Volume 36 Issue 4
Jul.  2019
Turn off MathJax
Article Contents

ZHU Rongwei, GE Zhiwei, RUAN Honghua, XU Jin, PENG Sili. Fractal dimension of soil organic carbon and microbial biomass carbon with nitrogen additions[J]. Journal of Zhejiang A&F University, 2019, 36(4): 656-663. doi: 10.11833/j.issn.2095-0756.2019.04.004
Citation: ZHU Rongwei, GE Zhiwei, RUAN Honghua, XU Jin, PENG Sili. Fractal dimension of soil organic carbon and microbial biomass carbon with nitrogen additions[J]. Journal of Zhejiang A&F University, 2019, 36(4): 656-663. doi: 10.11833/j.issn.2095-0756.2019.04.004

Fractal dimension of soil organic carbon and microbial biomass carbon with nitrogen additions

doi: 10.11833/j.issn.2095-0756.2019.04.004
  • Received Date: 2018-08-28
  • Rev Recd Date: 2018-12-04
  • Publish Date: 2019-08-20
  • The temporal dynamic characteristics of soil total organic carbon (TOC) content, soil microbial biomass carbon (SMBC) content, and the fractal characteristics of soil TOC content with SMBC content of poplar (Populus deltoides 'I-35') plantations in coastal areas of northern Jiangsu Province were studied. Five nitrogen (N) levels were set in the sampled area, namely N0(N 0 g·m-2·a-1, control), N1(N 5 g·m-2·a-1), N2(N 10 g·m-2·a-1), N3(N 15 g·m-2·a-1), and N4(N 30 g·m-2·a-1). Soil samples for laboratory analyses were collected in April, June, August, October, and December 2015, and fractal theory was used to analyze the data. Results showed that the soil TOC mass fraction for the different concentrations of N added treatments were highly significant (P < 0.01), and the fractal dimension D of the soil TOC mass fraction with time ranged from 1.805 to 1.949. The fractal dimension D was ranked as N3 > N2 > N4 > N1 > N0. In June and October, different concentrations of N added treatments had no significant effects on the SMBC mass fraction (P > 0.05). In April, August, and December, the effects of the SMBC mass fraction for different concentrations of N added treatments were highly significant (P < 0.01), and the fractal dimension D of the soil TOC mass fraction with time ranged from 1.728 to 1.963. The fractal dimension D was ranked as N2 > N3 > N1 > N4 > N0. The fractal dimension D of the soil TOC mass fraction with the SMBC mass fraction for different concentrations of N added ranged from 2.207 to 2.342, and the fractal dimension D was ranked as N3 > N2 > N4 > N1 > N0. The fractal dimension D of the soil TOC mass fraction with the SMBC mass fraction for different months ranged from 1.650 to 6.149, and the fractal dimension D was ranked as June > October > April > August > December. N2 and N3 were obtained. Under the medium concentration of nitrogen treatment, the time dynamics of soil TOC and SMBC and soil TOC varies with SMBC were more random and complex than other concentrations; In June and October, the soil TOC varies with SMBC was more flexible and complex.
  • [1] PENG Sili, ZHANG Xin, WU Renjie, CAI Yanjiang, XING Wei, GE Zhiwei, MAO Lingfeng.  Seasonal dynamic responses of soil arbuscular mycorrhizal fungal community to nitrogen additions in a poplar plantation . Journal of Zhejiang A&F University, 2023, 40(4): 792-800. doi: 10.11833/j.issn.2095-0756.20220640
    [2] HAN Mixue, YU Hongyan, LIU Panyang, RAO De’an, TENG Yue, ZOU Luyi.  Effects of the mole fraction of elevated atmospheric CO2 on soil organic carbon stability . Journal of Zhejiang A&F University, 2021, 38(5): 963-972. doi: 10.11833/j.issn.2095-0756.20200502
    [3] ZHAO Jing, HAO Mengjie, WANG Qingyu, LIU Meiying.  Distribution characteristics of soil organic carbon storage in photovoltaic power station under different vegetation restoration modes . Journal of Zhejiang A&F University, 2021, 38(5): 1033-1039. doi: 10.11833/j.issn.2095-0756.20210500
    [4] ZHU Danmiao, CHEN Junhui, JIANG Peikun.  Research progress on soil organic carbon and microbial characteristics of Cunninghamia lanceolata plantation and their influencing factors . Journal of Zhejiang A&F University, 2021, 38(5): 973-984. doi: 10.11833/j.issn.2095-0756.20200598
    [5] FANG Wei, YU Xiao, WANG Jing, XU Qiufang, LIANG Chenfei, QIN Hua, CHEN Junhui.  Effects of applying limestone powder and microbial fertilizer on soil chemical properties and microbial community in the diseased Carya cathayensis woodland . Journal of Zhejiang A&F University, 2020, 37(2): 273-283. doi: 10.11833/j.issn.2095-0756.2020.02.011
    [6] LI Zhichao, ZHANG Yongqiang, HOU Lingyu, SONG Liguo, SUN Qiwu.  Response of soil microorganism to stand density in Cunninghamia lanceolata plantation . Journal of Zhejiang A&F University, 2020, 37(1): 76-84. doi: 10.11833/j.issn.2095-0756.2020.01.010
    [7] HE Shan, LIU Juan, JIANG Peikun, ZHOU Guomo, WANG Huilai, LI Yongfu, WU Jiasen.  Effects of forest management on soil organic carbon pool: a review . Journal of Zhejiang A&F University, 2019, 36(4): 818-827. doi: 10.11833/j.issn.2095-0756.2019.04.023
