-
森林是陆地生态系统的主体,其生物量和净生产力占整个陆地生态系统的86%和70%,对全球碳平衡起着十分重要的作用[1-3]。生物量作为植物的基本生物学特征和功能性状之一,是物质和能量积累的基本体现[4-5]。掌握森林中各类树木生物量的分配特征有助于了解碳储量和碳平衡的动态变化。测定树木生物量的方法通常有皆伐法、平均标准木法、径级标准木法和异速生长模型法等[6-8]。直接测定法获取生物量的方法精度虽然较高,但是费时、费力,且对生态环境破坏较严重[9-10];生物量异速生长模型将简单、易获取的变量与树木生物量结合,为森林生态系统生物量和净生产力的估测提供了一种普遍且可靠的方法[6, 11-13]。由2014年森林资源二类调查数据统计可知:天山雪岭云杉Picea schrenkiana约占新疆山地森林总面积的59.0%,是新疆山地森林中分布最广、蓄积量最大的森林生态树种,对新疆山地水源涵养、水土保持,以及林区生态系统的碳平衡发挥着不可代替的作用。近年来,张绘芳等[14]从年龄、径阶、林分郁闭度等角度,分析了西伯利亚云杉Picea obovata各组分器官生物量比例变化规律;白志强等[15]利用阿尔泰山西伯利亚云杉各器官生物量实测数据,分别构建了各器官(干、枝、叶、根、地上及整株生物量)的异速生长模型,均取得了较为理想的效果。本研究通过整株收获法调查了30株天山雪岭云杉各器官的分配规律,并基于胸径、树高因子建立各器官的生物量异速生长模型,旨在为生物量估测及异速生长模型优化提供理论依据,为雪岭云杉生物量及碳储量估算提供有效的研究方法。
-
天山雪岭云杉主要分布在新疆天山海拔1 600~2 800 m的中山地带,属温凉半湿润、半干旱针叶林气候区。山区年均气温为0.7 ℃,年降水量为 200~1 000 mm,多集中在6−8月,年蒸发量980~1 150 mm,年均相对湿度65%。本研究选择地处新疆天山山脉中部、西部、东部的3个林区作为研究区,其中板房沟林场(43°24′48.3″~43°26′17.9″N,87°27′28.5″~87°28′47.7″E)位于乌鲁木齐县,地处天山山脉中段北坡,海拔1 908~2 960 m;哈密林场(42°47′10″~43°56′48″N,91°22′43″~94°49′44″E)位于哈密市,地处天山山脉东端;昭苏林场(42°26′13″~43°02′42″N,80°17′15″~81°42′21″E)位于伊犁哈萨克自治州昭苏县,地处天山山脉西段。
-
2013年7−8月从各林场雪岭云杉的分布下限至分布上限每隔200 m分别选取自然生长状况良好、具有代表性的林分布设样地,每个林场布置5块20 m × 20 m临时样地。测量样地内土壤厚度、坡位、坡向、坡度、海拔、下木盖度、下木高度等7个立地因子及平均年龄、平均树高、平均胸径、郁闭度、疏密度、每公顷蓄积量等6个测树因子;根据各样地每木检尺的结果计算样木平均胸径和平均树高,确定2株最接近的雪岭云杉作为标准木,并对30株标准木整株挖掘。
采用分层分割法测定树干生物量,按2 m区分段,称量各区分段的树干鲜质量[16];将树冠分为3 层,每层选取3~5个标准枝,分别称枝、叶的鲜质量;各样品带回室内采用烘干法测定其含水量。采用全挖法分别测定树根(粗根>5 cm、大根2~5 cm、小根≤2 cm)的鲜质量,并测各样品含水量。所有样品带回室内,85 ℃ 烘干至恒量后,推算标准木各器官干质量(kg),汇总得到枝、叶、干和根生物量。其中,地上生物量=枝生物量+叶生物量+干生物量;总生物量=地上生物量+根生物量。
-
相对生长模型对单株树木生物量的拟合和估计精度均有很大的优势[17-19],胸径及树高是计算单株树木生物量的重要变量,在野外调查中很容易获取。本研究主要基于胸径和树高因子,利用Matlab中的拟合工具箱对单株雪岭云杉的各器官生物量进行拟合。
式(1)~式(5)中:W为
各器官生物量(kg),D为胸径(cm),H为树高(m),A为年龄(a),a、b、c为拟合系数。利用调整决定系数 $R_{\rm{adj}}^2$ 和平均预测误差EMP(%)估计模型拟合优度。公式如下:式(6)~式(7)中:
${y_i}$ 、$\mathop {{y_i}}\limits^ \wedge $ 分别为各器官生物量的实测值和预测值,$\mathop {{y_i}}\limits^ - $ 为各器官生物量的平均值。 -
