JI Yongjie, YANG Congrui, ZHANG Wangfei, et al. Forest above ground biomass estimation using airborne P band polarimetric SAR data[J]. Journal of Zhejiang A&F University, 2022, 39(5): 971-980. DOI: 10.11833/j.issn.2095-0756.20220111
Citation: ZHOU Yong, XU Tongxin, LUO Shuwen, et al. Response of rainfall runoff to forest quality in Shicheng County, Jiangxi Province[J]. Journal of Zhejiang A&F University, 2021, 38(3): 502-509. DOI: 10.11833/j.issn.2095-0756.20200505

Response of rainfall runoff to forest quality in Shicheng County, Jiangxi Province

DOI: 10.11833/j.issn.2095-0756.20200505
  • Received Date: 2020-08-03
  • Rev Recd Date: 2021-01-20
  • Available Online: 2021-03-19
  • Publish Date: 2021-06-09
  •   Objective  The study aims to explore the characteristics and laws of the chronological change of rainfall runoff and forest quality in Shicheng County of Jiangxi Province, and the relationship between rainfall, runoff and forest, so as to provide basis for quantitative monitoring and scientific evaluation of soil erosion and ecological environment in the red soil hilly area in southern China.  Method  Based on the natural rainfall and runoff sequence data of Shicheng County from 1989 to 2018 and remote sensing image maps in different years, the methods of wavelet analysis, remote sensing supervision and interpretation, and forest quality grade determination were employed.  Result  (1) Rainfall and runoff showed a slow downward trend with inter-annual changes, but the decreasing trend was not significant. (2) The forest quality index showed an upward-downward-upward trend with the increase of resolution years. (3) The improvement of forest quality had a significant role in flood detention. (4) The wavelet model of Shicheng County showed the runoff depth was positively correlated with precipitation and negatively correlated with forest quality index.  Conclusion  The improvement of forest quality can strengthen the ability of forest water conservation and forest flood detention. [Ch, 4 fig. 5 tab. 27 ref.]
  • [1] YU Along, WEN Hui, CONG Richun, HOU Meijuan, LI Hanzhi.  Hydrological effects of litter layers in different forest types in the Bashang region . Journal of Zhejiang A&F University, 2024, 41(5): 959-969. doi: 10.11833/j.issn.2095-0756.20230535
    [2] LU Xiang, HAN Furong, GAO Xinyu, SHU Sufang, LU Debiao, JIN Zhifeng.  Meteorological drought characteristics of tea in Zhejiang based on relative humidity index . Journal of Zhejiang A&F University, 2024, 41(1): 57-66. doi: 10.11833/j.issn.2095-0756.20220724
    [3] DAI Qilin, ZHANG Chao, SHANG Kerong, ZHOU Yan, QIU Lei, YU Shuquan.  Rational annual cutting volume of forest management units based on FSOS . Journal of Zhejiang A&F University, 2020, 37(5): 833-840. doi: 10.11833/j.issn.2095-0756.20190651
    [4] CUI Yanglin, DONG Bin, WEI Huimin, XU Wenrui, YANG Fei, PENG Liang, FANG Lei, WANG Yuting.  Granularity effect of landscape index at the county scale . Journal of Zhejiang A&F University, 2020, 37(4): 778-786. doi: 10.11833/j.issn.2095-0756.20190477
    [5] MA Bingqian, XU Chengyang, LIU Jiang, CHANG Cheng, ZHAO Kai, KONG Xiangqi, LONG Jiayi.  Visual heterogeneity and visual landscape quality of urban forests as an architectural backdrop . Journal of Zhejiang A&F University, 2019, 36(2): 366-374. doi: 10.11833/j.issn.2095-0756.2019.02.019
    [6] WANG Dongli, HAO Kexin, LIANG Xiaosa, FANG Xiang, TANG Jiaxi, LIAN Zhao, ZHAO Yan, SHEN Haiou.  Litter characteristics and water holding capacity in Pinus sylvestris var. mongolica sandy-fixation plantations with disturbances . Journal of Zhejiang A&F University, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
    [7] ZHAO Jingyao, ZHANG Xuexia, YANG Wei.  Leaf equivalent water thickness estimation based on spectral moisture indexes in broadleaf species . Journal of Zhejiang A&F University, 2019, 36(5): 868-876. doi: 10.11833/j.issn.2095-0756.2019.05.004