    [8] LIU Heling, RAO Liangyi, TU Ersun, TANG Lingpei.  Effect of water erosion and soil conservation measures on soil organic carbon content in rocky mountainous areas of northern China . Journal of Zhejiang A&F University, 2019, 36(4): 646-655. doi: 10.11833/j.issn.2095-0756.2019.04.003
    [9] LI Chenchen, ZHOU Zaizhi, LIANG Kunnan, HUANG Guihua, YANG Guang.  Physical and chemical properties of ecological forest soils using different agroforestry patterns of Chinese fir with medicinal plants . Journal of Zhejiang A&F University, 2018, 35(1): 51-59. doi: 10.11833/j.issn.2095-0756.2018.01.007
    [10] ZHU Wankuan, CHEN Shaoxiong, Roger ARNOLD, WANG Zhichao, XU Yuxing, DU Apeng.  Temporal and spatial dynamics of soil respiration and influencing factors in Eucalyptus plantations . Journal of Zhejiang A&F University, 2018, 35(3): 412-421. doi: 10.11833/j.issn.2095-0756.2018.03.004
    [11] DAI Aona, LIU Xiaoxiao, WANG Bing, DAI Wei.  Annual spatial and temporal variations of soil organic carbon and its components in Castanopsis fargesii forest . Journal of Zhejiang A&F University, 2018, 35(3): 405-411. doi: 10.11833/j.issn.2095-0756.2018.03.003
    [12] GOU Liqiong, XIAO Jiujin, HUANG Jinping, LI Ying, WEI Yang, PENG Caiyun, LUO Manli.  Soil fauna community after removal of litter and herb layers in an artificial Phoebe zhennan plantation . Journal of Zhejiang A&F University, 2017, 34(5): 895-906. doi: 10.11833/j.issn.2095-0756.2017.05.017
    [13] ZHU Renhuan, LI Wei, ZHENG Zicheng, LI Tingxuan, HONG Yue, HE Qiujia, TIAN Zongqu.  Ecological stoichiometry of soil C, N, and P for returning farmland to tea plantations . Journal of Zhejiang A&F University, 2016, 33(4): 612-619. doi: 10.11833/j.issn.2095-0756.2016.04.009
    [14] GUO Shuai, XU Qiufang, SHEN Zhenming, LI Songhao, QIN Hua, LI Yongchun.  Response of soil ammonia-oxidizing organisms on fertilization and mulch in Phyllostachys violascens stands . Journal of Zhejiang A&F University, 2014, 31(3): 343-351. doi: 10.11833/j.issn.2095-0756.2014.03.003
    [15] LI Bocheng, WU Qifeng, ZHANG Jinlin, QIAN Ma, QIN Hua, XU Qiufang.  Fungal and bacterial contribution to soil N2O production in Phyllostachys edulis and broadleaf forest ecosystems . Journal of Zhejiang A&F University, 2014, 31(6): 919-925. doi: 10.11833/j.issn.2095-0756.2014.06.014
    [16] XU Gui-lin, FANG Xi, TIAN Da-lun, TANG Zhi-juan, ZHANG Zhu-san.  Soil organic carbon:distribution and storage with five regeneration patterns in Cunninghamia lanceolata forests . Journal of Zhejiang A&F University, 2009, 26(3): 333-340.
    [17] GAO Zhi-qin, FU Mao-yi.  Characteristics of seasonal changes in soil carbon and nitrogen nutrients of different Phyllostachys pubescens stands . Journal of Zhejiang A&F University, 2006, 23(3): 248-254.
    [18] LIU Shou-zan, GUO Sheng-li, BAI Yan.  Changes in soil organic carbon under different land use types in slope land in gully region of Loess Plateau . Journal of Zhejiang A&F University, 2005, 22(5): 490-494.
    [19] LI Zheng-cai, FUMao-yi, YANG Xiao-sheng.  Review on effects of management disturbance on forest soil organic carbon . Journal of Zhejiang A&F University, 2005, 22(4): 469-474.
    [20] FANGXi, TIAN Da-lun, XIANG Wen-hua, LEI Pi-feng.  Vertical distribution of soil organic carbon in Cunninghamia lanceolata plantation . Journal of Zhejiang A&F University, 2004, 21(4): 418-423.
  • [1]
    BIRDSEY R A, PLANTINGA A J, HEATH L S. Past and prospective carbon storage in United States forests[J]. For Ecol Manage, 1993, 58(1/2):33-40.
    [2]
    SUNDQUIST E T. The global carbon dioxide budget[J]. Science, 1993, 259(5097):934-941.
    [3]
    SPARLING G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Austr J Soil Res, 1992, 30(2):195-207.
    [4]
    XU Zhenfeng, YIN Huajun, ZHAO Chunzhang, et al. A review of responses of litter decomposition in terrestrial ecosystems to global warming[J]. Chin J Plant Ecol, 2009, 33(6):1208-1219.
    [5]
    DOOLEY S R, TRESEDER K K. The effect of fire on microbial biomass:a meta-analysis of field studies[J]. Biogeochemistry, 2012, 109(1/3):49-61.
    [6]
    BÁRCENAS-MORENO G, ROUSK J, ERLAND BÅÅTH E. Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments[J]. Soil Biol Biochem, 2011, 43(5):1023-1033.
    [7]
    YUAN Yinghong, FAN Houbao, WANG Qiang, et al. Available nutrients with increased N deposition in soils of Cunninghamia lanceolata plantations[J]. J Zhejiang For Coll, 2007, 24(4):437-444.
    [8]
    WANG Hui, MO Jiangming, LU Xiankai, et al. Effects of elevated nitrogen deposition on soil microbial biomass carbon in the main subtropical forests of southern China[J]. Acta Ecol Sin, 2008, 28(2):470-478.
    [9]
    WU Jinshui, LIU Shoulong, TONG Chengli. Principles in modelling the turnover of soil organic matter using computer simulation[J]. Acta Pedol Sin, 2003, 40(5):768-774.
    [10]