作为森林经营、组织木材生产的最小单位和调查设计的基本单位,研究中通常将立地条件、林分因子、采伐方式、经营措施相同和集材系统一致的林分划为1个小班。本研究利用板房沟林场、哈密林场和昭苏林场2014年森林资源二类调查数据,以起源(天然林)和优势树种(雪岭云杉)为筛选条件,3个林场分别划出1 162、873个和2 756个小班;获得所有4 791个小班的土壤厚度、坡位、坡向、坡度、海拔、下木盖度、下木高度等7个立地因子及平均年龄、平均树高、平均胸径、郁闭度、疏密度、每公顷蓄积量等6个测树因子。利用上述单株生物量拟合公式及筛选出的各样地平均树高和平均胸径,计算出小班水平上的单株雪岭云杉平均生物量。利用随机森林法确定13个因子对整株生物量的相对重要性,并排序。其中:坡向、坡位和土壤厚度3个定性指标根据国家森林资源连续清查技术规定对其进行量化[20](表1)。
评价标准 量化标准 评价标准 量化标准 坡向 坡位 土壤厚度/cm 坡向 坡位 土壤厚度/cm 无坡向 − − 9 东南 下 − 4 西北 − − 8 东 中 <30(薄) 3 西 − − 7 东北 上 30~59(中) 2 西南 平地 − 6 北 脊 ≥60(厚) 1 南 谷 − 5 说明:“−”表示无相关定性等级 Table 1. Qualitative indicator quantitative standard
-
本研究所选的30株雪岭云杉单株总生物量实测值为12.04~2 014.34 kg·株−1,地上生物量和地下生物量大分别为10.16~1 475.17 和1.88~539.18 kg·株−1,根冠比为0.08~0.55。随胸径增加,雪岭云杉整株生物量、地上生物量、地下生物量均呈增加趋势,但根冠比变化不明显(表2)。地上生物量与地下生物量的Person相关系数为0.918 2(P<0.001),即两者存在极显著强正相关关系。由图1可知,两者为幂函数关系,拟合方程为y=0.263 7x1.026 7。对地上生物量和地下生物量进行以10为底的对数转换,并进行回归分析和配对样本t检验,结果发现:雪岭云杉地上生物量与地下生物量显著相关且存在极显著差异(P<0.01),拟合方程y=1.027 6x−0.579,说明雪岭云杉地上生物量与地下生物量存在显著异速生长关系(P<0.01)。
径级/cm 整株生物量/(kg·株−1) 地上生物量/(kg·株−1) 地下生物量/(kg·株−1) 根冠比 区间 平均 区间 平均 区间 平均 区间 平均 6.5~20.0 12.04~183.49 70.29 10.16~169.45 55.90 1.88~36.14 14.39 0.08~0.51 0.31 21.0~38.0 124.43~541.62 338.03 99.78~400.49 254.29 24.65~141.12 83.74 0.21~0.54 0.33 41.0~60.0 552.61~1 395.75 918.82 441.28~1 101.87 687.17 111.33~376.77 231.65 0.18~0.55 0.34 61.0~81.0 1 830.42~2 014.34 1 922.38 1 455.44~1 475.17 1 465.31 374.98~539.18 457.08 0.26~0.37 0.31 Table 2. Characteristic table of individual organ biomass of P. schrenkiana in Tianshan Mountains
从整株水平来看(图2):雪岭云杉干、根、枝和叶各器官的生物量相对分配占比分别为(58.86±7.77)%、(24.15±6.37)%、(13.03±4.80)%、(5.96±2.65)%,其生物量分配均表现为干>根>枝>叶;t检验发现:雪岭云杉各器官的生物量分布存在显著性差异(P<0.01)。由图3可知:雪岭云杉干、枝、叶、根各器官基本符合生物量随其胸径增长而增大的趋势。
-
对天山雪岭云杉的各器官(干、枝、叶和根)、地上生物量及整株生物量进行非线性生物量估测,依据最大相关系数(R2)以及最小平均预测误差(EMP)判断模型优劣(表3)。其中,树干生物量最优模型为W=0.088 5D0.625H1.938,叶生物量最优模型为W=0.035 8D0.229H1.881,根生物量最优模型为W=0.100 6(D2H)0.697,地上生物量最优模型为W=0.104 8D0.551H2.042,整株生物量最优模型为W=0.184 3D0.758H1.708。对树枝生物量模型的拟合发现,无最大R2及最小平均预测误差的组合,故选择最大R2为最优模型判断指标,即树枝的最优生物量模型为W=0.004 9D0.252H2.736。