    [8] TANG Xu, ZHENG Jie, FENG Yan, LI Yankun, WANG Shijun, ZHANG Dahong.  County-level forest ecological security evaluation and spatial analysis in Yunnan Province . Journal of Zhejiang A&F University, 2018, 35(4): 684-694. doi: 10.11833/j.issn.2095-0756.2018.04.014
    [9] ZHANG Haitao, GONG Yuanbo, FU Wanquan, CHEN Yaojia, XU Yunyan, CUI Yaxiao.  Rainfall and runoff in low efficiency Pinus massoniana forests with different silvicultural prescriptions . Journal of Zhejiang A&F University, 2018, 35(1): 29-34. doi: 10.11833/j.issn.2095-0756.2018.01.004
    [10] AI Jingwen, LIU Jian, YU Kunyong, ZHANG Jinzhao, ZENG Qi, ZHENG Wenying.  Research on contribution rate of plant community characteristics and stand spatial structure to landscape aesthetics quality of forest parks and its influencing factors . Journal of Zhejiang A&F University, 2017, 34(6): 1087-1094. doi: 10.11833/j.issn.2095-0756.2017.06.017
    [11] WU Luyi, YUE Yongjie, LIU Guohou, GAO Runhong, SU Zhicheng.  Climate changes affecting regional landscape patterns at Xanadu . Journal of Zhejiang A&F University, 2016, 33(2): 232-238. doi: 10.11833/j.issn.2095-0756.2016.02.007
    [12] LIU Xin1, ZHANG Jinchi, XIE Dejin, ZHUANG Jiayao, SHAO Yongchang, ZHANG Shuifeng.  Temporal variation for canopy transpiration and its cooling properties in a Quercus acutissima forest of suburban Nanjing . Journal of Zhejiang A&F University, 2015, 32(4): 529-536. doi: 10.11833/j.issn.2095-0756.2015.04.006
    [13] WU Huqiang, SHAO Yongchang, ZHUANG Yilin, ZHANG Jinchi, HAN Cheng, LIU Xin, ZHUANG Jiayao.  Lateral water flow and volumetric water content with rainfall for soils in a suburban Quercus acutissima forest in Nanjing . Journal of Zhejiang A&F University, 2014, 31(5): 683-689. doi: 10.11833/j.issn.2095-0756.2014.05.004
    [14] HAN Cheng, ZHANG Jinchi, ZHUANG Yilin, GU Zheyan, LIU Xin, ZHUANG Jiayao.  Rainfall redistribution in a Cunninghamia lanceolata forest of the Yangtze River Delta . Journal of Zhejiang A&F University, 2014, 31(3): 424-430. doi: 10.11833/j.issn.2095-0756.2014.03.015
    [15] SUN Chong, LIU Qijing.  Carbon storage changes for major forest types in Beijing . Journal of Zhejiang A&F University, 2013, 30(1): 69-75. doi: 10.11833/j.issn.2095-0756.2013.01.010
    [16] XIN Xiao-ying, JIANG Hong, ZHOU Guo-mo, YU Shu-quan, WANG Yong-he.  Canadian forest fire weather index (FWI) system:a review . Journal of Zhejiang A&F University, 2011, 28(2): 314-318. doi: 10.11833/j.issn.2095-0756.2011.02.023
    [17] LIU Wei-yi, FAN Shao-hui, SU Wen-hui, LIU Guang-lu, YU Lin.  Research on hydrological effect in different interfaces under bamboo forests . Journal of Zhejiang A&F University, 2011, 28(3): 486-493. doi: 10.11833/j.issn.2095-0756.2011.03.022
    [18] LIU Xi-jun, WU Ze-min, HUANG Qing-feng.  Patch characteristics of forest landscape element for Xiaokeng Small Watershed,Laoshan Nature Reserve,Anhui Province . Journal of Zhejiang A&F University, 2010, 27(2): 190-197. doi: 10.11833/j.issn.2095-0756.2010.02.005
    [19] CAI Bi-fan, YU Yi-wu, FANG Gong-yong, MENG Ming-hao, ZHU Yun-jie, QIAN Yuan.  Index system and standards of quality evaluation of forest tourist areas in Zhejiang Province . Journal of Zhejiang A&F University, 2009, 26(6): 884-890.
    [20] LI Lan-ying, GAO Lan, WEN Ya-li, HUANG Shui-ling.  Countermeasures and environmental influence analysis of forest diseases . Journal of Zhejiang A&F University, 2006, 23(5): 491-496.
  • [1]
    YANG Fei. Study on the Impact of Climatie Change and Human Activities on Water Resources[D]. Xi’an: Chang’an University, 2011.
    [2]
    ZHANG Liping, CHEN Xiaofeng, ZHAO Zhipeng, et al. Progress in study of climate change impacts on hydrology and water resources [J]. Prog Geogr, 2008, 27(3): 62 − 69.
    [3]
    CHEN Jilong. Analysis of Vegetation Coverage and its Dynamic Change in the Three Gorges Reservoir Areain Chongqing based on Remote Sensing[D]. Chongqing: Southwest University, 2010.
    [4]
    MA Qi, WANG Qi. The effect of several grassy species on soil and water conservation [J]. Pratacultural Sci, 2005, 22(10): 72 − 74.
