Volume 38 Issue 4
Aug.  2021
Turn off MathJax
Article Contents

LIN Zixiang, MA Xiaowei, WU Jianguo, ZHU Zhujun, ZHU Biao. Genetic analysis on heterosis and important traits of ornamental pepper hybrids[J]. Journal of Zhejiang A&F University, 2021, 38(4): 820-827. doi: 10.11833/j.issn.2095-0756.20200745
Citation: LIN Zixiang, MA Xiaowei, WU Jianguo, ZHU Zhujun, ZHU Biao. Genetic analysis on heterosis and important traits of ornamental pepper hybrids[J]. Journal of Zhejiang A&F University, 2021, 38(4): 820-827. doi: 10.11833/j.issn.2095-0756.20200745

Genetic analysis on heterosis and important traits of ornamental pepper hybrids

doi: 10.11833/j.issn.2095-0756.20200745
  • Received Date: 2020-11-29
  • Rev Recd Date: 2021-04-28
  • Available Online: 2021-08-09
  • Publish Date: 2021-08-20
  •   Objective  This research aims to explore the heterosis of ornamental pepper and the genetic law of ornamental traits, to promote the cultivation of new varieties of ornamental pepper and the retention of excellent traits.  Method  The oval leaf inbred line (P15) of cluster pepper (Capsicum annuum ‘Salsa XP Red’) and the lanceolate leaf inbred line (P6) of single pepper (C. annuum ‘Salsa Deep Orange’) were used as parents, an orthogonal combination P6×P15 and an inverse combination P15×P6 were configured, and F2 population was constructed to explore the inheritance of fruit bearing pattern, leaf shape and plant type of ornamental pepper.  Result  There were significant differences between P6 and P15 in leaf size, plant height and number of lateral branches (P<0.05). All F1 combinations of cross ornamental pepper showed high heterosis in plant height, plant width and leaf shape. In F2 population of reciprocal cross, the descending order of agronomic characters with the largest variance was leaf length, fruit number per plant, petiole length, plant width and plant height, and there was a significant correlation between plant type and leaf type traits (P<0.01). The Chi-square test showed that in the results of the segregation ratio of quality traits in the F2 generations of reciprocal crosses, the fruit cluster traits were inherited in a single gene recessively for solitary traits and limited growth versus infinite growth. The developmental plant type versus the erect plant type and the lanceolate leaf versus the oval leaf were both controlled by two genes, and had recessive epistasis.  Conclusion  There are significant differences between ornamental pepper hybrid parents and F1 generation in 5 traits, such as the number of fruit per plant and the number of branching grades. Among them, the coefficient of variation of plant type is the smallest, the coefficient of variation of fruit weight and fruit number per plant is larger, and the difference of leaf length and fruit number per plant is the most significant. The analysis of the inheritance law of the important traits of ornamental pepper reveals that the fruiting bearing pattern of clusters versus solitary and limited branch versus infinite branch are recessive genetic traits controlled by single gene.[Ch, 2 fig. 8 tab. 22 ref.]
  • [1] WANG Jie, ZHU Xipeng, WANG Tengfei, ZHU Jianjun, LI Wenjun, XING Bingcong, ZHENG Ying.  Genetic diversity analysis of Bletilla striata germplasm by ISSR and SRAP markers . Journal of Zhejiang A&F University, 2023, 40(2): 321-329. doi: 10.11833/j.issn.2095-0756.20210690
    [2] CHI Minghong, LIU Min, XU Yingchun, JIN Qijiang, WANG Xiaowen, WANG Yanjie.  Purification effects of different combinations of ornamental aquatic plants on eutrophic water . Journal of Zhejiang A&F University, 2023, 40(3): 636-647. doi: 10.11833/j.issn.2095-0756.20220446
    [3] LONG Junsong, TANG Mengping.  Relationship between spatial structure and terrain factors of evergreen broad-leaved forest in Mount Tianmu . Journal of Zhejiang A&F University, 2021, 38(1): 47-57. doi: 10.11833/j.issn.2095-0756.20200267
