Volume 38 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

LUO Wanglong, ZHANG Bo, FANG Qiang’en. Advances in population ecology and reproductive biology of Stellera chamaejasme[J]. Journal of Zhejiang A&F University, 2021, 38(1): 193-204. doi: 10.11833/j.issn.2095-0756.20200234
Citation: LUO Wanglong, ZHANG Bo, FANG Qiang’en. Advances in population ecology and reproductive biology of Stellera chamaejasme[J]. Journal of Zhejiang A&F University, 2021, 38(1): 193-204. doi: 10.11833/j.issn.2095-0756.20200234

Advances in population ecology and reproductive biology of Stellera chamaejasme

doi: 10.11833/j.issn.2095-0756.20200234
  • Received Date: 2020-03-23
  • Rev Recd Date: 2020-11-13
  • Available Online: 2021-01-21
  • Publish Date: 2021-01-21
  • The study of plant population ecology aims to explore the development dynamics, distribution of population, and its interaction with other biological and abiotic factors in the habitat, which is of great theoretical and practical significance for understanding ecosystem balance, biodiversity and ecological protection. Stellera chamaejasme is one of the typical poisonous weeds in degraded grassland. An investigation into its population ecology and reproductive biology can provide scientific and theoretical basis for the control and restoration, resource management, and ecological protection of degraded grassland of this type. In this paper, the research results on spatial distribution pattern, population diffusion and colonization of S. chamaejasme were summarized. The breeding system characteristics, pollination syndrome and reproductive allocation strategies of S. chamaejasme were expounded. The allelopathy and ecological function of S. chamaejasme were discussed. Finally, the future research was prospected based on the current research results. The main conclusions are as follows: the spatial distribution pattern of S. chamaejasme population shows clumped(aggregation), random and uniform distribution, and the distribution pattern of seed near the mother plant and its low germination rate affect the population diffusion. S. chamaejasme, with its self-incompatibility system, is a typical outcrossing plant, and its floral features show the pollination syndrome of moths and butterflies in order Lepidoptera. With the change of habitat at different altitude and slope direction, the reproductive allocation strategy of S. chamaejasme is different. S. chamaejasme can release allelopathy substances through root secretion or residual decay, and exert positive or negative effects on other species of grassland community by changing soil nutrients, so as to influence community structure and ecological function. In the future, studies on population ecology of S. chamaejasme should focus on the ecological mechanism of spatial distribution pattern formation, habitat selection of invasion, settlement and propagation in grassland communities, and the ecological relationship between population diffusion and grassland degradation. [Ch, 1 fig. 106 ref.]
  • [1] ZHENG Pengrui, DONG Chunyan, CHEN Zhiguang, XU Yan, GE Hong, YANG Shuhua, ZHAO Xin, KOU Yaping, ZHU Jinyu, JIA Ruidong, WU Ronghua.  Flowering characteristics and breeding system of Aerides rosea . Journal of Zhejiang A&F University, 2024, 41(1): 124-131. doi: 10.11833/j.issn.2095-0756.20230308
    [2] CHEN Zhiguang, XU Yan, GE Hong, YANG Shuhua, ZHAO Xin, KOU Yaping, ZHU Jinyu, JIA Ruidong, WU Ronghua.  Flowering characteristics and breeding system of Phalaenopsis japonica . Journal of Zhejiang A&F University, 2023, 40(6): 1197-1204. doi: 10.11833/j.issn.2095-0756.20230146
    [3] LI Qingxiang, ZHANG Mingru, GU Cuihua, LI Tongpan, WAN Qi, GAO Lei, ZHANG Tingyu, ZHAO Nannan, CAI Yihang.  Floral syndrome and breeding system of Stewartia rostrata . Journal of Zhejiang A&F University, 2022, 39(4): 830-837. doi: 10.11833/j.issn.2095-0756.20210563
    [4] WAN Qi, ZHAO Nannan, ZHANG Mingru, LI Qingxiang, ZHANG Tingyu, CAI Yihang.  Flowering dynamics and breeding system of Styrax obassia . Journal of Zhejiang A&F University, 2022, 39(3): 547-553. doi: 10.11833/j.issn.2095-0756.20210455
    [5] WANG Li, HONG Zubing, FANG Luming, CHEN Xun, WU Chao.  iOS-based recognition of ornamental plants . Journal of Zhejiang A&F University, 2018, 35(5): 900-907. doi: 10.11833/j.issn.2095-0756.2018.05.015
    [6] CHEN Fang, ZHANG Guangqun, CUI Kunpeng, WANG Hangjun.  Design and implementation of an embedded automatic plant recognition system . Journal of Zhejiang A&F University, 2013, 30(3): 379-384. doi: 10.11833/j.issn.2095-0756.2013.03.012
    [7] WEI Zongxian, SONG Manzhen, NIU Yanli, JIANG Bo, HUANG Qiang.  Flora and life-form of wild vine resources in the Lushan Mountain . Journal of Zhejiang A&F University, 2013, 30(4): 505-510. doi: 10.11833/j.issn.2095-0756.2013.04.007
    [8] WANG Li-min, CHEN Zheng-hai, MA Dan-dan, XIA Guo-hua, LI Gen-you.  Four newly recorded plants in the limestone mountainous region of Zhejiang Province . Journal of Zhejiang A&F University, 2012, 29(3): 467-469. doi: 10.11833/j.issn.2095-0756.2012.03.024
    [9] LEI Zu-pei, YU Hong-ao, ZHANG Shu-run, LIN Rui-feng, KANG Hua-jing.  Hemsleya zhejiangensis seedling culture with two hormones and four types of medium . Journal of Zhejiang A&F University, 2011, 28(4): 662-666. doi: 10.11833/j.issn.2095-0756.2011.04.022
    [10] SU Xiao-ling, MA Dan-dan, LI Gen-you, LIU Xi.  Population quantity surveillance of the rare and endangered plant in Zhejiang Province:Sinojackia microcarpa . Journal of Zhejiang A&F University, 2009, 26(1): 142-144.
    [11] SHU Mei-ying, CAI Jian-guo, FANG Bao-sheng.  Situation and control measures of alien invasive plants in Xixi National Wetland Park,Hangzhou City,Zhejiang Province . Journal of Zhejiang A&F University, 2009, 26(5): 755-761.
    [12] YE Xi-yang, LI Gen-you, MA Dan-dan, XIE Wen-yuan, WANG Yue-pei.  A newly escaped plant species in Zhejiang Province :Hypochaeris radicata . Journal of Zhejiang A&F University, 2007, 24(5): 647-648.
    [13] WANG Guo-ming, XUBin-fen, WANG Mei-qin, CHEN Bin.  Resources of wild woody ornamental plants in Zhoushan Archipelago . Journal of Zhejiang A&F University, 2007, 24(1): 55-59.
    [14] MA Dan-dan, LI Gen-you, SHI Bai-lin, YE Xi-yang.  Lillium concolor var. pulchellum: a new geographical distribution plant in Zhejiang . Journal of Zhejiang A&F University, 2007, 24(1): 119-120.
    [15] LI Gen-you, CHEN Zheng-hai, YAN Fu-bin, LIN Xue-feng, ZHONG Tai-lin, MA Dan-dan.  New geographical distribution plants from Wenling in Zhejiang . Journal of Zhejiang A&F University, 2006, 23(5): 592-594.