    [5]
    GONG Qianqian. Analyze and Research the Regularity of Different ScalesRunoff Variation[D]. Taiyuan: Taiyuan University of Technology, 2011.
    [6]
    ZHANG Xiaoyan, LIU Meixian. Effects of climate change and human activities on water and sediment discharge in Xiangjiang Basin [J]. Res Soil Water Conserv, 2018, 25(1): 30 − 37.
    [7]
    CHEN Xiqing, ZONG Yongqiang, ZHANG Erfeng, et al. Human impacts on the Changjiang (Yangtze) River basin, China, with reference to the impacts on dry season water discharges sea [J]. Geomorphology, 2001, 41(2/3): 111 − 123.
    [8]
    YANG S L, GAO A, HOTZ H M, et al. Trends in annual discharge from the Yangtze River to the sea (1865−2004) [J]. Hydrol Sci J, 2005, 50(5): 825 − 836.
    [9]
    XIONG Lihua, GUO Shenglian. Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station [J]. Hydrol Sci J, 2004, 49(1): 99 − 112.
    [10]
    WANG Chao. The Impact of Vegetation Change on Rainfall-runoff Process in Tianlaochi Catchment in Heihe River Basin[D]. Lanzhou: Lanzhou University, 2013.
    [11]
    MA Na, HU Yunfeng, ZHUANG Dafang, et al. Vegetation coverage distribution and its changes in Plan Blue Banner based on remote sensing data and Dimidiate Pixel Model [J]. Sci Geogr Sin, 2012, 32(2): 251 − 256.
    [12]
    DONG Xiancong, LI Xiaojie. Comparison of applicability of remote sensing estimation model for grassland vegetation coverage [J]. Bull Surv Mapp, 2019(10): 17 − 22.
    [13]
    MA Xiuxiu, WANG Yaping, CHENG Jiemei, et al. Remote sensing estimation and dynamic change analysis of vegetation coverage in Linfen City in recent 20 years [J]. China Energy Environ Prot, 2019, 41(11): 11 − 18.
    [14]
    WEI Shilei, ZHAI Liang, SANG Huiyong, et al. Remote sensing estimation of vegetation coverage based on sub-pixel analysis model [J]. Sci Surv Mapp, 2016, 41(1): 139 − 143.
    [15]
    WANG Guochun. Effect of Vegetation Change on Runoff and Sediment Yield in the Basin[D]. Nanjing: Nanjing Forestry University, 2018.
    [16]
    LIU Yongfeng, WU Jun, WANG Xiaoguang. A new method based on wavelet thresholding denoising [J]. Comput Knowl Technol, 2006(8): 154 − 155.
    [17]
    ZHAI Yan. Research and Application of Wavelet Analysis Theory in Signal Processing[D]. Kunming: Kunming University of Science and Technology, 2010.
    [18]
    ZHANG Renhui, DU Min. Application of wavelet analysis in denoise processing [J]. Comput Simulation, 2005, 22(8): 69 − 72.
    [19]
    ZHANG Na. Signal Preprocessing and Denoising of Grid Structure Based on Wavelet Analysis[D]. Nanchang: Nanchang University, 2019.
    [21]
    ZHANG Guopei. Study on Damage Detection Method of Composite Structure Based on Multi-resolution Signals [D]. Beijing: Beijing Jiaotong University.
    [24]
    LIU Daoping. Study on Hydrological and Ecological Functions of Water Source Forest in the Upper Reaches of Huangpu River[D]. Nanjing: Nanjing ForestryUniversity, 2006.
    [25]
    HE Yuguang, XIN Zhongbao, YU Xinxiao, et al. Influence of litter layer of Platycladus orientalis forests on runoff and sediment yield of the slope under simulated rainfall [J]. J Soil Water Conserv, 2017, 31(3): 27 − 32, 38.
    [26]
    DAI Junfeng, ZHANG Xuehong, WANG Dunqiu, et al. Distribution characteristics and change trend of rainfall and runoff in Beibu Gulf [J]. China Rural Water Hydropower, 2011(6): 6 − 8, 11.
    [27]