    [4] NIU Yuan, AO Yan, LI Yun, TIAN Xiuming, YANG Changwen, LIU Xiaotian, LI Zhihong.  Selection of pollination combinations and analysis of fruit and seed characters of excellent clones of Xanthoceras sorbifolium . Journal of Zhejiang A&F University, 2020, 37(2): 209-219. doi: 10.11833/j.issn.2095-0756.2020.02.003
    [5] HUO Yan, ZHAO Xueqing, HUANG Houyi, HUANG Xianbin, XU Yunfang, ZHU Zunling, YUAN Zhaohe.  Phenotypic genetic diversity of ornamental pomegranate cultivars . Journal of Zhejiang A&F University, 2020, 37(5): 939-949. doi: 10.11833/j.issn.2095-0756.20190619
    [6] YANG Jingyi, XIA Yufang, XIE Zhaojun, TAO Xingyue, DING Xiaoxia.  Difference analysis using an FTIR spectrum for individual walnuts . Journal of Zhejiang A&F University, 2015, 32(3): 420-425. doi: 10.11833/j.issn.2095-0756.2015.03.014
    [7] ZHANG Xiao-fei, LI Huo-gen, YOU Lu-xiang, CAO Jian.  Variation and genetic stability of two-year-old Liriodendron seedling growth for 39 mating combinations . Journal of Zhejiang A&F University, 2011, 28(1): 103-108. doi: 10.11833/j.issn.2095-0756.2011.01.016
    [8] ZHANG Lei, ZHANG Han-guo, DENG Ji-feng, GUAN Chun-yu.  Stability of hybrid larches (Larix) with seedling height growth . Journal of Zhejiang A&F University, 2010, 27(5): 706-712. doi: 10.11833/j.issn.2095-0756.2010.05.011
    [9] ZHANG Jian-zhong, SHEN Feng-qiang, JIANG Jing-min, LUAN Qi-fu, YANG Quan-cong, XU Yong-qin, LIU Zhao-xi.  Heritability estimates for real resin capacity and growth traits in high-gum-yielding slash pine . Journal of Zhejiang A&F University, 2010, 27(3): 367-373. doi: 10.11833/j.issn.2095-0756.2010.03.008
    [10] LING Fei.  Wild ornamental climber resources in central Zhejiang Province . Journal of Zhejiang A&F University, 2007, 24(3): 308-312.
    [11] YU Xiao-hong, LIN Xiu-zhen, WANG Li.  Relationship of carved ornaments' themes and positions on Ming and Qing furniture . Journal of Zhejiang A&F University, 2007, 24(5): 627-632.
    [12] LIU Yong-hong, FAN Jun-feng, YANG Pei-hua, HAN Chuang-ju.  Genetic variation of seedling growth traits of open-pollination families of Pinus tabulaeformis . Journal of Zhejiang A&F University, 2005, 22(5): 513-517.
    [13] TANG Juan-juan, FAN Yi-rong, ZHU Mu-yuan.  Analysis of the genetic diversity of Pinus taiwanensis populations . Journal of Zhejiang A&F University, 2003, 20(1): 23-26.
    [14] LEI Ri-ping, CHEN Hui, XIE Li-guo.  Analysis of the genetic distance of Castanea henryi with RAPD markers . Journal of Zhejiang A&F University, 2002, 19(3): 240-243.
    [15] JIN Ze-xin.  Dominant population structure and trend of deciduous broad-leaved forest in the Tiantai Mountains of Zhejiang . Journal of Zhejiang A&F University, 2001, 18(3): 245-251.
    [16] LIANG Yue-rong, TANAKA Juni-chi, TAKEDA Yoshi-yuki.  Study on diversity of tea germplasm by RAPD method . Journal of Zhejiang A&F University, 2000, 17(2): 215-218.
    [17] HE Zhen-xiang, SHI Ji-sen, YIN Zeng-fang, CHEN Xiao-chou, YU Rong-zhuo.  Detection of genetic markers associated with growth traits in Chinese fir . Journal of Zhejiang A&F University, 2000, 17(4): 350-354.
    [18] CHENG Yun-hang, XU Xiu-ying, QIAN Hang-yuan, YANG Fei-feng.  Comparative advantage and benefits of carrying out ramous-brand strategy of forestry industry in Zhejiang mountain areas . Journal of Zhejiang A&F University, 1999, 16(2): 191-195.
    [19] Yao Jianxiang, Qia n Yincai, Shen Xiang lin, Jiang Xiaofan, Li Zhiqin, Yu Shuisheng, Xu Shaoyuan, Ying Yeqin..  Superiority of Camptotheca acuminata Seedlings. . Journal of Zhejiang A&F University, 1997, 14(2): 134-141.
    [20] He Fuji, Yu Xiangyu, Li Ping..  Preliminary Inheritance Analysis to Male Sterility of Chinese Fir. . Journal of Zhejiang A&F University, 1995, 12(2): 219-220.
  • [1]