    [16] SU Xiao-ling.  New record of plants in Zhejiang :Primula merrilliana Schltr . . Journal of Zhejiang A&F University, 2006, 23(4): 475-476.
    [17] ZHAO Hong-bo, CHEN Fa-di, FANG Wei-min.  Detection methods of pollen viability of Dendranthema . Journal of Zhejiang A&F University, 2006, 23(4): 406-409.
    [18] ZHAO Ren-you, WANG Ming-yue, XU Zhen-wang, CHENG Rong-liang, ZHU Zhen-xin, YE Yu-zhu.  Forest injurious plants and their control in Lishui City of Zhejiang Province . Journal of Zhejiang A&F University, 2006, 23(6): 625-628.
    [19] SHI Bai-lin, LI Gen-you, JIN Zu-da, ZHONG Tai-lin.  Two newly recorded species from Zhejiang wetland vegetation . Journal of Zhejiang A&F University, 2006, 23(4): 472-474.
    [20] Jiang Fengli, Niu Youming, Gu Wenqi.  Studies on Anthracnose of Hemerocallis . Journal of Zhejiang A&F University, 1993, 10(1): 23-29.
  • [1]
    ZHOU Jilun. The fundamental characteristics of population advance and the population biology [J]. Chin J Ecol, 1982, 1(2): 33 − 39.
    [2]
    SILVERTOWN J W. Introduction to Plant Population Ecology[M]. London: Longman Press, 1982: 86.
    [3]
    CHEUNG A Y, PALANIVELU R, TANG W H, et al. Pollen and plant reproduction biology: blooming from East to West [J]. Mol Plant, 2013, 6(4): 995 − 997.
    [4]
    ZHANG Yonghong. Study on the Breeding System, Molecular Evolution and Modern Biogeographical Pattern in Stellera chamaejasme[D]. Beijing: Chinese Academy of Sciences, 2008.
    [5]
    ZHAO Baoyu, LIU Zhongyan, LU Hao, et al. Damage and control of poisonous weeds in western grassland of China [J]. Agric Sci China, 2010, 9(10): 1512 − 1521.
    [6]
    LIU Ying, LONG Ruijun, YAO Tuo. Research progress on Stellera chamaejasme L. in grassland [J]. Pratacultural Sci, 2004, 21(6): 55 − 61.
    [7]
    XING Fu, WANG Yanhong, GUO Jixun. Spatial distribution patterns and dispersal mechanisms of the seed population of Stellera chamaejasme on degraded grasslands in Inner Mongolia, China [J]. Acta Ecol Sin, 2004, 24(1): 143 − 148.
    [8]
    XING Fu. Studies on the Life-history Strategies of Stellera chamaejasme Population in the Degraded Steppe of Northeast China[D]. Jilin: Northeast Normal University, 2002.
    [9]
    ZHAO Chengzhang, GAO Fuyuan, WANG Xiaopeng, et al. Fine-scale spatial patterns of Stellera chamaejasme population in degraded alpine grassland in upper reaches of Heihe, China [J]. Chin J Plant Ecol, 2010, 34(11): 1319 − 1326.
    [10]
    GAO Fuyuan, ZHAO Chengzhang, ZHUOMA Lancao, et al. Spatial distribution and spatial association of Stellera chamaejasme population in the different altitude in degraded alpine grassland [J]. Acta Ecol Sin, 2014, 34(3): 605 − 612.
    [11]
    LI Yu, ZHAO Chengzhang, HOU Zhaojiang, et al. Body size and stem-and leaf allometry of Stellera chamaejasme in degraded alpine grassland [J]. Chin J Ecol, 2013, 32(2): 241 − 246.
    [12]
    HOU Zhaojiang, ZHAO Chengzhang, LI Yu, et al. Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland [J]. Chin J Plant Ecol, 2014, 38(3): 281 − 288.
    [13]
    ZHANG Qian, ZHAO Chengzhang, DONG Xiaogang, et al. Relationship between flower size and leaf size, number of Stellera chamaejasme population of degraded alpine grassland along an altitude gradient [J]. Chin J Ecol, 2015, 34(1): 40 − 46.
    [14]
    GREY-WILSON C. Stellera chamaejasme: an overview [J]. New Plantsman, 1995, 2(1): 43 − 49.
    [15]
    GITTINS R. Canonical Analysis: A Review with Applications in Ecology[M]. New York: Springer-Verlag, 1985: 131 − 141.
    [16]
    CHAO Zengguo, WANG Shiping, XU Guangping, et al. Effect of fencing on community structure and distribution patterns of main populations in degraded Kobresia humilis meadow [J]. Acta Bot Boreali-Occident Sin, 2008, 28(11): 2320 − 2326.
    [17]
    BAROT S, GIGNOUX J, MENAUT J C. Demography of a savanna palm tree: predictions from comprehensive spatial pattern analyses [J]. Ecology, 1999, 80(6): 1987 − 2005.
    [18]
    WOLF A T, HARRISON S P. Effects of habitat size and patch isolation on reproductive success of the serpentine morning glory [J]. Conserv Biol, 2010, 15(1): 111 − 121.
    [19]
    RAYBURN A P, MONACO T A. Linking plant spatial patterns and ecological processes in grazed great basin plant communities [J]. Rangeland Ecol Manage, 2011, 64(3): 276 − 282.
    [20]
    CZARAN T, BARTHA S. Spatiotemporal dynamic models of plant populations and communities [J]. Trends Ecol Evol, 1992, 7(2): 38 − 42.
    [21]
    TILMAN D. Competition and biodiversity in spatially structured habitats [J]. Ecology, 1994, 75(1): 2 − 16.
    [22]
    BOLKER B, PACALA S W. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems [J]. Theor Pop Biol, 1998, 52(3): 179 − 197.
    [23]
    PHILLIPS D L, MACMAHON J A. Competition and spacing patterns in desert shrubs [J]. J Ecol, 1981, 69(1): 97 − 115.
    [24]
    BEATTY S W. Influence of microtopography and canopy species on spatial patterns of forest understory plants [J]. Ecology, 1984, 65(5): 1406 − 1419.
    [25]
    MOLLES M. Ecology: Concepts and Applications[M]. New York: McGraw-Hill Education, 2015: 618.
    [26]
    HOU Zhaojiang, ZHAO Chengzhang, LI Yu, et al. Responses of the spatial pattern of Stellera chamaejasme’s aboveground biomass to topography in degraded alpine grassland [J]. Chin J Ecol, 2013, 32(2): 253 − 258.
    [27]
    XING Fu, SONG Ri. Population distribution pattern and dynamics of poisonous Stellera chamaejasme on grassland [J]. Pratacultural Sci, 2002, 19(1): 16 − 19.
    [28]
    GAO Fuyuan, ZHAO Chengzhang, SHI Fuxi, et al. Spatial pattern of Stellera chamaejasme population in degraded alpine grassland in northern slope of Qilian Mountains, China [J]. Chin J Ecol, 2011, 30(6): 1312 − 1316.
    [29]
    SUN Geng, LUO Peng, WU Neumann, et al. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China [J]. Soil Biol Biochem, 2009, 41(1): 86 − 91.
    [30]
    REN Heng, ZHAO Chengzhang, AN Lijuan. Niche characteristics of ‘noxious and miscellaneous grass type’ degraded grassland on northern slope [J]. Chin J Ecol, 2013, 32(10): 2711 − 2715.
    [31]
    REN Heng, ZHAO Chengzhang, REN Lijuan. Spatial point patterns of Stellera chamaejasme and Stipa krylovii populations in degraded grassland of noxious and miscellaneous types based on Ripley’s K(r) function [J]. J Arid Land Resour Environ, 2015, 29(1): 59 − 64.
    [32]