    LI Mingfei. Development and application of geographic area statistics tools based on ArcGIS [J]. Geomatics Spat Inf Technol, 2019, 42(8): 135 − 137.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 75.8 %META: 75.8 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.4 %其他: 12.4 %其他: 3.4 %其他: 3.4 %Austell: 0.1 %Austell: 0.1 %Austin: 0.2 %Austin: 0.2 %Baden: 0.2 %Baden: 0.2 %Canada: 0.1 %Canada: 0.1 %Canton: 0.8 %Canton: 0.8 %Carrboro: 0.1 %Carrboro: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.6 %China: 0.6 %Colombia: 0.1 %Colombia: 0.1 %Edinburg: 0.2 %Edinburg: 0.2 %Egypt: 0.4 %Egypt: 0.4 %Elizabeth City: 0.1 %Elizabeth City: 0.1 %Flat Rock: 0.2 %Flat Rock: 0.2 %France: 0.2 %France: 0.2 %Germany: 0.1 %Germany: 0.1 %Hamilton: 0.2 %Hamilton: 0.2 %India: 0.0 %India: 0.0 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Jonquiere: 0.2 %Jonquiere: 0.2 %Lithonia: 0.2 %Lithonia: 0.2 %Neptune City: 0.2 %Neptune City: 0.2 %Norman: 0.2 %Norman: 0.2 %Perth Amboy: 0.1 %Perth Amboy: 0.1 %Pontevedra: 0.1 %Pontevedra: 0.1 %Rochester: 0.3 %Rochester: 0.3 %Russian Federation: 0.2 %Russian Federation: 0.2 %Slovakia (SLOVAK Republic): 0.1 %Slovakia (SLOVAK Republic): 0.1 %Spain: 0.2 %Spain: 0.2 %Switzerland: 0.1 %Switzerland: 0.1 %Sydney Mines: 0.2 %Sydney Mines: 0.2 %Turkey: 0.0 %Turkey: 0.0 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 4.3 %United States: 4.3 %Williamsport: 0.1 %Williamsport: 0.1 %[]: 6.5 %[]: 6.5 %上海: 2.0 %上海: 2.0 %临汾: 0.0 %临汾: 0.0 %九江: 0.1 %九江: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %休斯敦: 0.4 %休斯敦: 0.4 %伦敦: 0.1 %伦敦: 0.1 %佛罗里达: 0.1 %佛罗里达: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %利兹: 0.0 %利兹: 0.0 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %加拿大不列颠哥伦比亚帕克斯维尔: 0.1 %加拿大不列颠哥伦比亚帕克斯维尔: 0.1 %加拿大安大略: 0.1 %加拿大安大略: 0.1 %加拿大魁北克: 0.2 %加拿大魁北克: 0.2 %北京: 4.2 %北京: 4.2 %北伯根: 0.0 %北伯根: 0.0 %匹兹堡: 0.1 %匹兹堡: 0.1 %十堰: 0.0 %十堰: 0.0 %华沙: 0.0 %华沙: 0.0 %南京: 0.4 %南京: 0.4 %南充: 0.0 %南充: 0.0 %南昌: 0.1 %南昌: 0.1 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.1 %厦门: 0.1 %台州: 0.5 %台州: 0.5 %吉列: 0.1 %吉列: 0.1 %吉达: 0.2 %吉达: 0.2 %吉隆坡: 0.0 %吉隆坡: 0.0 %吕梁: 0.0 %吕梁: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %圣保罗: 0.0 %圣保罗: 0.0 %圣路易斯: 0.1 %圣路易斯: 0.1 %埃克塞特: 0.3 %埃克塞特: 0.3 %天津: 0.1 %天津: 0.1 %娄底: 0.0 %娄底: 0.0 %宁波: 0.0 %宁波: 0.0 %安克雷奇: 0.1 %安克雷奇: 0.1 %安德森: 0.1 %安德森: 0.1 %安條克: 0.2 %安條克: 0.2 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 1.9 %密蘇里城: 1.9 %小石城: 0.1 %小石城: 0.1 %巴西: 0.2 %巴西: 0.2 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %巴黎: 0.2 %巴黎: 0.2 %布雷登顿: 0.1 %布雷登顿: 0.1 %布鲁克林区: 0.1 %布鲁克林区: 0.1 %常州: 0.1 %常州: 0.1 %广安: 0.0 %广安: 0.0 %广州: 0.1 %广州: 0.1 %开普吉拉多: 0.2 %开普吉拉多: 0.2 %弗吉尼亚: 0.2 %弗吉尼亚: 0.2 %张家口: 1.8 %张家口: 1.8 %扬州: 0.2 %扬州: 0.2 %抚州: 0.1 %抚州: 0.1 %斯洛伐克特伦钦: 0.0 %斯洛伐克特伦钦: 0.0 %无锡: 0.1 %无锡: 0.1 %晋城: 0.1 %晋城: 0.1 %杭州: 3.2 %杭州: 3.2 %森尼韦尔: 0.2 %森尼韦尔: 0.2 %武汉: 0.2 %武汉: 0.2 %法尔肯施泰因: 0.9 %法尔肯施泰因: 0.9 %波兰华沙: 0.1 %波兰华沙: 0.1 %泸州: 0.0 %泸州: 0.0 %洛杉矶: 0.1 %洛杉矶: 0.1 %济南: 0.2 %济南: 0.2 %淮安: 0.1 %淮安: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.3 %温州: 0.3 %温特黑文: 0.2 %温特黑文: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 0.5 %漯河: 0.5 %烟台: 0.0 %烟台: 0.0 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %科珀斯克里斯蒂: 0.3 %科珀斯克里斯蒂: 0.3 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约: 0.1 %纽约: 0.1 %罗利: 0.0 %罗利: 0.0 %美国: 0.1 %美国: 0.1 %美国佛罗里达西特拉斯: 0.1 %美国佛罗里达西特拉斯: 0.1 %芒廷维尤: 7.5 %芒廷维尤: 7.5 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %萨克拉门托: 0.1 %萨克拉门托: 0.1 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 30.7 %西宁: 30.7 %西安: 0.1 %西安: 0.1 %许昌: 0.0 %许昌: 0.0 %诺沃克: 0.7 %诺沃克: 0.7 %贵阳: 0.1 %贵阳: 0.1 %达林顿: 0.0 %达林顿: 0.0 %运城: 0.9 %运城: 0.9 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.1 %郑州: 0.1 %都伯林: 0.3 %都伯林: 0.3 %重庆: 0.3 %重庆: 0.3 %金华: 0.1 %金华: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.1 %青岛: 0.1 %马尼拉: 0.0 %马尼拉: 0.0 %马德里: 0.1 %马德里: 0.1 %其他其他AustellAustinBadenCanadaCantonCarrboroCentral DistrictChinaColombiaEdinburgEgyptElizabeth CityFlat RockFranceGermanyHamiltonIndiaIran (ISLAMIC Republic Of)JonquiereLithoniaNeptune CityNormanPerth AmboyPontevedraRochesterRussian FederationSlovakia (SLOVAK Republic)SpainSwitzerlandSydney MinesTurkeyUnited KingdomUnited StatesWilliamsport[]上海临汾九江伊利诺伊州休斯敦伦敦佛罗里达六安兰州利兹加利福尼亚加利福尼亚州加拿大不列颠哥伦比亚帕克斯维尔加拿大安大略加拿大魁北克北京北伯根匹兹堡十堰华沙南京南充南昌博阿努瓦厦门台州吉列吉达吉隆坡吕梁呼和浩特哈尔滨哥伦布嘉兴圣保罗圣路易斯埃克塞特天津娄底宁波安克雷奇安德森安條克宣城密蘇里城小石城巴西巴音郭楞巴黎布雷登顿布鲁克林区常州广安广州开普吉拉多弗吉尼亚张家口扬州抚州斯洛伐克特伦钦无锡晋城杭州森尼韦尔武汉法尔肯施泰因波兰华沙泸州洛杉矶济南淮安深圳温州温特黑文湖州漯河烟台盐城石家庄福州科珀斯克里斯蒂纽瓦克纽约罗利美国美国佛罗里达西特拉斯芒廷维尤芝加哥苏州莫斯科萨克拉门托衢州襄阳西宁西安许昌诺沃克贵阳达林顿运城邵阳郑州都伯林重庆金华长春长沙长治阳泉阿什本青岛马尼拉马德里Highcharts.com
  • Cited by