    YANG Sha, CHEN Wenchao, ZHANG Zhuqing, et al. Key cultivation techniques of ornamental potted hot pepper varieties [J]. Hunan Agric Sci, 2015(5): 93 − 95.
    [2]
    ASMA S D, MD A Y A H, SHUBARNA A, et al. Reusing greywater for cultivation of Capsicum frutescens and Calendula officinalis [J]. J Environ Manage, 2020, 272(3): 111088. doi: 10.1016/j.jenvman.2020.111088.
    [3]
    METTUPALAYAM A R, PRASENJIT M, KOLA V, et al. Food-drug interaction and pharmacokinetic study between fruit extract of Capsicum frutescens L. and glimepiride in diabetic rats [J]. Clinic Phytosci, 2020, 6(1): 216 − 219.
    [4]
    MANDARSARI A, ANINDITA R, BUDI S. Price volatility analysis of CAYENNE pepper (Capsicum frutescens) in East Java [J]. Agric Soc Econ J, 2020, 20(2): 129 − 136.
    [5]
    GUO Yongmei, DUAN Xudong, BAI Jianjun, et al. Extraction of anthocyanins from ornamental pepper fruits and correlation analysis of fruit color [J]. J Shanxi Agric Univ Nat Sci Ed, 2021, 41(1): 48 − 58.
    [6]
    WANG Yunmei, XIE Xingwu, HUANG Xiufen, et al. Screening test of ornamental pepper cultivars in Liangshan area [J]. J Changjiang Veg, 2017(14): 56 − 59.
    [8]
    DUAN Xiaoquan. Study on Heterosis Analysis and Crossing Parenst Selection of Sixteen Capsicum annuum L. [D]. Changsha: Hunan Agricultural University, 2013: 7 − 36.
    [9]
    ZHANG Yubin, ZHANG Yonglan, YI yin, et al. Ornamental characteristics and classification of 22 varieties of ornamental pepper [J]. Guizhou Agric Sci, 2013, 41(11): 161 − 164.
    [10]
    WANG Shubin, YUAN Xihan, ZOU Xuexiao, et al. Evaluation of Chinese excellent pepper germplasms [J]. Jiangsu J Agric Sci, 2001, 17(4): 244 − 247.
    [11]
    ALIMIN M, BINK M, DIELEMAN J A, et al. Genetic and QTL analyses of yield and a set of physiological traits in pepper [J]. Euphytica, 2013, 190(2): 1 − 21.
    [12]
    WANG Lihao, LIU Wei, ZHANG Baoxi. Opportunities and challenges of science and technology development of capsicum seed industry in China [J]. Pepper Mag, 2016, 14(3): 1 − 6.
    [13]
    CHEN Ruihong. Study on Heterosis of Choice of Parents in Pepper(Capsicum annuum L.) [D]. Yangling: Northwest A&F University, 2003.
    [14]
    JEONG H B, JANG S J, KANG M Y, et al. Candidate gene analysis reveals that the fruit color locus C1 corresponds to PRR2 in pepper (Capsicum frutescens) [J]. Front Plant Sci, 2020, 12(9). doi: 10.3389/fpls.2020.00399.
    [15]
    QIAO Ningni. Genetic Analysis of the Main Quantitative Traits of Pepper [D]. Yangling: Northwest A&F University, 2006.
    [16]
    XU Rui, ZHANG Yanan, LIN Zixiang, et al. Analysis in agronomic characters of ornamental pepper germplasm resources [J]. Zhejiang J Agric Sci, 2018, 30(11): 1886 − 1892.
    [17]
    CHEN Qianqian, HU Hongsai, XIAO Haihuan, et al. Genetic analysis on main quantitative traits in pepper(Capsicum annuum L.) [J]. North Hortic, 2019, 12(4): 12 − 17.
    [18]
    MAMEDOV M I. Heterosis and correlation studies for earliness, fruit yield and some economic characteristics in sweet pepper [J]. Capsium Eggplant Newsleter, 2001, 34(20): 42 − 45.
    [19]
    WANG Kun, YU Hailong, CAO Yacong, et al. Progress and perspective of heterosis researches on pepper [J]. Pepper Mag, 2018, 16(3): 1 − 7.
    [20]
    SUI Yihu, CHEN Jinfeng, YANG Xueling, et al. Inheritance of anthocyan in contents in leaves of chili pepper [J]. J Nanjing Agric Univ, 2009, 32(3): 19 − 24.
    [21]
    LI Quanhui, GONG Zhenhui. Study on the inheritance of ripe yellow fruit characters in chili pepper(Capsicum annuum var. longunt) [J]. Acta Agric Boreali-Occident Sin, 2019, 28(5): 762 − 766.
    [22]
    LÜ Junheng, LIU Yuhua, LIU Zhoubin, et al. Mapping and identifying candidate genes involved in the novel fasciculate inflorescence in pepper (Capsicum annuum L.) [J]. Mol Breeding, 2019, 39(11): 1 − 11.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(8)