    REN Heng, ZHAO Chengzhang. Spatial pattern and competition relationship of Stellera chamaejasme and Aneurolepidium dasystachys population in degraded alpine grassland [J]. Acta Ecol Sin, 2013, 33(2): 435 − 442.
    [33]
    HARPER J L. Population Biology of Plants[M]. New York: Academic Press, 1977: 319.
    [34]
    LIU Xiaofeng, TAN Dunyan. Diaspore characteristics and dispersal strategies of 24 ephemeral species of brassicaceae in the junggar desert of China [J]. J Plant Ecol, 2007, 31(6): 1019 − 1027.
    [35]
    YAMAZAKI Y, NAOE S, MASAKI T, et al. Temporal variations in seed dispersal patterns of a bird-dispersed tree, Swida controversa (Cornaceae), in a temperate forest [J]. Ecol Res, 2015, 31(2): 165 − 176.
    [36]
    HOWE H F, SMALLWOOD J. Ecology of seed dispersal [J]. Annu Rev Ecol Syst, 1982, 13(1): 201 − 228.
    [37]
    GUO Zhiwen, ZHENG Jingming. Predicting modes of seed dispersal using plant life history traits [J]. Biodiversity Sci, 2017, 25(9): 966 − 971.
    [38]
    WENDER N J, POLISETTY C R, DONOHUE K. Density-dependent processes influencing the evolutionary dynamics of dispersal: a functional analysis of seed dispersal in Arabidopsis thaliana (Brassicaceae) [J]. Am J Bot, 2005, 92(6): 960 − 971.
    [39]
    VAN D P L. Principles of Dispersal in Higher Plants[M]. 3rd. Berlin: Springer-Verlag, 1982: 499.
    [40]
    PREDAVEC M. Seed removal by rodents, ants and birds in the Simpson Desert, central Australia [J]. J Arid Environ, 1997, 36(2): 327 − 332.
    [41]
    ARBELAEZ M V, PARRADO-ROSSELLI A. Seed dispersal modes of the sandstone plateau vegetation of the middle Caquetá river region, Colombian Amazonia [J]. Biotropica, 2005, 37(1): 64 − 72.
    [42]
    BOEKEN B, SHACHAK M. The dynamics of abundance and incidence of annual plant species during colonization in a desert [J]. Ecography, 1998, 21(1): 63 − 73.
    [43]
    WILLIS K J, BAILEY R, BHAGWAT S, et al. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data [J]. Trends Ecol Evol, 2010, 25(10): 583 − 591.
    [44]
    XING Fu, GUO Jixun, WANG Yanhong. Seed germination characteristics and regeneration mechanism of Stellera chamaejasme population [J]. Chin J Appl Ecol, 2003, 14(11): 1851 − 1854.
    [45]
    CONNELL J H, SLATYER R O. Mechanisms of succession in natural communities and their role in community stability and organization [J]. Am Nat, 1977, 111(982): 1119 − 1144.
    [46]
    KADMON R, SHMIDA A. Spatiotemporal demographic processes in plant populations: an approach and a case study [J]. Am Nat, 1990, 135(3): 382 − 397.
    [47]
    FOWLER N L. Density-dependent demography in two grasses: a five-year study [J]. Ecology, 1995, 76(7): 2145 − 2164.
    [48]
    PACKER A, CLAY K. Soil pathogens and prunus serotina seedling and sapling growth near conspecific trees [J]. Ecology, 2003, 84(1): 108 − 119.
    [49]
    NATHAN R, MULLER-LANDAU H C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment [J]. Trends Ecol Evol, 2000, 15(7): 278 − 285.
    [50]
    CURSACH J, RITA J. Reproductive biology of Ranunculus weyleri (Ranunculaceae), a narrowly endemic plant from the Balearic Islands with disjunct populations [J]. Flora, 2012, 207(10): 726 − 735.
    [51]
    BARRETT S C H, ECKERT C G. Variation and evolution of mating systems in seed plants[M]//KAWANO S. Biological Approaches and Evolutionary Trends in Plants. London: Academic Press, 1990: 229 − 254.
    [52]
    ZHANG Dayong, JIANG Xinhua. Mating system evolution, resource allocation, and genetic diversity in plants [J]. Acta Phytoecol Sin, 2001, 25(2): 130 − 143.
    [53]
    SUN Geng. Effect of Stellera chamaejasme L. on Carbon and Nitrogen Cycles in Growing and Non-growing Season and Its Pollen Allelopathy on a High-frigid Meadow[D]. Beijing: Chinese Academy of Sciences, 2008.
    [54]
    ZHANG Zhiqiang, ZHANG Yonghong, SUN Hang. The reproductive biology of Stellera chamaejasme (Thymelaeaceae): a self-incompatible weed with specialized flowers [J]. Flora, 2011, 206(6): 567 − 574.
    [55]
    ZAPATA T R, ARROYO M T K. Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela [J]. Biotropica, 1978, 10(3): 221 − 230.
    [56]
    MUYLE A, MARAIS G. Mating systems in plants, genome evolution and[M]//KLIMAN R M. Encyclopedia of Evolutionary Biology. Oxford: Academic Press, 2016: 480 − 492.
    [57]
    ZHANG Lijuan, YU Ling, LOU Anru. No evolutionary change in the mating system of Solanum rostratum (Solanaceae) during its invasion in China [J]. Sci Rep, 2017, 7(1): 1 − 8.
    [58]
    HARWOOD C E, THINH H H, QUANG T H, et al. The effect of inbreeding on early growth of Acacia mangium in Vietnam [J]. Silv Genet, 2004, 53(2): 65 − 69.
    [59]
    MABLE B K, ADAM A. Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata [J]. Mol Ecol, 2007, 16(17): 3565 − 3580.
    [60]
    NASRALLAH J B. Plant mating systems: self-incompatibility and evolutionary transitions to self-fertility in the mustard family [J]. Curr Opin Gen Dev, 2017, 47: 54 − 60.
    [61]
    LAST L, LUSCHER G, WIDMER F, et al. Indicators for genetic and phenotypic diversity of Dactylis glomerata in Swiss permanent grassland [J]. Ecol Indic, 2014, 38: 181 − 191.
    [62]
    LARS G, ARAVANOPOULOS F, BENNADJI Z, et al. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests [J]. For Ecol Manage, 2014, 333: 35 − 51.
    [63]
    DAVIS H G, TAYLOR C M, LAMBRINOS J G, et al. Pollen limitation causes an allee effect in a wind-pollinated invasive grass (Spartina alterniflora) [J]. Proc Natl Acad Sci, 2004, 101(38): 13804 − 13807.
    [64]
    WANG Fushan. Study on Strategy of Nitrogen Acquisition in Stellera chamaejasme in Degraded Alpine Meadow[D]. Beijing: University of Chinese Academy of Sciences, 2016.
    [65]
    WANG Fushan, HE Yongtao, SHI Peili, et al. Stellera chamaejasme as an indicator for alpine meadow degradation on the Tibetan Plateau [J]. Chin J Appl Environ Biol, 2016, 22(4): 567 − 572.
    [66]
    STEBBINS G L. Adaptive radiation of reproductive characteristics in angiosperms (Ⅰ) pollination mechanisms [J]. Ann Rev Ecol Syst, 1970, 1(1): 307 − 326.
    [67]
    FANG Qiang, HUANG Shuangquan. Progress in pollination ecology at the community level [J]. Chin Sci Bull, 2014, 59(6): 449 − 458.
    [68]
    FENSTER C B, ARMBRUSTER W S, WILSON P, et al. Pollination syndromes and floral specialization [J]. Ann Rev Ecol Evol Syst, 2004, 35(35): 375 − 403.
    [69]
    WHITTALL J B, HODGES S A. Pollinator shifts drive increasingly long nectar spurs in columbine flowers [J]. Nature, 2007, 447(7145): 706 − 709.
    [70]
    OLLERTON J, ALARCON R, WASER N M, et al. A global test of the pollination syndrome hypothesis [J]. Ann Bot, 2009, 103(9): 1471 − 1480.