    Periodical cited type(0)

    Other cited types(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  / Tables(5)

Article views(1167) PDF downloads(62) Cited by(8)

Related
Proportional views

Response of rainfall runoff to forest quality in Shicheng County, Jiangxi Province

doi: 10.11833/j.issn.2095-0756.20200505

Abstract:   Objective  The study aims to explore the characteristics and laws of the chronological change of rainfall runoff and forest quality in Shicheng County of Jiangxi Province, and the relationship between rainfall, runoff and forest, so as to provide basis for quantitative monitoring and scientific evaluation of soil erosion and ecological environment in the red soil hilly area in southern China.  Method  Based on the natural rainfall and runoff sequence data of Shicheng County from 1989 to 2018 and remote sensing image maps in different years, the methods of wavelet analysis, remote sensing supervision and interpretation, and forest quality grade determination were employed.  Result  (1) Rainfall and runoff showed a slow downward trend with inter-annual changes, but the decreasing trend was not significant. (2) The forest quality index showed an upward-downward-upward trend with the increase of resolution years. (3) The improvement of forest quality had a significant role in flood detention. (4) The wavelet model of Shicheng County showed the runoff depth was positively correlated with precipitation and negatively correlated with forest quality index.  Conclusion  The improvement of forest quality can strengthen the ability of forest water conservation and forest flood detention. [Ch, 4 fig. 5 tab. 27 ref.]

JI Yongjie, YANG Congrui, ZHANG Wangfei, et al. Forest above ground biomass estimation using airborne P band polarimetric SAR data[J]. Journal of Zhejiang A&F University, 2022, 39(5): 971-980. DOI: 10.11833/j.issn.2095-0756.20220111
Citation: ZHOU Yong, XU Tongxin, LUO Shuwen, et al. Response of rainfall runoff to forest quality in Shicheng County, Jiangxi Province[J]. Journal of Zhejiang A&F University, 2021, 38(3): 502-509. DOI: 10.11833/j.issn.2095-0756.20200505
  • 在全球气候变化和人为剧烈活动的大环境背景下,河川径流在时间和空间上的变化,能够引起水资源的重新分配,并改变生态系统的演化过程[1]。揭示气候和水文水资源与生态环境的相互作用,可以为森林资源和水资源的合理开发、科学规划提供理论基础[2]。森林植被作为陆地生态系统的重要组成部分,在碳循环系统中也发挥着重要的影响力。森林植被连接着土壤层和大气层,具有截留降水、减少雨滴击溅、增加土壤入渗等生态功能[3]。森林植被的枯枝落叶层可以降低径流流动速度,增加径流渗透时间,提高地表径流入渗量,因此在减少水资源流失方面起着决定性的作用[4]。以往许多国内外学者进行了降雨量对径流影响作用大小研究[5-9],而植被对径流变化的影响研究较少,尤其是在中国南方红壤丘陵区。一些森林植被对产流的影响研究中没有考虑森林质量的差异,特别是地表覆盖的差异[10]。为了分析不同时期森林质量水平和变化规律,探讨径流变化趋势及其对植被变化的响应关系,进一步分析森林质量的变化对径流产生的影响,本研究以江西省石城县域1989−2018年的天然降雨、径流序列数据为基础,运用小波分析等方法对石城降雨径流进行研究,并结合石城县域1989、1995、2001、2004、2010和2017年6期遥感影像,计算森林质量指数,最终获得石城县域的降雨-森林-径流三维空间模型。研究结果可为定量监测和科学评价南方红壤丘陵区水土流失与生态环境状况提供依据,指导南方红壤丘陵区的水土流失综合治理和水文水资源研究,进一步增强森林涵养水源功能价值评估科学性,为解决县域低效林改造提供理论指导。