Article views(1324) PDF downloads(36) Cited by()

Related
Proportional views

Genetic analysis on heterosis and important traits of ornamental pepper hybrids

doi: 10.11833/j.issn.2095-0756.20200745

Abstract:   Objective  This research aims to explore the heterosis of ornamental pepper and the genetic law of ornamental traits, to promote the cultivation of new varieties of ornamental pepper and the retention of excellent traits.  Method  The oval leaf inbred line (P15) of cluster pepper (Capsicum annuum ‘Salsa XP Red’) and the lanceolate leaf inbred line (P6) of single pepper (C. annuum ‘Salsa Deep Orange’) were used as parents, an orthogonal combination P6×P15 and an inverse combination P15×P6 were configured, and F2 population was constructed to explore the inheritance of fruit bearing pattern, leaf shape and plant type of ornamental pepper.  Result  There were significant differences between P6 and P15 in leaf size, plant height and number of lateral branches (P<0.05). All F1 combinations of cross ornamental pepper showed high heterosis in plant height, plant width and leaf shape. In F2 population of reciprocal cross, the descending order of agronomic characters with the largest variance was leaf length, fruit number per plant, petiole length, plant width and plant height, and there was a significant correlation between plant type and leaf type traits (P<0.01). The Chi-square test showed that in the results of the segregation ratio of quality traits in the F2 generations of reciprocal crosses, the fruit cluster traits were inherited in a single gene recessively for solitary traits and limited growth versus infinite growth. The developmental plant type versus the erect plant type and the lanceolate leaf versus the oval leaf were both controlled by two genes, and had recessive epistasis.  Conclusion  There are significant differences between ornamental pepper hybrid parents and F1 generation in 5 traits, such as the number of fruit per plant and the number of branching grades. Among them, the coefficient of variation of plant type is the smallest, the coefficient of variation of fruit weight and fruit number per plant is larger, and the difference of leaf length and fruit number per plant is the most significant. The analysis of the inheritance law of the important traits of ornamental pepper reveals that the fruiting bearing pattern of clusters versus solitary and limited branch versus infinite branch are recessive genetic traits controlled by single gene.[Ch, 2 fig. 8 tab. 22 ref.]

LIN Zixiang, MA Xiaowei, WU Jianguo, ZHU Zhujun, ZHU Biao. Genetic analysis on heterosis and important traits of ornamental pepper hybrids[J]. Journal of Zhejiang A&F University, 2021, 38(4): 820-827. doi: 10.11833/j.issn.2095-0756.20200745
Citation: LIN Zixiang, MA Xiaowei, WU Jianguo, ZHU Zhujun, ZHU Biao. Genetic analysis on heterosis and important traits of ornamental pepper hybrids[J]. Journal of Zhejiang A&F University, 2021, 38(4): 820-827. doi: 10.11833/j.issn.2095-0756.20200745
  • 观赏辣椒为辣椒属Capsicum中一类主要作为观赏用途的特殊类型,通常指那些果形奇特、果色斑斓、株型紧凑、适合盆栽的辣椒品种,既可用于日常食用,又可作园艺用途、花坛布置与家居装饰,具有良好的开发应用前景[1]。多年来,国外育种者开始有针对性地对观赏辣椒的表型性状进行遗传改良,培育出了很多具有新奇性状的新品种。ASMA等[2]用杂交方式培育了营养价值高出普通辣椒12%且适合观赏和盆栽种植的观赏辣椒品种;METTUPALAYAM等[3]在研究辣椒果实提取物对糖尿病治疗疗效的过程中,发现多个观赏辣椒品种果实提取物对糖尿病患者的疗效要优于普通辣椒果实;MANDARSARI等[4]发现:观赏辣椒的遗传特性明显优于普通辣椒,对高温干旱环境的适应能力更强。中国学者对观赏辣椒也进行了专门研究,如郭咏梅等[5]以3个紫色观赏辣椒品种的果实为试材,进行花青素的提取工艺优化以及pH示差法测定条件的确定,并进一步证实观赏辣椒果实花青素含量与色差值存在显著的相关性;王云梅等[6]通过杂交方式育成了6个适合凉山地区种植,耐寒且极具观赏价值的观赏辣椒品种。杂交育种是当前观赏辣椒新品种培育中的常用方法。目前,针对普通辣椒果实品质与辣椒素含量遗传规律的研究较多,对于观赏辣椒观赏特性、营养特性和环境适应性方面的研究也见报道,但针对观赏辣椒果实着生方式、叶形与株型以及辣椒花器等性状的遗传规律研究还未见报道。果实着生方式、叶形与株型等都是决定观赏价值的重要特性,了解其遗传规律将极大地提高育种效率。本研究以直立型簇生椒与开展型单生椒为材料,配置正反交组合及构建F2群体,测量和统计亲本、F1和F2的叶形、果实着生方式、株型性状,研究其遗传规律,为后续新品种选育提供理论基础。