    [71]
    TAYLOR L R, HEATH J, EMMET A M. The moths and butterflies of Great Britain and Ireland [J]. J Anim Ecol, 1980, 49(3): 1012 − 1013.
    [72]
    MOOG U, FIALA B, FEDERLE W, et al. Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in southeast Asia [J]. Am J Bot, 2002, 89(1): 50 − 59.
    [73]
    HAGERUP O. Thrips pollination of Erica tetrallx [J]. New Phytol, 1953, 52(1): 1 − 7.
    [74]
    WILLIAMS G, ADAM P. A review of rainforest pollination and plant-pollinator interactions with particular reference to Australian subtropical rainforests [J]. Aust Zool, 1994, 29(3): 177 − 212.
    [75]
    MICHAEL F. Seed Ecology[M]. London and New York: Chapman and Hall, 1985: 1 − 2.
    [76]
    CASTRO S, FERRERO V, COSTA J, et al. Reproductive strategy of the invasive Oxalis pes-caprae: distribution patterns of floral morphs, ploidy levels and sexual reproduction [J]. Biol Invasions, 2013, 15(8): 1863 − 1875.
    [77]
    DOUST J L. Plant reproductive strategies and resource allocation [J]. Trends Ecol Evol, 1989, 4(8): 230 − 234.
    [78]
    MAO Wanyi, WANG Yifeng, YANG Lilong, et al. Reproductive allocation and floral characteristic of Saussurea katochaete in releation to elevation [J]. Chin J Ecol, 2019, 38(1): 60 − 66.
    [79]
    KORNER C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems[M]. New York: Springer-Verlag, 1999: 28 − 265.
    [80]
    ZHANG Qian, ZHAO Chengzhang, DONG Xiaogang, et al. Relationships between flower size, flower number, and plant size of Stellera chamaejasme population along an altitude gradient of degraded alpine grassland in northwest China [J]. Chin J Ecol, 2013, 32(12): 3160 − 3166.
    [81]
    FABBRO T, KORNER C. Altitudinal differences in flower traits and reproductive allocation [J]. Flora, 2004, 199(1): 70 − 81.
    [82]
    HAUTIER Y, RANDIN C F, STOCKLIN J, et al. Changes in reproductive investment with altitude in an alpine plant [J]. J Plant Ecol, 2009, 2(3): 125 − 134.
    [83]
    WANG Yifeng, GAO Hongyan, SHI Haiyan, et al. Adaptive significance of Saussurea parviflora’s sexual organs, Qinghai-Tibetan, China [J]. J Plant Ecol, 2008, 32(2): 379 − 384.
    [84]
    ZHAO Fang, YANG Yongping. Reproductive allocation in a dioecious perennial Oxyria sinensis (Polygonaceae) along altitudinal gradients [J]. J Syst Evol, 2008, 46(6): 830 − 835.
    [85]
    YAQOOB U, NAWCHOO I A. Impact of habitat variability and altitude on growth dynamics and reproductive allocation in Ferula jaeschkeana Vatke [J]. J King Saud Univ-Sci, 2015, 29(1): 867 − 883.
    [86]
    Sonamtso, WANG Yifeng, LI Mei, et al. Reproductive allocation of Saussurea hieracioides (Asteraceae), a common species in eastern margin of Qinghai-Tibet Plateau [J]. Chin J Ecol, 2013, 32(6): 1433 − 1438.
    [87]
    LI Yu, ZHAO Chengzhang, DONG Xiaogang, et al. Responses of Stellera chamaejasme twig and leaf traits to slope aspect in alpine grassland of northwest China [J]. Chin J Ecol, 2013, 32(12): 3145 − 3151.
    [89]
    CHENG Wei, ZHONG Bo, XU Liangying, et al. Allelopathic effects of root aqueous extract of different age of Stellera chamaejasme on four common plants in alpine meadow of Tibet Plateau [J]. Ecol Sci, 2017, 36(4): 1 − 11.
    [90]
    ZHOU Shuqing, HUANG Zujie, WANG Hui, et al. Allelopathic effect of Stellera chamaejasme decomposing in soil on Onobrychis viciifolia [J]. Pratacultural Sci, 2009, 26(03): 91 − 94.
    [91]
    GUO Hongru. Allelopathic Substances of Stellera chamaejasme L. and Its Ecological Mechanism[D]. Beijing: University of Chinese Academy of Sciences, 2016.
    [92]
    ZHOU Shuqing, HOU Tianjue, HUANG Zujie. Effect of aqueous extracts from Stellera chamaejasme on seed germination of several herbage species [J]. Chin J Grassland, 1993(4): 77 − 79.
    [93]
    WANG Hui, WEI Zhijun, ZHOU Shuqing, et al. A study on allelopathic effect of Stellera chamaejasme on Psathyrostachys juncea (Fisch.) and Bromus inermis [J]. Prataculture Anim Husbandry, 2011(1): 17 − 20.
    [94]
    FU Yao. Study on Allelopathy of Siellera chamaejasme of Horqin Grassland[D]. Shenyang: Northeastern University, 2008.
    [95]
    JI Liping. Analysis on Nutritional Components of Siellera chamaejasme L. and Allelopathic Effects on Medicago sativa L.[D]. Xi’an: Northwest University, 2016.
    [96]
    SUN Geng, LUO Peng, WU Ning. Pollen allelopathy of Stellera chamaejasme on pollen germination and seed set of main species in a high-frigid meadow on the eastern Qinghai-Tibetan Plateau [J]. Acta Ecol Sin, 2010, 30(16): 4369 − 4375.
    [97]
    ZHANG Wei, GAO Jianmin, ZHANG Aidong, et al. Research progress on secondary metabolites of Stellera chamaejasme [J]. Anim Husbandry Feed Sci, 2016, 37(8): 35 − 38.
    [98]
    FENG Baomin, PEI Yuehu. Studies on the chemical constituents of Stellera chamaejasme [J]. Chin Pharm J, 2001, 36(1): 21 − 22.
    [99]
    YU Baoqing, XU Weichang. Advances chemical constituents and activity studies on Stellera chamaejasmme L. [J]. Pesticides, 2008, 47(12): 863 − 866, 895.
    [100]
    JIN Changdong, RONALD G M, MOHSE D. Phenylpropanoid glycosides from Stellera chamaejasme [J]. Phytochemistry, 1999, 50(4): 677 − 680.
    [101]
    GUO Hongrui, ZENG Limin, YAN Zhiqiang, et al. Allelochemical from the root exudates of Siellera chamaejasme L. and its degradation [J]. Allelopathy J, 2016, 38(1): 103 − 112.
    [102]
    IKEGAWA T, IKEGAWA A. Extraction of Anticancer and Antiviral Substances fom Stellera chamaejasme for Therapeuticuse: 0892118 [P]. 1996-04-09.
    [103]
    YAN Zhiqiang, ZENG Liming, JIN Hui, et al. Potential ecological roles of flavonoids from Stellera chamaejasme[J]. Plant Signaling Behav, 2015, 10(3): e1001225. doi: 10.1080/15592324.2014.1001225.
    [104]
    GUO Lizhu, WANG Kun. Research progress on biology and ecology of Stellera chamaejasme L. [J]. Acta Agrestia Sin, 2018, 26(3): 525 − 532.
    [105]
    CHENG Wei, SUN Geng, DU Linfang, et al. Unpalatable weed Stellera chamaejasme L. provides biotic refuge for neighboring species and conserves plant diversity in overgrazing alpine meadows on the Tibetan Plateau in China [J]. J Mount Sci, 2014, 11: 746 − 754.
    [106]
    SHANG Zhanhuan, LONG Ruijun, MA Yushou, et al. Spatial heterogeneity and similarity of adults and seedlings in “black soil land” secondary weed community, Qinghai-Tibetan Plateau [J]. J Plant Ecol, 2008, 32(5): 1157 − 1165.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article views(1839) PDF downloads(41) Cited by()

