2016, 36(6): 1734-1739.
|
[25] |
BARNETT J R, BONHAM V A.
Cellulose microfibril angle in the cell wall of wood fibers[J]. Biol Rev, 1999, 79(2): 461-472.
|
[26] |
SVEDSTRÖM K, LUCENIUS J, van den BULCKE J.
Hierarchical structure of juvenile hybrid aspen xylem revealed using X-ray scattering and microtomography[J]. Trees, 2012, 26(6): 1793-1804.
doi: 10.1007/s00468-012-0748-x |
[27] |
BRENNAN M, McLEAN J P, ALTANER C M.
Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiate[J]. Cellulose, 2012, 19(4): 1385-1404.
doi: 10.1007/s10570-012-9697-1 |
[28] |
邓波, 杨万霞, 方升佐.
青钱柳幼龄期生长与木材性状表现及其性状相关分析[J]. 南京林业大学学报(自然科学版), 2014, 38(5): 113-117.
|
DENG Bo, YANG Wanxia, FANG Shengzuo.
Growth and wood properties of juvenile Cyclocarya paliurus, and their correlation analysis[J]. J Nanjing For Univ Nat Sci Ed, 2014, 38(5): 113-117.
|
[29] |
刘一星, 吴玉章, 李坚.
火炬松木材材性变异的规律[J]. 东北林业大学学报, 1999, 27(5): 29-34.
doi: 10.3969/j.issn.1000-5382.1999.05.007 |
LIU Yixing, WU Yuzhang, LI Jian.
The variation pattern of wood properties of loblolly pine (Pinus taeda L.)[J]. J Northeast For Univ, 1999, 27(5): 29-34.
doi: 10.3969/j.issn.1000-5382.1999.05.007 |
[30] |
DONALDSON L A.
Variation in microfibril angle among three genetic group of Pinus radiata trees[J]. New Zealand J For Sci, 1993, 23(1): 90-99.
|
[31] |
徐晶, 黄大庄, 温静.
伐根嫁接毛白杨木材的解剖特性[J]. 东北林业大学学报, 2014, 42(8): 82-85, 89.
doi: 10.3969/j.issn.1000-5382.2014.08.018 |
XU Jing, HUANG Dazhuang, WEN Jing.
Anatomical properties of stump grafting Populus tomentosa[J]. J Northeast For Univ, 2014, 42(8): 82-85, 89.
doi: 10.3969/j.issn.1000-5382.2014.08.018 |
[32] |
DING Tao, GU Lianbai, LI Tao.
Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber[J]. Eur J Wood Wood Prod, 2011, 69(1): 121-126.
doi: 10.1007/s00107-009-0406-1 |
[33] |
崔凯, 孙庆丰, 廖声熙.
翠柏木材解剖性质和结晶度的径向变异及化学性质[J]. 东北林业大学学报, 2012, 40(4): 49-54.
doi: 10.3969/j.issn.1000-5382.2012.04.012 |
CUI Kai, SUN Qingfeng, LIAO Shengxi.
Wood anatomical properties of Calocedrus macrolepis and radial variation and chemical property of crystallinity[J]. J Northeast For Univ, 2012, 40(4): 49-54.
doi: 10.3969/j.issn.1000-5382.2012.04.012 |
[34] |
李坚.木材波谱学[M].北京:科学出版社, 2003. |
[35] |
VIRTANEN T, SVEDSTRÖM K, ANDERSSON S.
A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing[J]. Cellulose, 2012, 19(1): 219-235.
doi: 10.1007/s10570-011-9636-6 |
[36] |
罗真付, 张雪峰, 潘彪.
人工林湿地松微纤丝角和结晶度的变异规律[J]. 安徽农业大学学报, 2012, 39(5): 774-776.
|
LUO Zhenfu, ZHANG Xuefeng, PAN Biao.
Analysis of wood microfibril angle and crystallinity of Pinus elliottii plantation[J]. J Anhui Agric Univ, 2012, 39(5): 774-776.
|
[37] |
米沛, 徐斌, 潘新建.
薄壳山核桃人工林木材的化学性质[J]. 东北林业大学学报, 2014, 42(6): 79-82.
doi: 10.3969/j.issn.1000-5382.2014.06.018 |
MI Pei, XU Bin, PAN Xinjian.
Chemical properties of plantation wood in Carya illinoensis[J]. J Northeast For Univ, 2014, 42(6): 79-82.
doi: 10.3969/j.issn.1000-5382.2014.06.018 |
[38] |
石江涛, 丁笑红, 张勰.