  • 本研究选用从美国进口单生椒Capsicum annuum ‘Salsa Deep Orange’的高代自交系P6,簇生椒C. annuum ‘Salsa XP Red’的高代自交系P15,杂交获得F1,F1自交获得F2。P6最显著的特点为开展型株型,果实着生方式单生,披针形叶片,青熟果颜色黄色;P15最显著的特点为直立型株型,果实着生方式簇生,卵圆形叶片,青熟果颜色绿色(表1)。

    材料青熟果色果形果实着生状态叶形分枝类型株型
    P6乳黄短指形单生披针形无限生长开展 
    P15绿 长锥形簇生卵圆形有限生长直立 
    P6×P15绿 长锥形单生长卵圆无限生长半直立
    P15×P6绿 长锥形单生长卵圆无限生长半直立

    Table 1.  Main characteristics of ornamental pepper parents and their reciprocal cross combinations

  • 试验在浙江农林大学实验基地的塑料温室内进行。试验材料于2019年8月12日播种,9月13日田间定植,10−12月观察记录。亲本定植各20株,正反交F1各定植20株,正反交F2群体分别定植150株。株行距45 cm×50 cm,采取常规田间管理。材料进入果实成熟期后调查其表型性状。

  • 依据《辣椒种质资源描述规范和数据标准》[7]选定13个农艺性状进行统计分析,其中品质性状4个,分别为果实着生方式、分枝类型、叶形、株型;数量性状9个,分别为株高、株幅、侧枝数、分枝级数、单株结果数、叶长、叶宽、叶柄长及单节叶腋着生花数;数量性状使用美耐特游标卡尺测量,每个指标设置10次重复。使用Canon EOS30D单反相机拍摄记录性状。使用SPSS和Excel软件对测量所得数据进行统计分析、相关性分析、方差分析、性状变异频率和卡方检验分析。变异系数(VC)计算方法参考段晓铨[8]方法: VC=DS/NM×100%,DS为标准偏差,NM是平均值;中亲优势=(F1MP)/MP×100%,超亲优势=(F1HP)/HP×100%,F1为杂交组合F1代表型,MpHp为双亲表型性状的均值与高值亲本的表型。

  • 表2可知:P6和P15在单株结果数、叶长、叶宽、叶柄长、株高、侧枝数、分枝级数、单节叶腋着生花数等指标均存在显著差异(P<0.05),P6×P15与P15×P6在叶长、株幅、侧枝数、分枝级数4个性状上存在显著差异(P<0.05),正反交的F2代群体在分枝级数性状上表现出显著差异(P<0.05)。

    世代株高/cm株幅/cm侧枝数/个分枝级数/级单株结果数/个叶长/mm叶宽/mm叶柄长/mm单节叶腋着
    生花数/朵
    P621.64±1.61 c41.27±2.35 cd8.50±1.72 b7.40±1.17 a26.10±4.84 d63.94±1.66 c23.57±0.95 b34.11±1.08 c4.00±1.49 d
    P1524.90±1.79 b38.93±3.12 d3.30±0.82 d2.40±0.52 e37.30±4.00 c87.94±1.13 a34.53±1.24 a48.45±0.88 a9.20±1.32 a
    P6×P15 F125.33±2.91 b53.27±5.02 a8.10±1.60 b5.50±1.08 b71.10±5.63 a54.72±5.04 d21.05±3.45 b22.69±3.89 d7.00±1.63 bc
    P15×P6 F125.65±3.15 b44.04±2.95 bc11.90±2.73 a4.70±1.06 cd68.60±16.02 a61.01±3.48 c21.92±1.60 b23.25±1.31 d5.70±1.89 c
    P6×P15 F228.45±2.55 a45.48±3.18 b6.47±0.72 c5.02±0.41 bc55.77±8.10 b69.61±7.39 b35.30±3.28 a37.14±3.77 b6.91±0.99 bc
    P15×P6 F229.04±3.30 a44.72±2.37 b5.29±1.08 c4.23±0.48 d56.31±11.93 b71.86±5.89 b36.91±4.97 a38.99±4.47 b7.36±0.93 b
      说明:数据为平均值±标准差,其中:P6和P15样本统计量为20,F1样本统计量为20,F2样本统计量为150;同列不同字母表示不同     世代间差异显著(P<0.05)