器官 生物量模型 拟合公式 R2 EMP/% 树干 W=aDb W=0.476 6D1.803 0.926 6 38.98 W=aHb W=0.050 6H2.859 0.951 9 25.19 W=a(D2H)b W=0.251 7(D2H)0.695 0.947 5 30.69 W=aDbHc W=0.088 5D0.625H1.938 0.963 1 23.53 W=a(D3/H)b W=1.389 0(D3/H)0.706 0.876 7 63.69 树枝 W=aDb W=0.073 6D1.835 0.768 0 34.49 W=aHb W=0.003 8H3.114 0.830 7 43.52 W=a(D2H)b W=0.033 8(D2H)0.719 0.796 0 35.15 W=aDbHc W=0.004 9D0.252H2.736 0.832 5 42.78 W=a(D3/H)b W=0.139 0(D3/H)0.769 0.709 9 36.41 树叶 W=aDb W=0.167 2D1.395 0.753 6 40.68 W=aHb W=0.030 5H2.205 0.800 9 31.27 W=a(D2H)b W=0.100 9(D2H)0.539 0.777 1 35.39 W=aDbHc W=0.035 8D0.229H1.881 0.802 8 30.69 W=a(D3/H)b W=0.281 5(D3/H)0.581 0.687 9 47.56 树根 W=aDb W=0.178 8D1.826 0.904 4 37.43 W=aHb W=0.032 3H2.722 0.857 8 36.64 W=a(D2H)b W=0.100 6(D2H)0.697 0.908 7 31.85 W=aDbHc W=0.101 9D1.405H0.681 0.908 7 31.92 W=a(D3/H)b W=0.422 7(D3/H)0.741 0.880 0 53.82 地上生物量 W=aDb W=0.635 8D1.786 0.915 7 29.52 W=aHb W=0.064 1H2.854 0.948 4 24.17 W=a(D2H)b W=0.332 3(D2H)0.69 0.938 3 22.83 W=aDbHc W=0.104 8D0.551H2.042 0.957 3 19.09 W=a(D3/H)b W=1.701 0(D3/H)0.708 0.860 3 46.40 总生物量 W=aDb W=0.813 0D1.796 0.938 8 27.08 W=aHb W=0.094 8H2.821 0.951 3 25.43 W=a(D2H)b W=0.432 7(D2H)0.692 0.957 4 21.69 W=aDbHc W=0.184 3D0.758H1.708 0.968 1 18.53 W=a(D3/H)b W=2.111 0(D3/H)0.716 0.894 3 42.66 Table 3. Five nonlinear biomass estimation models of P. schrenkiana organs in Tianshan forest areas
-
利用最优整株生物量模型W=0.184 3D0.758H1.708计算出3个林场共筛选的4 791个小班的平均整株生物量,并研究13个特征变量对雪岭云杉生物量的影响,用随机森林法中的变量相对重要性来描述。从图4可知:影响雪岭云杉生物量的变量重要性排序依次为坡向、下木盖度、坡位、疏密度、海拔、坡度、土壤厚度、每公顷蓄积量、下木高度、平均年龄、郁闭度、平均胸径和平均树高。
Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains
doi: 10.11833/j.issn.2095-0756.20190384
- Received Date: 2019-06-26
- Rev Recd Date: 2019-10-28
- Available Online: 2020-05-21
- Publish Date: 2020-06-01
-
Key words:
- forest mensuration /
- biomass /
- allocation pattern /
- allometric model /
- organ /
- Picea schrenkiana
Abstract:
Citation: | LAN Jie, XIAO Zhongqi, LI Jimei, ZHANG Yutao. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains[J]. Journal of Zhejiang A&F University, 2020, 37(3): 416-423. doi: 10.11833/j.issn.2095-0756.20190384 |