    ZHU Zhijian, JIANG Peikun, XU Qiufang. Study on the active organic carbon in soil under different types of vegetation[J]. For Res, 2006, 19(4):523-526.
    [11]
    LIU Wenna, WU Wenliang, WANG Xiubin, et al. Effects of soil type and land use pattern on microbial biomass carbon[J]. Plant Nutr Fert Sci, 2006, 12(3):406-411.
    [12]
    PAUL J W, BEAUCHAMP E G. Soil microbial biomass C, N mineralization, and N uptake by corn in dairy cattle slurry-and urea-amended soils[J]. Canadian J Soil Sci, 1996, 76(4):469-472.
    [13]
    BURROUGH P A. Multiscale sources of spatial variation in soil (Ⅱ) a non-Brownian fractal model and its application in soil survey[J]. Eur J Soil Sci, 2010, 34(3):577-597.
    [14]
    ARMSTRONG A C. On the fractal dimensions of some transient soil properties[J]. Eur J Soil Sci, 2010, 37(4):641-652.
    [15]
    LIU Yang, ZHANG Jian, YAN Bangguo, et al. Seasonal dynamics in soil microbial biomass carbon and nitrogen and microbial quantity in a forest-alpine tundra eco-tone, Eastern Qinghai-Tibetan Plateau, China[J]. Chin J Plant Ecol, 2012, 36(5):382-392.
    [16]
    FENN M E, JOVAN S, YUAN F, et al. Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests[J]. Environ Poll, 2008, 155(3):492-511.
    [17]
    LU Xiankai, MO Jianming, GUNDERSERN P, et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China[J]. Pedosphere, 2009, 19(2):189-198.
    [18]
    BU Danrong. Effects of Biogas Slurry and Biochar on Soil Labile Organic Carbon and Nitrogen in a Poplar Plantation in a Coastal Area of Northern Jiangsu, China[D]. Nangjing: Nanjing Forestry Unviersity, 2015
    [19]
    FREY S D, OLLINGER S, NADELHOFFER K, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests[J]. Biogeochemistry, 2014, 121(2):305-316.
    [20]
    ZHAO Ruifen, YU Zhiyong, CHENG Bin, et al. Effects of pretreatment on content of soil NO3-N, NH4-N[J]. Chin Agric Sci Bull, 2009, 25(10):174-177.
    [21]
    HUANG Yufang, YE Youliang, YANG Suqin. Feasibility of NO3--N determination by dual wavelength spectrophotometric method[J]. Chin Agric Sci Bull, 2009, 25(2):43-45.
    [22]
    KENKEL N C, WALKER D J. Fractals and ecology[J]. Abst Bot, 1993, 17(1/2):53-70.
    [23]
    LU Zhixiong, PAN Junzheng. Fractal dimensions of soil strengths[J]. Trans Chin Soc Agric Mach, 1993, 24(3):1-6.
    [24]
    PENG Sai. Effects of Nitrogen Addition on Litter Decomposition in Poplar Plantations in a Coastal Area, China[D]. Nanjing: Nanjing Forestry Unviersity, 2016.
    [25]
    XIAO Hanran. Effects of Nitrogen Additions and Litter Multiplications on Soil Fauna Community Structure in the Poplar Plantations in a Coastal Area of Eastern China[D]. Nanjing: Nanjing Forestry Unviersity, 2017.
    [26]
    BURROUGH P A. Multiscale sources of spatial variation in soil (Ⅰ) the application of fractal concepts to nested levels of soil variation[J]. Eur J Soil Sci, 1983, 34(3):577-597.
    [27]
    ZHANG Fasheng, LIU Zuoxin. Fractal theory and its application in the analysis of soil spatial variability:a review[J]. Chin J Appl Ecol, 2011, 22(5):1351-1358.
    [28]
    JENNY H. Factors of Soil Formation:A System of Quantitative Pedology[M]. New York:Dover Publication, Inc, 1994.
    [29]
    DON A, SCHUMACHER J, FREIBAUER A. Impact of tropical land-use change on soil organic carbon stocks-a meta-analysis[J]. Glob Change Biol, 2010, 17(4):1658-1670.
    [30]
    POEPLAU C, DON A, VESTERDAL L, et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach[J]. Glob Change Biol, 2011, 17(7):2415-2427.
    [31]
    MEN Zhonghua. Physiological Characteristics and Influence Factor of Nitrate-N Use of Winter Wheat[D]. Yangling: Northwest A & F University, 2004.
    [32]
    MA Huijun, ZHANG Yakun, XU Wenhuan, et al. Effects of nitrogen deposition on soil microbial community C-source metabolism of poplar plantation[J]. J Nanjing For UnivNat Sci Ed, 2017, 41(5):1-6.
    [33]
    WANG Xiaorong, PAN Lei, TANG Wanpeng, et al. Short-term effects of nitrogen addition on seedling growth and biomass allocation with different tree species of Quercus in the mid-subtropics of China[J]. J Northeast For Univ, 2014, 42(6):24-28.
    [34]
    ZHOU Yigui, HAO Kaijie, LI Xianwei, et al. Effects of forest gap on seasonal dynamics of soil organic carbon and microbial biomass carbon in Picea asperata forest in Miyaluo of Western Sichuan, Southwest China[J]. Chin J Appl Ecol, 2014, 25(9):2469-2476.
    [35]
    KALBITZ K, SCHWESIG D, SCHMERWITZ J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biol Biochem, 2003, 35(8):1129-1142.
    [36]
    ZHOU Li. Dynamic Changes in Soil Active Organic Carbon and Soil Respiration and Influence Factors in Karst Environment[D]. Nanning: Guangxi Normal University, 2008.
    [37]
    LI Yi, LI Min, SI Bingcheng, et al. Relationship between volume-based and number-based fractal dimensions of soil particle size distributions[J]. Transe Chin Soc Agric Eng, 2012, 28(23):82-91.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(4)