    Table 2.  Comparative analysis of variance of different quantitative traits in parents, F1 and F2 generations of ornamental pepper

    结合遗传多样性分析方法,对F2代群体的数量性状进行变异分析。由表3可知:P6×P15的F2代群体9个数量性状中,方差最大的前5个数量性状从大到小依次为叶长、单株结果数、叶柄长、叶宽、株幅,可见叶长和单株结果数等性状的单株间差异最显著;各性状变异系数为20%~45%,平均值为33%。9个数量性状中变异系数最大的是单节叶腋着生花数(VC=45%),其次为分枝级数(VC=40%)和单株结果数(VC=37%),因此可认为单节叶腋着生花数、分枝级数、单株结果数的基因遗传稳定性较低,表型易产生变化。变异最低的是株幅(VC=20%)和株高(VC=25%),可以认为这2个性状的基因稳定性较好,不易变异。由表4可知:组合P15×P6的F2代群体9个数量性状中,方差最大的前5个性状从大到小依次为叶长、单株结果数、叶柄长、叶宽、株幅,单株间的叶长和单株结果数等性状差异较大。变异系数为23%~42%,平均值为35%。数量性状中变异系数最大的是单节叶腋着生花数(VC=42%),其次是单株结果数(VC=41%),再次是分枝级数(VC=38%)、叶长和叶宽(VC=36%)。综上所述,正反交组合得到的F2代群体中,单株结果数、分枝级数、单节叶腋着生花数和叶片性状都存在显著变异,后代易发生变异,而株高和株幅性状变异最少,可以较好保留。

    指标株高/cm株幅/cm侧枝数/个分枝级数/级单株结果数/个叶长/mm叶宽/mm叶柄长/mm单节叶腋着生花数/朵
    平均值  28.4545.486.475.0255.7769.6135.3037.146.91
    最大值 43.5684.9111.009.00110.00132.1753.6765.5113.00
    最小值 14.4527.592.002.0019.0026.8314.7019.961.67
    变幅  29.1157.329.007.0091.00105.3438.9845.5511.33
    方差  49.8581.344.484.06437.05607.46128.22129.339.57
    标准差 7.069.022.122.0120.9124.6511.3211.373.09
    变异系数/%252033403735323145
      说明:统计F2样本数量为150

    Table 3.  Genetic analysis of important quantitative traits in the combined P6×P15 F2 population

    指标株高/cm株幅/cm侧枝数/个分枝级数/级单株结果数/个叶长/mm叶宽/mm叶柄长/mm单节叶腋着生花数/朵
    平均值 29.0444.725.294.2356.3171.8636.9138.997.36
    最大值 45.5369.3711.0010.00115.00119.2969.9368.4613.00
    最小值 13.4223.343.002.0017.0028.0316.8014.522.33
    变幅  32.1146.038.008.0098.0091.2653.1253.9410.67
    方差  63.75105.713.332.59541.05652.22174.25181.439.37
    标准差 7.9810.281.831.6123.2625.5413.2013.473.06
    变异系数/%272335384136363542
      说明:统计F2样本数量为150

    Table 4.  Genetic analysis of important quantitative traits in the combined P15×P6 F2 population

  • 对正反交F2代群体的9个数量性状相关性分析结果(表5表6)表明:株高与株幅、侧枝数、单株结果数呈极显著正相关(P<0.01);株幅与侧枝数、分枝级数和单株结果数呈极显著正相关(P<0.01);侧枝数与分枝级数、单株结果数呈极显著正相关(P<0.01);叶长与叶宽、叶柄长、单节叶腋着生花数呈极显著正相关(P<0.01)。

