-
植物群落具有显著的温湿效益,在热岛效益不断加剧的城市中发挥着重要的微气候调节作用[1-4]。植物群落的冠层结构,如郁闭度、叶面积指数、绿量、覆盖率等会影响群落的降温增湿效益[5-8],但是针对不同树冠形态和布局形式对群落微气候环境影响的研究还较为欠缺。乔木树冠反射和吸收了大量的太阳辐射,是乔木能为林下空间提供降温增湿效应的主要原因,而不同的树冠形态也会显著影响其遮阳效果[9]。关于布局形式对微气候影响的研究多集中在竖向结构上乔灌草的合理搭配[10-11],对于横向上树种的平面布局形式却较少提及。ENVI-met是一款微气候模拟软件。该软件基于热力学和流体力学原理,较为全面地考虑气候因子及其相互作用,能够动态模拟城市小尺度范围内的表面、空气和植被之间的相互作用[12]。已有较多研究从街道[13]、居住区[14]、城市中心区[15]、古典园林[16]、森林[17]等多种尺度对ENVI-met进行了校验,证实ENVI-met在模拟上的可靠性和准确性。基于上述研究基础,也有很多学者运用该软件进行纯模拟研究,如研究城市步行街空间形态对其微气候的影响[18],探讨城市空间形态指标与热环境的相关性[19],模拟分析高层住宅小区建筑形态对微气候的影响[20],以及不同绿地布局模式下居住区的夏季微气候特征[21]等。说明在条件有限且研究内容较繁杂的情况下,纯模拟的研究方式也有很高的应用价值。南京市位于长江三角洲,夏季炎热多雨,在中国夏季高温高湿气候特征的城市中具有一定代表性。为进一步探讨树冠形态和平面布局形式对夏季植物群落微气候的影响,本研究以南京市的绿地为例,运用ENVI-met软件,以纯乔木林环境为研究对象,设计多种模拟工况,分析不同树冠形态和布局形式下植物群落的温湿效应及人体热舒适度,为改善夏季微气候环境,以科学的栽植设计来适应不同类型的人群行为活动需求,提供合理的参考依据。
HTML
-
南京位于中国东部,地处长江下游,属于北亚热带中部季风气候区,四季分明,光照充足,无霜期长,热量充裕。年平均降水量为1 106.5 mm,相对湿度为76.0%,平均气温为15.4 ℃。南京是典型的夏热冬冷地区。冬季以东北风为主,1月平均最低气温为-1.6 ℃;夏季以东南风为主,7月平均最高气温为30.6 ℃。
-
由于本研究只针对树冠形态和平面布局形式对微气候的影响,但在实际情况中很难排除其他环境因素的干扰,所以实际测量的方法对本研究不具实际可行性。因此,本研究选择ENVI-met软件,使用纯模拟方法,将所有模拟工况周边环境都设置为相同条件,以保证结果的相对可靠性。
-
选取南京市理想情况下的纯乔木林群落为研究对象。通过前期预模拟,在确保温湿效果显著和便于模拟的前提下,根据常见的植物群落面积,最终确定模型大小为160 m × 160 m × 50 m,网格数为80 × 80 × 25,单个网格的分辨率为2 m × 2 m × 2 m。模型中共布局36株同种乔木来模拟纯林环境。
-
① 乔木树冠形态。乔木的树冠形态可分为规则形和不规则形,有学者[22]将常见的规则型树冠按照遮挡太阳辐射量的关系简化分成圆柱形、三角形、倒三角形、圆形和半圆形等5种基本树冠形态。通过文献资料分析,对南京地区园林中常用的100种乔木的树冠形态进行分类,确定了5种包含植物种类较多的常见树冠形态(表 1),分别为圆柱形、圆球形、倒卵形、三角形和倒三角形[23-29]。在ENVI-met中建立这5种具有典型树冠形态的乔木模型,模型剖面图如图 1所示。为保证数据可比性,所建植物模型的高度一致,均为15 m,实际栽植参考时可进行等比例缩小。圆柱形、圆球形和三角形树冠的乔木冠幅均为11 m,倒卵形树冠的乔木冠幅为13 m,倒三角形树冠的乔木冠幅为15 m。由于研究只针对树冠形态,因此将5种乔木的叶片属性、根系形态等都设置为相同指标。②平面布局形式。选择3种园林中常见的乔木群落布局形式,规则散点式、集中块状式和自然集群式(图 2)。其中规则散点式为6 × 6的点阵式排列,相邻乔木的中心点之间相距10个像素格,即20 m。集中块状式为4个3 × 3的规则散点式布局组合而成,相邻乔木的中心点之间相距6个像素格,即12 m。自然集群式中各乔木以自然界常见的集群形式分散布局。通过不同树冠形态和群落布局形式的排列组合,得出共计15种不同的模拟工况。