Article views(3111) PDF downloads(75) Cited by()

Related
Proportional views

Fractal dimension of soil organic carbon and microbial biomass carbon with nitrogen additions

doi: 10.11833/j.issn.2095-0756.2019.04.004

Abstract: The temporal dynamic characteristics of soil total organic carbon (TOC) content, soil microbial biomass carbon (SMBC) content, and the fractal characteristics of soil TOC content with SMBC content of poplar (Populus deltoides 'I-35') plantations in coastal areas of northern Jiangsu Province were studied. Five nitrogen (N) levels were set in the sampled area, namely N0(N 0 g·m-2·a-1, control), N1(N 5 g·m-2·a-1), N2(N 10 g·m-2·a-1), N3(N 15 g·m-2·a-1), and N4(N 30 g·m-2·a-1). Soil samples for laboratory analyses were collected in April, June, August, October, and December 2015, and fractal theory was used to analyze the data. Results showed that the soil TOC mass fraction for the different concentrations of N added treatments were highly significant (P < 0.01), and the fractal dimension D of the soil TOC mass fraction with time ranged from 1.805 to 1.949. The fractal dimension D was ranked as N3 > N2 > N4 > N1 > N0. In June and October, different concentrations of N added treatments had no significant effects on the SMBC mass fraction (P > 0.05). In April, August, and December, the effects of the SMBC mass fraction for different concentrations of N added treatments were highly significant (P < 0.01), and the fractal dimension D of the soil TOC mass fraction with time ranged from 1.728 to 1.963. The fractal dimension D was ranked as N2 > N3 > N1 > N4 > N0. The fractal dimension D of the soil TOC mass fraction with the SMBC mass fraction for different concentrations of N added ranged from 2.207 to 2.342, and the fractal dimension D was ranked as N3 > N2 > N4 > N1 > N0. The fractal dimension D of the soil TOC mass fraction with the SMBC mass fraction for different months ranged from 1.650 to 6.149, and the fractal dimension D was ranked as June > October > April > August > December. N2 and N3 were obtained. Under the medium concentration of nitrogen treatment, the time dynamics of soil TOC and SMBC and soil TOC varies with SMBC were more random and complex than other concentrations; In June and October, the soil TOC varies with SMBC was more flexible and complex.