    项目株高株幅侧枝数分枝级数单株结果数叶长叶宽叶柄长单节叶腋着生花数
    株高      1
    株幅      0.63**1
    侧枝数     0.42**0.68**1
    分枝级数    −0.24**0.27**0.26**1
    单株结果数   0.58**0.72**0.73**0.111
    叶长      0.35**−0.00−0.16−0.47**0.021
    叶宽      0.38**−0.02−0.17*−0.51**0.000.91**1
    叶柄长     0.21**−0.21**−0.30**−0.55**−0.120.80**0.88**1
    单节叶腋着生花数0.31**−0.09−0.25**−0.55**−0.040.88**0.93**0.93**1
      说明:**表示在0.01 水平(双侧)上显著相关。*表示在0.05 水平(双侧)上显著相关

    Table 5.  Correlation analysis of quantitative traits in the combined P6×P15 F2 population

    项目株高株幅侧枝数分枝级数单株结果数叶长叶宽叶柄长单节叶腋着生花数
    株高      1
    株幅      0.69**1
    侧枝数     0.43**0.32**1
    分枝级数    −0.010.32**0.32**1
    单株结果数   0.75**0.54**0.62**0.161
    叶长      0.100.040.060.080.111
    叶宽      0.060.07−0.050.070.050.89**1
    叶柄长     0.070.06−0.040.050.060.93**0.96**1
    单节叶腋着生花数0.050.09−0.010.030.020.89**0.88**0.90**1
      表示:**表示在0.01 水平(双侧)上显著相关。*表示在0.05 水平(双侧)上显著相关

    Table 6.  Correlation analysis of quantitative traits in the combined P15×P6 F2 population

  • 表7可知:F1代P6×P15与P15×P6在单株结果数、株高、株幅(图1)、侧枝数性状上均表现中亲优势;P6×P15表现中亲优势的性状依次为单株结果数(124.29%)、侧枝数(37.29%)、株幅(32.84%)、分枝级数(12.24%)、株高(8.85%)、单节叶腋着生花数(6.06%),占所有性状的66.67%;P15×P6表现中亲优势的性状有单株结果数(116.4%)、侧枝数(101.69%)、株高(10.23%)、株幅(9.83%),占所有性状的44.44%。P6×P15的F2代在7个数量性状上表现中亲优势:单株结果数(75.93%)、株高(22.26%)、叶宽(21.51%)、株幅(13.42%)、侧枝数(9.66%)、单节叶腋着生花数(4.70%)、分枝级数(2.45%);P15×P6的F2代在5个数量性状上表现中亲优势:单株结果数(77.63%)、叶宽(27.06%)、株高(24.80%)、株幅(11.52%)、单节叶腋着生花数(11.52%)。可见,正反交组合F1和F2代在株高、单株结果数和株幅性状上均表现较显著的中亲优势。

    世代杂种优势杂种优势/%
    株高株幅侧枝数分枝级数单株结果数叶长叶宽叶柄长单节叶腋着生花数
    P6×P15 F1中亲优势8.8532.8437.2912.24124.29−27.94−27.54−45.036.06
    P15×P6 F1中亲优势10.239.83101.69−4.08116.40−19.66−24.54−43.68−13.64
    P6×P15 F2中亲优势22.2613.429.662.4575.93−8.3421.51−10.034.70
    P15×P6 F2中亲优势24.8011.52−10.34−13.6777.63−5.3727.06−5.5511.52
    P6×P15 F1超亲优势1.7329.08−4.71−25.6890.62−37.78−39.04−53.17−23.91
    P15×P6 F1超亲优势3.016.7140.00−36.4983.91−30.62−36.52−52.01−38.04
    P6×P15 F2超亲优势14.2610.20−23.88−32.1649.52−20.842.23−23.34−24.89
    P15×P6 F2超亲优势16.638.36−37.76−42.8450.97−18.296.89−19.53−20.00
      说明:数据表示不同类型在不同世代的植株所占百分比,其中F1代样本统计量为20,F2代样本统计量为150

    Table 7.  Comparative analysis of heterosis in different generations

    Figure 1.  Comparison of positive and negative cross plant types and plant amplitudes between parents and F1

    F1代P6×P15与P15×P6 在单株结果数、株幅、株高性状上表现出超亲优势,P6×P15在单株结果数(90.62%)、株幅(29.08%)、株高(1.73%)表现正向优势;P15×P6在单株结果数(83.91%)、侧枝数(40.00%)、株幅(6.71%)、株高(3.01%)表现正向优势。P6×P15和P15×P6的 F2代群体均在单株结果数(49.52%、50.97%)、株高(14.26%、16.63%)、株幅(10.20%、8.36%)、叶宽(2.23%、6.89%)性状上表现正向优势。可见,P6×P15与P15×P6在F1与F2代均在株高、株幅和单株结果数上表现超亲优势。