天然次生林杉木枝材与干材材性比较[J]. 林业工程学报, 2017, 2(1): 20-24.
|
SHI Jiangtao, DING Xiaohong, ZHANG Xie.
Comparison of characteristics of branch and truck of Cunninghamia lanceolata from natural secondary forest[J]. J For Eng, 2017, 2(1): 20-24.
|
[39] |
石江涛, 李坚.
东北常见树种木材形成早期组织波谱特征差异分析[J]. 林业科学, 2016, 52(6): 115-121.
|
SHI Jiangtao, LI Jian.
Comparative analysis of spectroscopy features of early-stage wood forming tissue in common tree species in northeast, China[J]. Sci Silv Sin, 2016, 52(6): 115-121.
|
[40] |
王秋玉, 曲丽娜, 贾洪柏.
白桦天然种群木材纤维性状、微纤丝角和基本密度的变异[J]. 东北林业大学学报, 2007, 35(2): 1-3, 6.
doi: 10.3969/j.issn.1000-5382.2007.02.001 |
WANG Qiuyu, QU Lina, JIA Hongbai.
Variation of wood fiber characteristics, microfibril angle and basic density of Betula platyphylla in natural populations[J]. J Northeast For Univ, 2007, 35(2): 1-3, 6.
doi: 10.3969/j.issn.1000-5382.2007.02.001 |
[41] |
王丰, 潘彪, 蒋亚萍.
浙江桂幼龄材的生长特性及主要材性[J]. 林业科技开发, 2014, 28(5): 75-79.
|
WANG Feng, PAN Biao, JIANG Yaping.
Growth characteristics and wood properties of juvenile wood of Cinnamomum chekiangense[J]. China For Sci Technol, 2014, 28(5): 75-79.
|
[42] |
郑学晶, 霍书浩.天然高分子材料[M].北京:化学工业出版社, 2010. |
[43] |
ANDERSSON S, WANG Yurong, PÖNNI R.
Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.)[J]. J Integrative Plant Biol, 2015, 57(4): 388-395.
doi: 10.1111/jipb.12349 |
[44] |
PIRKKALAINEN K, PEURA M, LEPPÄNEN K.
Simultaneous X-ray diffraction and X-ray fluorescence microanalysis on secondary xylem of Norway spruce[J]. Wood Sci Technol, 2012, 46(6): 1113-1125.
doi: 10.1007/s00226-012-0474-y |
[45] |
ANDERSSON S, WIKBERG H, PESONEN E.
Studies of crystallinity of Scots pine and Norway spruce cellulose[J]. Trees, 2004, 18(3): 346-353.
doi: 10.1007/s00468-003-0312-9 |
[46] |
尹江苹, 郭娟, 赵广杰.
湿热-压缩处理木材的纤维素晶体结构变化[J]. 林产工业, 2017, 44(7): 10-14.
|
YIN Jiangping, GUO Juan, ZHAO Guangjie.
Cellulose crystalline structure changes of the wood treated by compression combined with steam[J]. China For Prod Ind, 2017, 44(7): 10-14.
|
[47] |
HIRABAWA Y, YAMASHITA K, NAKADA R.
The effects of S2 microfibril angles of latewood tracheids and densities on modulus of elasticity variations of sugi tree (Cryptomeria japonica) logs[J]. Mokuzai Gakkaishi, 1997, 43(9): 717-724.
|
[48] |
胡进波, 刘元, 苌姗姗.
尾巨桉S2层微纤丝角及组织比量的径向变异[J]. 中南林业科技大学学报, 2008, 28(1): 30-34.
|
HU Jinbo, LIU Yuan, CHANG Shanshan.
Radial variation of the micro-fibrillar angle and tissue proportion of Eucalyptus urophylla×Eucalyptus grandis families[J]. J Cent South Univ For Technol, 2008, 28(1): 30-34.
|
[49] |
陈存, 丁昌俊, 苏晓华.
欧美杨纤维含量构成因素的相关和通径分析[J]. 林业科学, 2016, 52(11): 124-133.
doi: 10.11707/j.1001-7488.20161115 |
CHEN Cun, DING Changjun, SU Xiaohua.
Correlation and path analysis of the components of fiber content for Populus×euramericana[J]. Sci Silv Sin, 2016, 52(11): 124-133.
doi: 10.11707/j.1001-7488.20161115 |