ZHU Rongwei, GE Zhiwei, RUAN Honghua, XU Jin, PENG Sili. Fractal dimension of soil organic carbon and microbial biomass carbon with nitrogen additions[J]. Journal of Zhejiang A&F University, 2019, 36(4): 656-663. doi: 10.11833/j.issn.2095-0756.2019.04.004
Citation: ZHU Rongwei, GE Zhiwei, RUAN Honghua, XU Jin, PENG Sili. Fractal dimension of soil organic carbon and microbial biomass carbon with nitrogen additions[J]. Journal of Zhejiang A&F University, 2019, 36(4): 656-663. doi: 10.11833/j.issn.2095-0756.2019.04.004
  • 中国已成为全球氮沉降最严重的区域之一。长期的氮沉降可能导致森林生态系统功能受到严重的影响。森林土壤碳储量约占全球土壤碳储量的70%,其细微的变化就可能会造成大气中二氧化碳浓度发生巨大的改变[1-2]。土壤微生物在能量传递与转换、养分循环以及植被生长发育过程中扮演着重要的角色[3-5]。土壤微生物易受环境因子的影响,对土壤pH值、土壤温度和土地利用类型等因素十分敏感[6]。外源氮输入对土壤微生物的影响由于施氮种类、生态系统环境差异以及不同种类微生物对外源氮的施加耐受程度差异等因素而不尽相同[7-8]。土壤微生物的活性与土壤总有机碳(total organic carbon,TOC)的关系非常密切和复杂。在同种类型的土壤上,土壤微生物生物量碳(soil microbial biomass carbon,SMBC)质量分数的动态变化和土壤TOC分解进行的程度趋势十分相似[9];大部分类型森林植被下两者质量分数呈极显著相关[10]。一些学者[11]认为土地利用类型、取样地点、人为活动影响以及土壤基本理化性质等因素存在差异,使两者之间的内在联系很复杂。我们认为不同量外源氮输入下土壤TOC和SMBC并不是简单的线性或模型相关,而是一种复杂的自相似的相关关系。因此,在研究两者之间的规律时引入分形理论[12],它的数学基础是分形几何学。BURROUGH[13]首次将分形理论运用于土壤科学的研究中,结果显示与单纯的依靠数学公式和函数分析土壤属性的时空变化特征相比,运用分形维数更加贴切和准确。近年来,国内外很多学者也将分形理论运用于一系列土壤属性时空变化规律的研究中[14-15]。本研究基于江苏省盐城东台林场氮输入实验样地,运用分形理论描述了不同量外源氮输入对SMBC质量分数和土壤TOC质量分数随时间变化的动态特征以及这2个指标的复杂相关关系,对预测土壤TOC的早期变化,准确反映不同经营方式下土壤碳库的生产潜力有重大意义。

  • 研究区设在江苏省盐城市境内的东台林场,其地理位置为32°48′40″N,120°49′31″E。东台林场地处江苏省中东部黄海之滨,创建于1965年,属于暖温带和亚热带的过渡区,四季分明,常年平均气温为14.6 ℃,年均无霜期为225.0 d,年均降水量为1 051.0 mm,年均日照时数为2 169.6 h。土壤类型为脱盐草甸土,质地为砂质壤土,pH值偏碱性。试验样地于2012年2月开始设立,通过人工外源氮输入模拟未来氮沉降趋势。根据经营管理措施和立地条件基本相同的原则,在林场内选择11年生中林龄杨树Populus deltoides ‘I-35’人工林分。①样地面积:大小为20 m × 90 m,3个重复。②样地内样方设置:各个重复样地包括5块10 m × 20 m样方(随机区组实验方法排列),样方之间缓冲带宽为10 m,总面积为20 m × 90 m。③实验处理:样方施氮量梯度处理为N0(施氮0 g·m-2·a-1,对照),N1(施氮5 g·m-2·a-1),N2(施氮10 g·m-2·a-1),N3(施氮15 g·m-2·a-1),N4(施氮30 g·m-2·a-1),在每年的生长季节5-10月进行施氮处理,1次·月-1,共施6次·a-1[16-17]

  • 选用2015年期间的数据。在实验样地内,于4,6,8,10,12月在各个施氮样方内随机选取5个采样点,用土钻取0~10 cm层土壤。土壤样品带回实验室后,将同一个施氮样方内的5袋土壤样品充分混合成1袋,共计75袋。将新鲜土样分为2份,一份去杂后,过2 mm的钢筛后进行SMBC的测定;另一份自然风干、去杂、过2 mm筛后进行土壤总有机碳(TOC)以及pH值等其他指标的测定。土壤TOC采用岛津TOC-VCPH分析仪测定[18];土壤微生物生物量碳采用氯仿熏蒸-硫酸钾浸提法测定[19];土壤pH值采用m(土):m(水)=1.0:2.5电位法测定[20];土壤硝态氮(NO3--N)采用双波长紫外分光光度法测定[21]