  • 石城县位于江西省赣州市东北部,25°57′47″~26°36′13″N,116°05′47″~116°38′03″E。石城县域属长江流域赣江水系,境内水系发达,河流密布,全县大小河溪140条。石城县主要河流琴江河发源于高田镇,主河长143 km,流域面积大于100 km2的一级支流有3条,平均河网密度为0.69 km·km−2。除部分河流外,其余河流均在县境汇入琴江河,流域独立性强,县域面积为1 581.53 km2。境内为武夷山脉的山间盆地,东、北、西三面环山,主要分为中低山、丘陵、单斜盆地3个类型。山地、丘陵约占全县总面积的79%。石城县地处中亚热带中南部,水热条件优越。森林植被以马尾松Pinus massoniana林、杉木Cunninghamia lanceolata林为主,其中马尾松林面积较大。20世纪80年代初,全县水土流失面积506.00 km2,占县域总面积的32%,其中:强烈及以上水土流失面积150.47 km2,中度水土流失面积125.66 km2,轻度水土流失面积229.87 km2。严重的水土流失易造成自然灾害,如山体滑坡、洪涝等。

  • 本研究所使用1989−2018年的水文数据包括径流实测数据、降雨实测数据等均来自江西省南昌市水文局水文观测站(琴江河石城站)位于琴江河下游,流域集水面积为656 km2。本研究中的遥感影像数据以Landsat 4、5、8卫星影像为数据源。在中国科学院计算机网络信息中心地理空间数据云平台(http://www.gscloud.cn)下载1989、1995、2001、2004、2010和2017年冬季无云覆盖的TM影像,其空间分辨率为30 m。森林资源二类调查数据来源于江西省石城县林业局。

  • 通过植被覆盖度、林冠郁闭度和地表凋落物覆盖度对森林质量等级因子值进行判定,进而通过等级面积相应比例得出森林质量指数。植被覆盖度通过遥感影像图提取研究区域的土地覆盖分类图[11-14],并利用软件envi 5.2计算;林冠郁闭度和地表凋落物覆盖度通过森林资源二类调查数据和实地调查数据进行判定和划分。森林质量指数判定公式:

    式(1)中:Si为等级面积,S为研究区总面积,Qi为森林质量等级因子值,β为森林质量指数。森林质量等级因子值确定范围可参考表1[15]

    林冠郁
    闭度
    地表凋落物
    覆盖度
    植被覆盖
    度/%
    森林质量等级
    因子值
      ≤0.10无覆盖 <300.00~0.10
    0.10~0.25较低 30~450.10~0.25
    0.25~0.50一半 45~600.25~0.50
    0.50~0.75较高 60~750.50~0.75
      >0.75全覆盖 >750.75~1.00

    Table 1.  Forest quality grade factor value determination range

  • 小波变换是一种信号的时间-尺度分析方法[16-20],它具有很多分辨率分析的特点,而且在时、频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状、时间和频率窗都可以改变的时频局部化分析方法[21]。在低频部分具有较高的频率分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬间反常现象并展示其成分[19]。小波函数定义为:设$\psi \left( t \right)$是平方可积函数,即ψ(t)∈L2(R),其傅里叶变换为$\hat \psi \left( \omega \right)$满足允许条件:

    式(2)中:Cψ为容许函数,ψ(t)为一个基本小波或母小波,其中L2(R)表示满足$\int\limits_R {{{\left| {f\left( t \right)} \right|}^2}} {\rm{d}}t {\text{<}} \infty $的函数空间。小波函数ψ(t)有2个基本特点:快速衰减性和震荡性[22]

  • 森林植被可以拦截部分降雨,其中林冠层和地表凋落物层起到主要的拦截作用。当降雨强度一致时,有植被覆盖的区域和无植被覆盖的区域会对径流产生不同的影响,有时差别很大。本研究尝试建立模型,定量描述降雨、径流和森林植被之间的响应关系,探索三者之间的变化规律。根据水量平衡理论,森林植被拦蓄降雨越多,研究区域产生的径流越少,森林拦蓄降雨能力大小与拦蓄容量有关。本研究森林拦蓄降雨模型采用刘昌明[23]的森林拦蓄降雨极限容量模型:

    式(3)中:Q为径流深(mm);P为降雨量(mm);IT为森林拦蓄降雨量,K为拦蓄率随降雨量递减的速度,与森林覆盖率($\alpha $)密切相关。$ I_{\rm{TM}}=\dfrac{1}{K} $ITM为森林最大可能拦蓄降雨;刘道平[24]ITM=b$\alpha $+c的假设基础上,提出如下模型改进:

    式(4)中:bc为系数。刘道平[24]的研究对象浙江省安吉县森林多年变化相对较小。森林植被对降水径流的影响较为复杂。以前,森林覆盖率($\alpha $)对流域产流产沙的影响研究中没有考虑森林质量的差异,特别是地表覆盖的差异,而不同地表覆盖的森林水源涵养及土壤保持功能差异巨大[25]。石城县由于战争等历史原因,森林覆盖率及森林质量变化较大,仅考虑森林覆盖率,研究误差较大。为提高模型的精确度,本研究采用森林质量指数(β)代替森林覆盖率(%),径流预测模型则为:

    式(5)中:QβP分别表示径流深、森林质量指数、降雨量。

  • 本研究采用降雨量的丰枯等级变化,该等级变化以距平百分率X作为划分标准,分为丰年、平年、枯年,X=(${\overline P_i} $${\overline P_{30}} $)/${\overline P_{30}} $,其中:${\overline P_i} $为某年平均降雨量,${\overline P_{30}} $为30 a平均降雨量。具体的划分标准:当−0.1<X≤0.1时为平水年;当X>0.1为丰水年;当X≤−0.1时为枯水年[26]。对石城县域1989−2018年降雨观测资料进行统计分析,并统计年内丰水期(1−3月、10−12月)、枯水期(4−9月)年际分布等特征。由表2可知:石城县域多年平均年降雨量为1 831.3 mm,其中丰水期为1 228.9 mm,枯水期为602.4 mm。石城县域降雨年际变化差异明显,最大年降雨量(2 724.0 mm)是最小年降雨量(1 074.8 mm)的2.5倍。石城县域丰水年、平水年、枯水年对应的年降雨量分别为2 340.9、1 795.3、1 416.8 mm。

    项目年降雨量/mm丰水期降雨量/mm枯水期降雨量/mm
    多年 1 831.31 228.9602.4
    丰水年2 340.91 553.6787.4
    平水年1 795.31 268.3527.0
    枯水年1 416.8 936.0480.8

    Table 2.  Distribution characteristics of annual rainfall in Shicheng County

  • 为了反映径流的年际变化特征,采用降雨量的丰枯等级变化,对石城县域1989−2018年径流观测资料进行统计分析,并统计丰水年、平水年、枯水年径流特征(表3)。石城县域多年平均径流量为6.69 亿m3,年径流量总体呈缓慢下降趋势。最大年径流量为11.73 亿m3,最小年径流量为3.19 亿m3,前者为后者的5.1倍,说明石城县域的年际径流幅度变化极大。石城县域丰水年、平水年和枯水年对应的年均径流量分别是9.58、6.69和4.25 亿m3。丰水年年均径流系数最高,为0.63,之后是平水年和枯水年,年均径流系数分别为0.57、0.46。

    项目年径流量/亿m3年径流深/mm年径流系数
    多年 6.691 020.10.54
    丰水年9.581 459.60.57
    平水年6.691 019.90.63
    枯水年4.25 648.20.46

    Table 3.  Distribution characteristics of annual runoff in Shicheng County

  • 图1为石城县域多年降水量与径流深随时间的变化。从图1可以看出:在研究时段内,石城县域年降雨量和年径流深均呈正相关关系,即径流深随降雨量的增加而增加,相关系数R2为0.795 1。

    Figure 1.  Analysis of rainfall and runoff depth in Shicheng County

  • 对石城县域1989、1995、2001、2004、2010和2017年6期遥感影像进行植被覆盖度计算,并根据森林质量等级因子值确定范围表提取得到石城县域的森林质量等级分布(图2)。

    Figure 2.  Distribution map of forest quality grade in Shicheng County

  • 利用ArcGIS软件快速统计功能统计森林质量等级面积分布[27],并对其变化情况进行分析,如表4所示。为了提高结果的精确度,将年代划分为6个阶段,每阶段包括5个年份,分别是1989−1993、1994−1998、1999−2003、2004−2008、2009−2013、2014−2018年。石城县域森林质量指数随年份的增加整体呈上升—下降—上升趋势。石城县在20世纪60−70年代大量砍伐天然林,致使全县森林资源受到毁灭性破坏,森林质量指数较低。在20世纪80年代大面积采用飞播造林和人工植苗培育了马尾松林和杉木林,石城县域森林质量指数呈现上升趋势;2000−2010年,石城县由于抚育管理措施不当,出现了大面积的针叶纯林和低效低产林,森林质量指数有所下降;从2010年至今,森林培育管理技术的成熟和生产力的提高,特别是2000年以来,林下植被和枯枝落叶层恢复显著,森林质量要素中的地表覆盖率显著上升,石城县域森林质量指数呈现显著上升趋势。同时,20世纪90年代以来,相关政府部门越来越关注生态和环境问题,制定一系列政策,有效遏制了森林资源的破坏。此外,还开展了低效林改造、封山育林等项目,使得森林质量得到一定的改善。石城县域森林质量等级在0.50以上的面积比例整体均呈上升趋势。石城县域2017年较1989年森林质量指数在0.50以上的面积比例增加了66.54%,高质量林分占比越来越高。