Related
Proportional views

Advances in population ecology and reproductive biology of Stellera chamaejasme

doi: 10.11833/j.issn.2095-0756.20200234

Abstract: The study of plant population ecology aims to explore the development dynamics, distribution of population, and its interaction with other biological and abiotic factors in the habitat, which is of great theoretical and practical significance for understanding ecosystem balance, biodiversity and ecological protection. Stellera chamaejasme is one of the typical poisonous weeds in degraded grassland. An investigation into its population ecology and reproductive biology can provide scientific and theoretical basis for the control and restoration, resource management, and ecological protection of degraded grassland of this type. In this paper, the research results on spatial distribution pattern, population diffusion and colonization of S. chamaejasme were summarized. The breeding system characteristics, pollination syndrome and reproductive allocation strategies of S. chamaejasme were expounded. The allelopathy and ecological function of S. chamaejasme were discussed. Finally, the future research was prospected based on the current research results. The main conclusions are as follows: the spatial distribution pattern of S. chamaejasme population shows clumped(aggregation), random and uniform distribution, and the distribution pattern of seed near the mother plant and its low germination rate affect the population diffusion. S. chamaejasme, with its self-incompatibility system, is a typical outcrossing plant, and its floral features show the pollination syndrome of moths and butterflies in order Lepidoptera. With the change of habitat at different altitude and slope direction, the reproductive allocation strategy of S. chamaejasme is different. S. chamaejasme can release allelopathy substances through root secretion or residual decay, and exert positive or negative effects on other species of grassland community by changing soil nutrients, so as to influence community structure and ecological function. In the future, studies on population ecology of S. chamaejasme should focus on the ecological mechanism of spatial distribution pattern formation, habitat selection of invasion, settlement and propagation in grassland communities, and the ecological relationship between population diffusion and grassland degradation. [Ch, 1 fig. 106 ref.]

LUO Wanglong, ZHANG Bo, FANG Qiang’en. Advances in population ecology and reproductive biology of Stellera chamaejasme[J]. Journal of Zhejiang A&F University, 2021, 38(1): 193-204. doi: 10.11833/j.issn.2095-0756.20200234
Citation: LUO Wanglong, ZHANG Bo, FANG Qiang’en. Advances in population ecology and reproductive biology of Stellera chamaejasme[J]. Journal of Zhejiang A&F University, 2021, 38(1): 193-204. doi: 10.11833/j.issn.2095-0756.20200234
  • 自然界中,种群是物种存在、物种进化和种间关系的基本单元,是连接生物个体、群落和生态系统的纽带[1]。开展植物种群生物学与生态学研究对了解其发展动态、生活史适应对策、种间相互作用与协同进化等极其重要[2-3]。由于全球气候变化及人类长期对草地的干扰(如放牧、乱开滥垦等),草地退化日趋严重。狼毒Stellera chamaejasme是瑞香科Thymelaeaceae多年生草本植物,是天然草地主要的毒草之一[4],以狼毒为代表的毒杂草植物在天然草地中迅速扩散和蔓延,危害草地面积已达3.33×107 hm2[5],造成中国优质草地资源和产草量急剧下降,对草地畜牧业发展[6]和草原生态系统平衡造成严重威胁。开展狼毒种群生态与繁殖生物学研究,了解其繁殖机制和种群动态,揭示该物种入侵、发展、扩张的生态学机制,对于狼毒型退化草地的控制、修复以及保护天然草地具有重要意义。近几年,狼毒因其“毒草”的特殊身份和生态重要性吸引了不少植物生态学者的关注,并在其种子散布特征[7]、种群空间分布格局和种群动态[8-10]以及繁殖特性[11-13]等方面开展了深入研究。但是,至今未见有关狼毒种群生态与繁殖生物学方面的综述性报道。对狼毒种群空间分布格局、繁殖生物学特征、化感作用及其生态功能等方面进行了综述,可为全面理解狼毒的种群繁殖、更新和扩张等生态学过程,进一步开展该物种生态学相关研究提供参考。