    利用Origin 8.5,SPSS 19.0和Excel 2016等进行数据分析和图表处理。采用重复测量方差分析和单因素方差分析不同施氮水平土壤TOC和SMBC的差异显著性,并对不同月份、不同量氮输入下的土壤TOC质量分数、SMBC质量分数做多重比较(显著性水平为0.05)。

  • HAUSDORFF在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是整数也可以是分数,称为豪斯道夫维数。设一个整体S划分为N个大小和形态完全相同的小图形,每一个小图形的线度是原图形的r倍, 则豪斯道夫维数D=lim[logNr)/log(1/r)]。计算的基本原理为分形集都遵循一定的标度律,即测度随测量尺度按照一种幂指数规律而变化,即在双对数坐标中作图,并运用最小二乘法拟合一条直线,其斜率k与分形维数D之间有如下关系:D=fk)。采用不同的测度,对应的函数D=fk)也不相同,如利用变异函数法(semivariogram,SV)和根据功率谱密度法计算分维(power spectrum density,PSD)[22]等。本研究采用PSD法分析土壤TOC和SMBC随月份变化的分形关系以及土壤TOC与SMBC的分形关系。分形PSD曲线具有下列表达幂函数关系:

    式(1)中:f是频率,在本研究中代表月份;Sf)是PSD,在本研究中代表土壤TOC,SMBC;w是PSD曲线的线性回归所得回归直线的斜率。斜率w与分形维数D的关系为:

    式(2)中:D定量表征了土壤TOC和SMBC随月份变化的复杂程度以及土壤TOC质量分数随SMBC质量分数变化的复杂程度[23]

  • 氮输入对土壤TOC质量分数影响显著(P<0.05),氮输入在不同月份对土壤TOC质量分数的影响不同(图 1)。经多因素方差分析,在4,6,8,10,12月氮添加对土壤TOC质量分数影响极显著(P<0.01)。氮输入处理下土壤TOC质量分数在生长季6-8月显著降低,在非生长季10-12月、12-4月显著增加。进一步对不同量氮输入水平下土壤TOC质量分数做多重比较,发现不同量氮输入水平下土壤TOC质量分数变化差异极显著(P<0.01)。

    Figure 1.  Dynamics of total organic carbon in poplar plantations under nitrogen treatment

    研究区不同施氮水平下土壤TOC质量分数随时间变化的分形维数(D)进行分析(表 1)。由表 1看出:N0施氮水平下土壤TOC质量分数与时间变化呈线性正相关,但未达到显著水平;N1,N3和N4施氮水平下土壤TOC质量分数与时间变化呈线性显著正相关;N2施氮水平下土壤TOC质量分数与时间变化呈线性极显著正相关,这与彭赛[24]和肖晗冉[25]的研究一致。研究区不同施氮水平下土壤TOC质量分数随时间变化的D变化范围是1.805~1.949,土壤TOC质量分数随时间变化的分维均很接近,且接近于2,同布朗粒子运动轨迹的维数2很接近,表明不同施氮水平下土壤TOC质量分数随时间变化具有较大的随机性和复杂性[26]。不同施氮水平下的D从大到小依次为N3,N2,N4,N1,N0,在N3和N2施氮水平下,D数值较大,在这2个施氮水平下土壤TOC质量分数随时间变化的复杂程度更高,说明中等施氮量处理对土壤TOC质量分数随时间变化的影响更显著;N1施氮水平下的D值小于N2,N3和N4施氮水平下的D值,说明N1施氮水平下土壤TOC质量分数随时间变化的复杂程度相对较小,此施氮水平处理对土壤TOC质量分数随时间变化的影响较微弱;N4施氮水平下D值于N2和N3施氮水平下的D值,说明N4施氮水平下土壤TOC质量分数随时间变化的复杂程度相对较小,此施氮处理对土壤TOC质量分数随时间变化的影响较微弱。

    施氮水平拟合方程R2分形维数(PSD法)
    N0y=1.390x+0.263 80.500 41.805
    N1y=1.362x+0.307 70.893 2*1.819
    N2y=1.190x+0.523 50.930 0**1.905
    N3y=1.103x+0.482 90.930 2*1.949
    N4y=1.300x+0.359 60.836 9*1.851
    说明:x表示月份的对数值;y表示土壤TOC质量分数的对数值;*表示P<0.05;**表示P<0.01

    Table 1.  Dynamics fractal characteristics of total organic carbon under nitrogen treatment

  • 氮输入对SMBC质量分数影响极显著(P<0.01),氮输入在不同月份对SMBC质量分数的影响不同(图 2)。经多因素方差分析,6和10月氮输入对SMBC无显著影响(P>0.05)。4,8和12月氮添加对SMBC质量分数影响极显著(P<0.01)。氮添加处理下SMBC质量分数在生长季6-8月显著增加,在8-10月生长季末其质量分数又显著降低,在12月达到峰值。进一步对不同氮添加水平下SMBC质量分数做多重比较,发4个处理下SMBC质量分数变化差异极显著(P<0.01)。