树冠形态 常见树种 数量/种 圆柱形 毛白杨Populus tomentosa,日本珊瑚树Viburnum odoratissimum var. awabuki,塔柏Sabina chinensis ‘Pyramidalis’,加杨(Populus × canadensis,意杨Populus × canadensis subsp. I-214 5 圆球形 白玉兰Magnolia denudata,二乔玉兰Magnolia soulangeana,乐昌含笑Michelia chapensis,深山含笑Michelia maudiae,杜仲Eucommia ulmoides,栾树Koelreuteria paniculata,樟树Cinnamomum camphora,浙江楠Phoebe chekiangensis,紫楠Phoebe sheareri,大叶樟Cinnamomum austrosinense,毛泡桐Paulownia tomentosa,重阳木Bischofia polycarpa,皂荚Gleditsia sinensis,国槐Sophora japonica,刺槐Robinia pseudoacacia,金枝槐Sophora japonica‘Golden Stem’,无患子Sapindus mukorossi,榆树Ulmus pumila,朴树Celtis sinensis,珊瑚朴Celtis julianae,榔榆Ulmus parvifolia,臭椿Ailanthus altissima,黄连木Pistacia chinensis,东京樱花Cerasus yedoensis,日本晚樱Cerasus serrulata var. lannesiana,山樱花Cerasus serrulata,女贞Ligustrum lucidum,杨梅Myrica rubra,苦槠Castanopsis sclerophylla,青冈Cyclobalanopsis glauca,麻栎Quercus acutissima,栓皮栎Quercus variabilis,苦楝Melia azedarach,香椿Toona sinensis,臭椿Ailanthus altissima,桑树Morus alba,构树Broussonetia papyrifera,美国山核桃Carya illinoensi,柿Diospyros kaki,白蜡Fraxinus chinensis,小蜡Ligustrum sinense 41 倒卵形 木莲Manglietia fordiana,乌桕Sapium sebiferum,广玉兰Magnolia grandiflora,枫香Liquidambar formosana,桂花Osmanthus fragrans,喜树Camptotheca acuminata,枫杨Pterocarya stenoptera,二球悬铃木Platanus acerifolia,银杏Ginkgo biloba,七叶树Aesculus chinensis,南京椴Tilia miqueliana,石楠Photinia serrulata,椤木石楠Photinia davidsoniae,枇杷Eriobotrya japonica,杜梨Pyrus betulifolia,山楂Crataegus pinnatifida,黄檀Dalbergia hupeana,色木槭Acer mono,茶条槭Acer ginnala,梧桐Firmiana platanifolia,梓树Catalpa ovata,楸树Catalpa bungei 22 三角形 杉木Cunninghamia lanceolata,水杉Metasequoia glyptostroboides,池杉Taxodium ascendens,柳杉Cryptomeria fortunei,落羽杉Taxodium distichum,马尾松Pinus massoniana,金钱松Pseudolarix amabilis,雪松Cedrus deodara,日本五针松Pinus parviflora,白皮松Pinus bungeana,黑松Pinus thunbergii,火炬松Pinus taeda,湿地松Pinus elliottii,油松Pinus tabuliformis,圆柏Sabina