  • 狼毒俗称瑞香狼毒、馒头花、断肠草等,是瑞香科狼毒属Stellera唯一物种[14]。狼毒为多年生草本植物,丛生,茎直立,多分枝,叶互生(图1)。该植物具有由管状花(小花)组成的头状花序,花有白色、黄色、红色和紫色,具有香味;花萼筒细长,顶端具5裂片;雄蕊共10个,上下各5个2轮排列,花药微伸出。子房椭圆形,果为卵形坚果,由花被管基部所包围。花期4−6月,果期7−9月[4]。狼毒生长于海拔2 600~4 200 m的亚洲温带地区,分布广泛。其中,国内主要分布在中国东北、西北、华北、西南各省的高山、亚高山草地及灌丛[4],国外主要分布于俄罗斯、蒙古和尼泊尔境内。

    Figure 1.  Plant individuals (A),inflorescence (B) and floral structural (C) characteristics in Stellera chamaejasme

  • 种群空间分布格局是种群对环境选择长期适应的结果[15-16]。植物种群空间分布格局不仅随物种的不同而异,而且受种间种内互作、种子散布方式和生境异质性[17]以及干扰[18-19]等因素的影响,呈现出不同的分布类型。陆地非克隆植物因固着生长而不能主动选择环境,在整个生活史中仅与邻近植物产生相互作用[20-21],其分布格局随邻近植物的不同发生变化[22]。植物种群空间分布格局受其统计特征的影响,常表现出聚集分布、随机分布和均匀分布3种类型[17]。当种群内个体间竞争较为强烈[23]或内部表现出负向(相互排斥)关系时,呈现出均匀分布;当种群环境异质性较高,其个体存活与斑块联系紧密[24]或个体间存在正向(相互有利)关系时,呈现出聚集分布;当种群内个体间无明确关系时,呈现出随机分布[25]。狼毒属典型的非克隆植物,其繁衍完全依靠种子进行[8]。研究显示:狼毒种群空间分布格局受海拔和草地退化等的影响,也表现出聚集、随机和均匀分布[10]

    高福元等[10]研究发现:在不同海拔,狼毒种群内(即小尺度上)不同株级的个体分布格局表现不同。在低海拔种群中,狼毒小株级个体数量总体多于大株丛,且小株级个体倾向于聚集分布,大株丛表现出随机分布;在高海拔种群中,大株级株丛多于小株级个体,表现为随机分布,而小株级个体亦呈现明显的聚集分布[26]。小株级个体聚集分布一方面是由狼毒有限的种子散布能力(近母株种子散布特征)所决定[27];另一方面,小株级个体适应环境的能力差,聚集分布有利于其互助成长[9]。相反,大株级株丛能独自适应不良环境,故呈现出随机分布。此外,在狼毒种群内,小株级个体常聚集分布于大株丛周围,这可能是因为大株级株丛能为小株级个体提供庇护[7,28],或大株级株丛微生境(如掉落的枯枝落叶)能给小株丛提供生长所需的营养条件[29]

    除了受海拔影响,狼毒种群空间分布格局还与草地退化程度密切相关,并随草地退化加剧表现出聚集分布向非聚集分布过渡的趋势[30]。未退化草地中,狼毒尚未成为群落优势种,其个体幼小,缺乏对资源和空间的竞争优势,且抵御种间竞争压力、风沙灾害和放牧干扰的能力相对较弱[31],因此,群落内狼毒的竞争主要以种间竞争为主,种内个体间的竞争较弱,为提高存活机会狼毒个体间呈现出聚集分布,有利于其相互依存。随草地退化程度加剧,草地群落中狼毒种群的规模逐渐扩大,其个体的年龄和体积也不断增大,独立抵御各种干扰的能力明显增强,导致个体间相互庇护的依赖性降低[9,32];与此同时,大株丛彼此间对资源和空间的竞争加剧,导致种群内部发生自疏效应。在这种密度制约作用下,狼毒种群数量逐渐趋于稳定,其空间分布格局由聚集分布向随机分布或均匀分布转变[8,27,31-32]

  • 扩散指植物通过散布器官(克隆体或种子)被动或主动的从原生地向另一个地点运动或繁殖后代的过程[33-34]。种子扩散是种子脱离母株后发生移动或运输的过程,它不仅加快了植物种群更新与基因流动,还影响着种群大小、种群分化、生物多样性和群落演替[35]。研究发现:植物因固着生长而迁移能力有限,其种子扩散必须借助于各种散布载体(如动物、风和水等)[36]。在此过程中,种子形态与散布载体形成了各种特殊的对应关系[37-38],如风媒传播种子具有的“翅”和“羽状”结构,动物体表传播种子具有的“钩”和“倒刺”等[39]。植物这种与特定传播机制相关的种子(或果实)形态特征及其物候特点的综合表现,称为“散布综合征”[40-41]。狼毒种群扩散完全依靠种子进行,其种子为卵圆形小坚果,成熟时果实顶部宿存疏松、膜质的花冠筒组织,被认为具有“翼”的作用,能促进种子借助风力进行扩散[7]。但是,邢福[8]研究发现:狼毒种子具有“近母株散布”的特性,种子成熟后通常掉落在母株周围,形成种子斑块,其散布距离为0~50 cm;随后,土壤表层斑块中的种子随时间在外力作用下发生位移,被逐渐疏散或均匀化[7-8]。因此认为,狼毒种群不具有远距离扩散能力。

    植物繁殖体扩散到新生境后,经过一定时间对本地气候和环境的适应,开始萌发、生长和繁殖的过程,被称为定植[42-43]。调查发现:自然生境中狼毒种苗的定植成活率较低,其原因主要表现在2个方面。首先,狼毒种子受自身种皮限制和休眠的影响,导致其萌发率较低[8];其次,狼毒种子萌发后,幼株对不良环境抵抗能力差而易于死亡,因此,定植成活率低[44]。研究表明:母株的庇护作用能促进狼毒种苗定植成功。一方面,大株丛个体能减弱风速、降低土壤水分蒸发和减少牲畜践踏等,有利于其周围种子的萌发以及幼苗的存活生长[7];另一方面,狼毒母株能通过阻滞枯枝落叶,增加株丛周围土壤表层的有机质含量和微生物数量,从而改善狼毒种子萌发和生长所需的微生境条件[29]。另外,有调查发现:狼毒种子掉落土壤后,并不是每年都萌发,而是多年间会出现1次集中的大暴发[8],以补充和更新种群,表现出“机会主义”萌发策略[45]。但是,目前对于驱动狼毒种苗集中暴发的生态学机制,如微生境变化[46]、种内和种间竞争关系的改变[47]以及其他生物因素干扰(如草食动物)[48-49]等尚缺乏深入研究。