    Figure 2.  Dynamics of soil microbial biomass carbon in poplar plantations under nitrogen treatment

    对研究区不同氮水平下SMBC质量分数随时间变化的D进行分析(表 2)。由表 2看出:N0,N1,N3,N4施氮水平下SMBC质量分数与时间变化均呈线性正相关,且达到显著水平,不同施氮水平之间的显著性水平差异不大。研究区不同施氮水平下SMBC质量分数随时间变化的D变化范围是1.728~1.963,且数值接近于2,说明SMBC质量分数随时间变化具有较大随机性和复杂性[27]。不同施氮水平下的D从大到小依次为N2,N3,N1,N4,N0,N2和N3施氮水平下的D的值较大,在这2个施氮水平下SMBC质量分数随时间变化的复杂程度更高,说明中等施氮水平处理对SMBC质量分数随时间变化的影响更显著;N4施氮水平下SMBC质量分数随时间变化的D值小于N2和N3施氮水平下的D值,说明此施氮处理对SMBC质量分数随时间变化的影响较微弱;在N1施氮水平下SMBC质量分数随时间变化的D值小于N2,N3和N4施氮水平下的D值,说明此施氮水平下SMBC质量分数随时间变化的复杂程度较小,对SMBC质量分数随时间变化的影响较微弱。

    施氮水平拟合方程R2分形维数(PSD法)
    N0y=1.544x+1.489 00.484 7*1.728
    N1y=1.368x+1.703 00.389 1*1.816
    N2y=1.075x+1.967 00.306 4*1.963
    N3y=1.131x+1.926 00.930 2*1.935
    N4y=1.380x+1.660 00.431 0*1.810
    说明:x表示月份的对数值;y表示SMBC质量分数的对数值;*表示P<0.05

    Table 2.  Dynamics fractal characteristics of soil microbial biomass carbon under nitrogen treatment

  • 表 3可见:在时间的动态变化作用下,研究区不同施氮水平下土壤TOC质量分数随SMBC质量分数变化的D变化范围是2.207~2.342,D值普遍较大,表明不同施氮水平下土壤TOC质量分数随SMBC质量分数变化具有较大的随机性和复杂性[28]。不同施氮水平下的D从大到小依次为N3,N2,N4,N1,N0。在N3和N2施氮水平下,D值较大,在这2个施氮水平下土壤TOC质量分数随SMBC质量分数变化的复杂程度更高,说明中等施氮水平处理对土壤TOC质量分数随SMBC质量分数变化的影响更显著;N1施氮水平下的D值小于N2,N3和N4施氮水平下的D值,说明N1施氮水平下土壤TOC质量分数随SMBC质量分数变化的复杂程度相对较小,此施氮处理对土壤TOC质量分数随SMBC质量分数变化的影响较微弱;N4施氮水平下D值小于N2和N3施氮水平下的D值,说明N4施氮水平下土壤TOC质量分数随SMBC质量分数变化的复杂程度相对较小,此施氮处理对土壤TOC质量分数随SMBC质量分数变化的影响较弱。

    施氮水平拟合方程R2P分形维数(PSD)法
    N0y=0.586 5x-0.186 80.438 20.223 62.207
    N1y=0.451 5x+0.188 30.472 10.199 92.274
    N2y=0.333 1x+0.593 80.275 00.364 32.334
    N3y=0.315 7x+0.525 70.276 10.363 22.342
    N4y=0.343 1x+0.510 40.257 90.382 42.329
    说明:x表示SMBC质量分数的对数值;y表示土壤TOC质量分数的对数值

    Table 3.  Dynamics fractal characteristics of soil microbial biomass carbon with total organic carbon under nitrogen treatment

    表 4可知:在不同施氮水平处理下,不同月份下土壤TOC质量分数随SMBC质量分数变化的D值从大到小依次为6,10,4,8,12月。研究区不同月份下土壤TOC质量分数随SMBC质量分数变化的D值变化范围是1.650~6.149,D值差异较大,说明土壤TOC质量分数随SMBC质量分数变化的随机性和复杂性和月份有很大的相关性[23]

    月份拟合方程R2P分形维数(PSD法)
    4y=1.104x-1.703 00.850 10.025 81.948
    6y=-7.299x+22.130 00.884 30.017 36.149
    8y=1.408x-2.872 00.290 50.348 61.796
    10y=-3.280x+10.000 00.104 10.596 54.140
    12y=1.700x-4.088 00.450 60.214 71.650
    说明:x表示SMBC质量分数的对数值;y表示土壤TOC质量分数的对数值

    Table 4.  Dynamics fractal characteristics of soil microbial biomass carbon with total organic carbon under different months