    森林质量等级各年度面积/km2
    198919952001200620102017年
    0.10718.01553.77335.46319.81342.4891.26
    0.25545.55417.90304.19283.07299.39136.09
    0.50157.41252.81356.12283.44325.30227.28
    0.7587.02207.87312.47255.17308.17566.02
    1.0047.67122.19238.35366.22284.95528.13
    0.50及以上比例/%18.7837.4958.6360.0158.8685.32

    Table 4.  Forest quality grade area distribution in each basin

  • 结合水文数据实际情况,在1989−2018年隔5 a作为1个观测阶段,对各流域径流数据进行统计,分析石城县域降雨量、径流模数、径流量和径流系数等阶段变化(表5)。表5表明:石城县域径流系数同森林质量指数均呈相反的线性变化趋势,说明森林质量指数和径流系数呈负相关。分析原因可知:随着森林质量指数的增加,森林植被在截留降雨、促进土壤入渗方面作用越来越强。根据水量平衡理论可知,径流系数降低。

    所在流域年份森林质量
    指数
    降雨量/
    mm
    径流量/
    亿m3
    径流深/
    mm
    径流模数/
    (m3·km−2·a−1)
    丰水期
    径流深/mm
    枯水期
    径流深/mm
    径流系数丰水期
    径流系数
    枯水期
    径流系数
    石城县域1989−19930.261 702.56.37971.0830.79654.35316.100.550.590.49
    1994−19980.362 179.89.371 427.7745.27995.35433.320.650.680.60
    1999−20030.491 779.47.201 097.9934.82778.76317.060.620.630.61
    2004−20080.531 716.35.48835.5126.49621.80216.060.480.490.46
    2009−20130.511 727.55.70868.2027.53583.73283.930.480.490.47
    2014−20180.721 882.56.04920.1229.18596.18323.490.470.460.50

    Table 5.  Chronological characteristics of runoff in Shicheng County

  • 收集到的信号通常带有噪声,常见的噪声就有高斯白噪声。降雨-径流数据经过小波分析降噪处理后的时间序列散点图相比原始数据处理后的时间序列信号可表现出更好的相关性,时间序列信号熵值也由降噪处理变得更低,低频信息变得明显的同时会保留高频信息中的突变信号。图3是石城县域小波变换消噪后的降雨-径流数据。

    Figure 3.  Path diagram of precipitation-runoff depth with wavelet de-noising in Shicheng County

    结合经过小波变换后的降雨径流降噪数据以及森林质量指数数据,在软件Matlab上使用参数率定方法,模拟出最优结果值。经过筛选最优结果为:b=340.7,c=351.8,R2=0.951 9。因此,得到降雨-径流-森林模型表达式为:

    其中:P为降雨量(mm);β为森林质量指数(%);Q为径流深(mm)。

    图4为石城县域模型三维空间图。分析模型可知:径流深与降水量呈正相关,与森林质量指数呈负相关。根据模型模拟,当降雨量为2 000.0 mm,森林质量指数为0.50时,径流深为1 489.0 mm;当降雨量为2 000.0 mm,森林质量指数为1.00时,径流深为1 346.0 mm。森林质量指数从0.50增加到1.00时,径流深减少了143.0 mm。随着森林质量指数的提高,径流深逐渐降低,表明石城县域森林质量的提升会加强森林涵养水源能力和森林滞洪作用。这与刘道平[24]模型拟合结果相同。而且,本模型在精度上较优,可定量监测和科学评价南方红壤丘陵区水土流失与生态环境状况,从而更好地实现对县域水资源变化的动态监测和预测。

    Figure 4.  Q-β-P model in Shicheng County

  • 本研究以1989−2018年原始水文数据为基础,分析了江西省石城县域降雨和径流年际特征,并初步分析了降雨对径流的影响;再利用石城县域1989−2018年遥感影像数据,通过软件ENVI和ArcGIS运用新的公式算法得出石城县域的森林质量指数;最后通过软件Matlab的小波分析功能在降雨-径流二维平面分析的基础上,建立了关于降雨-森林质量-径流三维空间模型,以更好地表达三者之间的响应关系。主要结论如下:①石城县域1989−2018年多年平均降雨量为1 831.3 mm,丰水期多年平均降雨1228.9 mm,枯水期多年平均降雨量602.4 mm;多年平均径流量为6.69 亿m3,降雨和径流随着年际变化表现出缓慢下降趋势,下降趋势不明显。②石城县域森林质量指数随着解析年份的增加整体呈上升—下降—上升趋势;森林质量等级在0.50以上的面积比例整体均呈显著上升趋势;石城县域2017年较1989年森林质量指数在0.50以上的面积比例增加了66.54%。③石城县域径流系数同森林质量指数呈相反的线性变化,表明森林质量提升具有显著滞洪作用。④通过参数率定,建立了石城县域降雨-森林质量-径流模型,模型相关系数为0.951 9,其中径流深与降雨量呈正相关,与森林质量指数呈负相关。

Reference (27)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return