  • 植物繁育系统(breeding system)代表着影响其后代遗传组成的所有有性特征的总和,主要包括花形态特征、花展示与花布置[50]、花各器官寿命、传粉者类型以及交配系统等。其中,交配系统是繁育系统的核心,是指生物有机体通过有性繁殖将基因从一代传递到下一代的模式,包括控制配子结合形成合子的所有属性[51],也就是指谁与谁交配以及它们的交配方式与频率特征[52]。狼毒具有近似球形的头状花序,花辐射对称[53]。花萼筒中分布有上下2轮雄蕊,花药显著高于柱头。狼毒花雌雄同熟,花粉活力和柱头可授性较强,自交不亲和指数(index of self-incompatibility, ISI)为0.02[54]。依据ZAPATA等[55]通过ISI值对植物交配系统类型的判断标准,狼毒属典型的异交植物。

    植物交配系统不仅影响种群的进化潜力[56],还决定着开花植物的入侵和扩散能力[57]。异交植物能避免自交或近交衰退[58],提高植物后代适合度,保持遗传多样性[52,59],因此,异交被认为是开花植物最为有利的交配系统类型[60]。狼毒作为典型的异交植物,其丰富的遗传多样性是该物种能适应多变环境的关键[4],也是该物种能在草地群落尤其是干扰强度较大的退化草地中得以生存、繁衍[61]和不断进化[62]的基础。但是,作为种子繁殖植物,狼毒专性异交的交配系统特征,容易导致其繁殖成功受环境胁迫、传粉者和花粉限制等影响[63],在多变的环境中不利于其种群的更新、入侵和扩散。因此,在退化草地群落中,狼毒种群种苗更新可能因传粉环境变化会表现出年度间较大的波动。另外,调查发现,随草地退化加剧,狼毒通常由伴生种发展成为优势种[64-65],但是促使其大面积扩散的繁殖生态学机制仍知之甚少。

  • 植物因为具有不同组合的花部特征,吸引着不同的传粉者类群,称之为传粉综合特征或传粉综合征(pollination syndrome)[66-67]。传粉综合征常被用来解释花多样性,即植物的花通过对不同类型传粉者的趋化适应[68]产生多样性,或在未直接观察的情况下根据花多样性推测其传粉者类群[69-70]。狼毒花具有紧密花序头,其花萼筒细长,冠口微孔状,表现出典型的蛾或蝶类传粉综合特征[71];狼毒自然种群的主要访花昆虫为长喙的蛾子或蝴蝶[54]

    狼毒花除了表现出蛾类、蝶类传粉综合征,另一个显著特征是其冠口被上排花药封堵,形成封闭的花萼筒。MOOG等[72]认为:封闭、紧密的花序或花形态特征除了能保护花器官、筛选非合法传粉者,也能为传粉昆虫提供避难和繁殖场所。HAGERUP等[73]认为:这类花通常表现出“蓟马(Thirps)传粉综合征”,包括花序紧密、球形或瓮形,花结构封闭,花色白色到黄色,并具有甜香味等特征;例如大戟科 Euphorbiaceae植物Macaranga hullettii[72]、桑科Moraceae植物Maclura ochimhinensis、棕榈科Palmae植物Linospadiw monostachyw、菝葜科Smilacaceae植物Smilar glyczphyll、紫金牛科Myrsinaceae植物Rapanea howittiana以及杯轴花科Monimiaceae植物Mollinedm gottsberger[74]等。我们通过野外观察发现:狼毒种群内有大量的蓟马Thripidae活动。结合其花结构特征,我们推测狼毒也可能通过蓟马进行传粉,其传粉效率以及对狼毒繁殖成功的相对贡献亟待进一步深入研究。

  • 繁殖分配策略是指植物总资源分配给繁殖器官的比例[75-76],是植物繁殖策略的核心内容。研究发现:植物可通过资源分配调节其生活周期中繁殖频次、繁育期、生育期长短(或繁殖年龄)、性器官布置、胚和配子成熟期以及种子产量等繁殖特性[77],以达到资源利用的最佳配置。生活史理论预测,处于逆境中的植物相对于优良环境中的同类植物会表现出株高变矮、繁殖分配(即资源分配给繁殖体占营养体的比例)增高[78]等特征。狼毒多生于海拔2 600~4 200 m的高山及亚高山草地[54],属典型的高山植物。研究发现:海拔高度对狼毒的繁殖分配能产生显著影响。随海拔上升,狼毒种群表现出株高下降,叶面积减小、叶数量增加以及花变大和花数量减小的趋势。高海拔狼毒种群其资源分配的这种变化可能与恶劣环境,如风力大、辐射强、访花昆虫少[79]等密切相关。在高海拔生境,狼毒种群营养体的减少能有效降低其蒸发速率;花变大能有效提高对传粉者的吸引力,有利于狼毒的繁殖成功[13,80]。这与FABBRO等[81]和HAUTIER等[82]对其他高山植物的研究相似,例如菊科Compositae小花风毛菊Saussurea parviflora[83]、蓼科Polygonaceae中华山蓼Oxyria sinensis[84]以及芹亚科Apioideae drude中亚阿魏Ferula jaeschkeana[85]等。另外,索南措等[86]对青藏高原长毛风毛菊Saussurea hieracioides繁殖分配研究表明:花变大和花数量的减少总体上能提高种子百粒重,即提高单个种子质量。同样,高海拔狼毒种群,其单个小花变大、花数量减少也可能提高种子质量,有利于种苗定植成功和种群更新。

    此外,狼毒的繁殖分配策略与其生境如坡向和坡度密切相关。研究发现:随坡向和坡度的改变,狼毒种群的资源分配也呈现出规律性变化。例如,在阳坡或陡坡生境中,狼毒种群表现出株高变矮,叶面积、叶片数和分枝数减小等特征。同样,狼毒资源分配的变化可能与其阳坡(或陡坡)的特殊环境(如光照强、温度高、辐射强、蓄水能力差、风力大等)有关。狼毒矮小化及其营养器官的减小能有效降低水分的散失,同时能避免风的伤害[11-12]。另外,狼毒营养体的减小节约了大量资源[87],并投入其有性繁殖。然而,狼毒的资源分配策略,尤其是地上和地下的资源分配及其对繁殖的影响,以及该物种在生活史不同阶段(如年龄)的分配策略仍缺乏深入研究。