  • 土壤的形态和演化过程都非常复杂,想要精确恰当地描述和阐释土壤属性的时空特征,运用一般的变异函数达不到对土壤时空特征定量化描述的水平[29]。分形理论运用不同于传统技术的空间分析理论,其核心分析理念自相似理论的运用更为研究土壤各种属性的时空变异提供了一种新颖的方法[30]。将要分析和量化的土壤理化指标利用分形维数来分析其时空特征具有简单可行的特点。

    本研究结果显示:N1氮输入水平下土壤TOC质量分数随SMBC质量分数变化的D值小于N2,N3和N4氮输入水平下的D值,此氮输入水平对土壤TOC质量分数随SMBC质量分数变化的影响并不显著,而N2和N3氮输入水平对土壤TOC质量分数随SMBC质量分数变化的影响极显著。N2,N3中等施氮水平处理下,极显著影响了土壤SMBC及其代谢强度,这可能是因为中等施氮水平处理促进了林地植被、地表草本植物和灌木的生长,林木凋落物和根系产物输入上升,增加了有机质的输入,为土壤微生物提供了更多的能源使微生物群落的生物量增加并且提高了其代谢强度。这与许多研究结果相一致。门中华[31]在研究不同的硝态氮供应水平下冬小麦Triticum aestivum植株对氮素的利用水平时发现:中等氮输入下小麦植株具有最高的根系活力及氮素同化能力,这主要是由于中等水平的氮输入能够提高土壤微生物代谢强度。马慧君等[32]在模拟氮沉降对杨树人工林土壤微生物优势种群结构影响的研究中,也得出了中等水平的氮输入能够提高土壤微生物代谢强度的结果,说明氮施加的水平在土壤肥力的增加和植物生长具有重要意义。N4施氮水平下土壤TOC质量分数随SMBC质量分数变化的D值小于N2和N3氮输入水平下的D值,并且N4氮输入处理下的土壤TOC质量分数随时间变化的D值和SMBC质量分数随时间变化的D值均小于中等水平N2和N3,这说明过量氮输入可能会降低林场植物的生长量、土壤微生物生物量及其活性。王晓荣等[33]在中亚热带栎属Quercus不同树种幼苗的生长和生物量分配对短期氮沉降的响应的研究中,发现高水平氮输入对生物量积累产生了一定的抑制作用,导致这种现象出现的原因是高氮处理植株由培养介质中吸收的氮量、植株吸氮量、根系活力、营养液pH值变化均介于中氮与低氮处理之间。门中华[31]在不同的硝态氮供应水平下冬小麦植株对氮素的利用水平的研究中也得出了这一结论。

    本研究中,不同月份土壤TOC质量分数随SMBC质量分数变化的D从大到小依次为6,10,4,8,12月,在6月D值最大,此时土壤TOC质量分数随SMBC质量分数变化最具随机性和复杂性。周义贵等[34]在川西亚高山地区米亚罗林区研究发现云杉Picea asperata低效林土壤TOC和SMBC质量分数变化均在夏季达到显著水平,导致这种现象的原因是研究区6月气温较高,水分充足,林场植被根系生长旺盛,各种生命活动增加,林木凋落物及根系产物输入上升,使得6月土壤TOC最高,此时土壤微生物新陈代谢和各种生命活动比较旺盛,对土壤TOC的作用强烈。10月植被处于生长期的末期,植被生长利用了大量的养分,使得林场土壤TOC质量分数出现了降低的趋势。KALBITZ等[35]在研究生物降解诱导土壤溶性有机物性质变化的实验中发现:秋季的土壤TOC质量分数出现了降低的趋势,这主要是由于此时研究区湿热多雨的气候特点,土壤微生物的作用依旧比较强烈,一直在减少的土壤TOC质量分数在土壤微生物的强烈作用下,两者质量分数的变化呈现出复杂和随机的特性。4月土壤微生物各项生命活动开始加强,但损耗较高,此时土壤TOC输入量也比较小,所以D值较小;8月虽然此时土壤微生物种群数量比较大,但大量土壤TOC输入下,土壤微生物的对土壤TOC作用强度比6,10和4月微弱;12月D最小,土壤TOC质量分数随SMBC质量分数变化受到外界影响较小,随机性和复杂性降低。周莉[36]在岩溶环境下土壤活性有机碳和土壤呼吸动态变化的研究中发现:在冬季时土壤TOC和SMBC质量分数受外界影响较少并出现最低值,这主要是由于冬季气温全年最低,微生物活性降低,故SMBC和TOC质量分数均处于全年较低水平。

    本研究应用分形理论研究了苏北沿海地区杨树人工林不同水平氮输入下土壤TOC和SMBC之间质量分数变化的关系以及土壤TOC质量分数、SMBC质量分数随时间变化的情况。运用分形理论分析阐释不同施氮水平下土壤不同形式碳之间的相互关系以及随月份变化特征简单有效,对林业生产上制定合理的施氮策略具有很大的潜力和应用前景。从现有研究成果来看,分形理论的确提出了量化土壤属性空间分布特征的新思路,可以成为土壤时空变化研究的重要理论基础[37]

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return