chinensis,龙柏Sabina chinensis ‘Kaizuca’,金叶桧Sabina chinensis ‘Aurea’,香榧Torreya grandis ‘Merrillii’,罗汉松Podocarpus macrophyllus,鹅掌楸Liriodendron chinense,三角枫Acer buergerianum,杜英Elaeocarpus decipiens 22 倒三角形 榉树Zelkova serrata,合欢Albizia julibrissin,垂丝海棠Malus halliana,湖北海棠Malus hupehensis,西府海棠Malus × micromalus,紫叶李Prunus cerasifera f. atropurpurea 6 垂枝形 垂柳Salix babylonica,旱柳Salix matsudana,龙爪槐Sophora japonica var. japonica f. pendula 3 棕榈形 棕榈Trachycarpus fortunei 1 总计 100 Table 1. 100 common arbors in Nanjing and the classification of their canopy shapes
-
选择的模拟日期为夏至日,为确保模拟的普适性,以中国气象数据网上公布的南京站点气象数据为参考,计算南京近10 a来夏至日的平均温湿度和风速,确定模拟当天的初始气象数据,即整个模拟环境的初始温湿度和风速数据。模拟时间从7:00到17:00,为保证模拟的准确性,去掉模拟最开始的1 h,以8:00至17:00,共计10 h作为重点分析时段,1 h输出1次模拟结果。当天每小时的温湿度值以ENVI-met的simple force模拟数据为准(表 2)。
模拟时间 气象参数 数值 土壤参数 数值 2017-06-21 10 m高度处风速 3.0 m·s-1 表层0~20 cm初始温度 300 K (7:00-18:00) 风向(0为北风,180为南风) 135 表层0~20 cm土壤湿度 50% 测量场地的粗糙长度 0.01 中层20~50 cm初始温度 300 K 大气的初始温度 297 K 中层20~50 cm土壤湿度 51% 模型顶端的绝对湿度(2 500 m) 9.5 g·kg-1 深层50 cm以下初始温度 298 K 2 m高度处的相对湿度 50% 深层50 cm以下土壤湿度 45% simple forcing—温度 最小值在5:00时,292 K 最大值在15:00时,302 K simple forcing—湿度 最小值在15:00时,40% 最大值在5:00时,60% Table 2. Setup of simulation parameters
-
从计算的模拟结果中导出各模拟工况的气温、相对湿度和PMV指数。将模拟得出的温湿度数据进行整理,首先计算出整个场地的逐时温湿度值,即80 × 80、共6 400个像素格的温湿度平均值,并利用SPSS对各工况之间的逐时温湿度进行成对样本t检验。第2步筛选出所有乔木树冠的垂直投影部分作为树荫下区域,其余为非树荫区域,分别计算出2个区域每小时的温湿度平均值,以树荫和非树荫区域的温湿度差值作为该工况乔木群落的降温增湿强度,分别用Tp和Hp表示。Tp=Tfi-Ti。其中:Tfi是第i时刻的非树荫区域的平均气温(℃),Ti为第i时刻树荫区域的平均气温(℃)。Hp=Hi-Hfi。其中:Hi为第i时刻树荫区域的平均湿度(%),Hfi是第i时刻的非树荫区域的平均湿度(%)。PMV热舒适模型是将环境变量(气温、湿度、风速和平均辐射温度)和人为因素(新陈代谢率和服装热阻)综合计算,得出用于表征人体热反应(冷热感)的评价指标,它将热感觉分为从-3(冷)到3(热)的7个等级,其中0为舒适值[30-31]。ENVI-met软件在此基础上,综合考虑了气温、平均辐射温度、水汽、风速、人体产生的能量、人体穿衣造成的皮肤温度、人体表面皮肤与空气的水汽交换、呼吸造成的能量交换等因素计算PMV指数[32]。IPMV=(0.028+0.303×e(-0.036m)+0.0275)×q。其中:m为人体新陈代谢率;q为热舒适系统的能量传输率,计算需要的变量有气温、平均辐射温度、水汽压和风速、服装热阻、人体行走产生的能量等。