  • 化感作用(allelopathy)也称作异株克生,通常指一种植物通过向体外分泌代谢过程中的化学物质,对其他植物产生直接或间接的影响[88]。狼毒的化感作用主要通过根分泌和残体腐解释放化感物质而发生,且不同器官产生化感作用的强度以及对不同类植物的化感作用不尽相同。总体上,狼毒株级越大化感作用越强[89],其根的化感(抑制)作用强于茎叶[90],对豆科Leguminosae植物的抑制性强于禾本科Gramineae植物。研究发现:狼毒对禾本科、豆科和毛茛科Ranunculaceae植物均具有一定的化感作用[91],其根浸提液不仅影响这些植物的种子萌发,还抑制根系与幼苗的生长[89]。周淑清等[92]以苜蓿Medicago sativa为材料,研究了狼毒根和茎叶粉碎物在土壤腐解过程中对苜蓿幼苗的影响,发现狼毒根对其幼苗干质量、株高和叶面积以及叶绿素相对含量的抑制作用显著强于茎叶,且随狼毒根用量的增加抑制作用增强。王慧等[93]发现:狼毒根对新麦草Psathyrostachys juncea和无芒雀麦Bromus inermis的幼苗生长均产生抑制作用,其茎叶对无芒雀麦具有抑制作用,但对新麦草的幼苗生长却表现出促进作用。富瑶[94]研究发现:狼毒根提取液能使蓬子菜Galium verum和荩草Arthraxon hispidus的种子在萌发过程中脯氨酸含量升高,可溶性蛋白质和可溶性糖含量降低。另外,狼毒根提取液处理能通过干扰苜蓿内源激素的正常代谢,损害其幼苗生长,例如,降低紫花苜蓿的赤霉素和玉米素核苷含量,增强脱落酸合成关键酶基因NCED4表达,提高脱落酸含量等[95]。狼毒的花粉对周围同花期其他植物的有性繁殖也可能存在化感抑制,并影响它们的花粉萌发与种子结实[96],但这些化感影响仍缺乏直接的实验证据支持。

    狼毒的化感物质复杂多样,主要有萜类、香豆素类、木脂素类和黄酮类等化合物[97]。其中,萜类化合物包括尼地吗啉、胡拉毒素、萨布毒素A、单纯杆菌素和匹米立因子P2,以及化合物异虎耳草素A和B、新瑞香素、化合物I和瑞香狼毒任[98];据推测,这类化合物可能是狼毒对动物产生毒性的主要物质[99]。香豆素类化合物成分较多,有虎耳草素、异虎耳草素、异佛手柑内酯、6-甲氧基白芷素、伞形花内酯和瑞香苷等[100]。狼毒通过调节这些化感物质的种类、数量以及释放途径来抑制其他植物和调节土壤微生物群落,从而适应不同的生态环境[89]。这些香豆素类化合物中,伞形花内酯可能是狼毒主要的化感物质,它的降解与否在狼毒与其他植物的竞争中扮演着重要角色[101]。木脂素类化感物质有4种成分,分别是松树脂醇二甲醚、北美鹅掌楸脂素B、松脂素和罗汉松树脂酚[102];黄酮类化感物质成分包括狼毒素、异狼毒素、新狼毒素A和B(neochamaejasmin A和B)、7-甲氧基狼毒素、狼毒色原酮、表枇杷素、芫花醇乙、优狼毒A以及狼毒素的甲基衍生物(chamaejasmin A,B和C)等[14]。这类物质的存在一方面能保护狼毒免遭昆虫或植食性动物的侵害,另一方面能助其对抗病菌和与之竞争的其他植物,有利于狼毒在退化草地的成功入侵和蔓延[103]。如上所述,有关狼毒的化感物质及其化感作用的研究已有不少,但是对其化感作用机制及其发生的生态学过程和条件仍知之甚少。

  • 狼毒作为主要的毒草类型之一,近年来在天然草地群落大量扩散、繁殖,常由伴生种逐渐演变成优势种,被认为是草地退化的指示植物[64]。研究表明:狼毒是造成草地群落结构改变的主要因素之一,在草地群落中扮演正面或负面2种角色[104];其生态功能随群落环境变化不尽相同。SUN等[29]通过研究青藏高原高寒草甸有无狼毒存在的土壤理化性质的差异,发现有狼毒的群落里可产生更多凋落物,因其氮含量较高,木质素含量低,能增加土壤表层(0~15 cm)的有机质含量。CHENG等[105]通过对青藏高原高寒草甸狼毒型退化草地群落生物多样性的研究发现:狼毒的存在能阻止邻近植物被牲畜采食,并为其提供了“避难所”,以此能维持群落的物种多样性。在狼毒为优势种的草地群落中,植物物种数、地上生物量、群落生物多样性指数和有性繁殖的物种数量均显著高于非狼毒型草地群落。此外,在青藏高原“黑土滩”退化草甸中,狼毒凭借其强的种苗更新和扩散能力,能显著减少退化草地的裸露面积[106]。有学者提出,草地退化后被大量有毒植物入侵,可能是由于生态系统受到外界压力胁迫后做出的自我调节,以保持一定的自然恢复力[105]

  • 多年来,狼毒一直以毒杂草、草地退化指示植物的身份存在。总体上,其种群生态与繁殖生物学研究比较零散且缺乏系统性。本文着重从狼毒种群空间分布格局、繁殖生物学特征、化感作用及生态功能等方面进行了综述。种群空间分布格局作为狼毒对特定生境的适应,长期以来其形成的原因只局限于从种群统计和种内相关关系方面进行探究,却忽略了其形成的内在生态学机制以及在大尺度上对其分布格局的深入探讨。生活史对策的综合分析表明,狼毒种群的入侵、定居和扩散能力与其生活史特征密切相关,但是关于其种子散布机制、种苗集中暴发与土壤和气候等因子之间的关系、种群入侵扩散的群落生境选择及其生活史对策知之甚少。繁育系统特征作为影响狼毒种群繁衍的关键因素,目前对狼毒繁殖生态学方面的研究甚少,从群落水平研究狼毒与传粉者的相互作用(泛化或特化关系)更是寥寥无几。另外,作为草地退化的指示物种,狼毒在退化草地中常发展成为优势种,而在未退化或轻度退化草地中为偶见种,但是关于狼毒种群的发展与草地退化之间的关系,即狼毒种群扩张是草地退化的驱动者还是副产品,目前尚不清楚。针对上述问题,将来有关狼毒种群生态与繁殖生物学的研究应着重从以下几个方面开展:①不同尺度上,狼毒种群空间分布格局形成的生态学机制,如狼毒种群本身的生物学特性、种间和种内互作以及生境异质性等因素对其分布格局形成的影响。②狼毒的生活史对策研究,包括种子散布机制、种苗定植的生理生态条件以及狼毒在群落水平的繁殖生态学研究等。③狼毒种群生态功能,例如狼毒在草地生物多样性丧失或维持过程中所起的作用及其种群的入侵和扩散与草地退化的关系等。

Reference (106)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return