  • 图2为亲本、F1和F2代的株型、分枝形式及果实着生方式。经卡方检验(表8),簇生与单生、有限分枝与无限分枝性状符合1∶3的孟德尔遗传模型(χ2=0.03<χ2(0.05, 1)=3.84),说明观赏辣椒簇生对单生、有限生长对无限生长性状均由隐性单基因控制。P6(披针形)与P15(长卵圆形)进行杂交,所得F1植株的叶形均为长卵圆形,说明长卵圆形对披针形为显性。将F2群体经卡方测验表明:长卵圆、卵圆、披针形叶形植株数量的分离比符合9∶3∶4的分离比(15%的卵圆形叶,61%的长卵圆形叶,25%的披针形叶)。同理,P15(直立型)与P6(开展型)进行杂交,F1代均呈半直立型, F2代中直立型株、半直立型株和开展型植株的数量分离比符合9∶3∶4的分离比(21%的直立型株,55%的半直立型株,25%的开展型株),说明辣椒叶片形状与株型性状受2对等位基因控制,其遗传方式符合孟德尔遗传定律。

    Figure 2.  Comparison of plant type, leaf and fruit traits between parents, F1 and F2 reciprocal crosses

    指标世代性状株数期望
    分离比
    χ2χ20.05,1χ20.05,2指标世代性状株数期望
    分离比
    χ2χ20.05,1χ20.05,2
    果实着生方式P6×P15 F2簇生  391∶30.033.84披针形 370
    单生  1110.01P15×P6 F2卵圆  323∶9∶40.415.99
    P15×P6 F2簇生  401∶30.113.84长卵圆 870.05
    单生  1100.04披针形 310.96
    分枝类型  P6×P15 F2有限生长311∶30.963.84株型  P6×P15 F2直立型 313∶9∶40.205.99
    无限生长1190.32半直立 820.04
    P15×P6 F2有限生长321∶30.673.84开展型 370
    无限生长1180.22P15×P6 F2直立型 323∶9∶40.415.99
    叶形    P6×P15 F2卵圆  223∶9∶41.135.99半直立 870.05
    长卵圆 910.44开展型 310.96

    Table 8.  Segregation ratio and Chi-square test of important quality traits in F2 population of reciprocal cross of P6 and P15

  • 相较于张宇斌等[9]、王述彬等[10]通过境外引种,多代筛选辣椒优异品种的育种方式,国内的观赏辣椒自主育种起步较晚。很多育种者在辣椒的农艺性状表型上做了大量改良[11-12]。多数研究认为:单株产量、单株结果数均有杂种优势,使用杂种优势选育适合国内推广的观赏辣椒品种是可行的。

    通过对不同株型和叶形的观赏辣椒进行杂交组合,后代群体的表型性状优势指数与前人研究结果类似。陈蕊红[13]选择了8个亲本辣椒,组配成16个不完全双列组合,发现:超中优势效果明显,单株产量杂种优势明显。这与本研究得出的单株结果数有显著杂种优势结论一致。果实数量和辣椒观赏性密切相关,对于辣椒观赏价值起决定性作用。杂种优势往往也表现在株高、冠幅、叶片等在常规辣椒育种中常被忽视的表型性状上。JEONG等[14]在研究盆景辣椒杂交育种过程中就指出:观赏辣椒遗传特性主要表现为叶长变异性强,侧枝数量和株型性状变异不明显,在亲本选择的时候可以优先考虑选取侧枝表现较优的品种。尽管观赏辣椒属于辣椒属中的一个特异群体,但其在株高、株幅、叶形上较高的变异特性和杂种优势与常规辣椒基本一致。通过杂交育种可改善观赏辣椒生长势、分枝性等性状,更有利于观赏辣椒在全国范围内的推广。

    辣椒诸多表型性状间存在错综复杂的关系[15]。徐睿等[16]分析了40份观赏辣椒种质资源的遗传性状,认为单株果实数量与株幅、株高存在正相关。陈倩倩等[17]对19个辣椒品种的12个表型性状进行遗传分析,结果表明:不同辣椒品种之间性状差异显著,变异系数为8.49%~37.77%。叶长与叶宽、始花节位、对椒单果质量呈极显著正相关。可根据育种目标对辣椒性状的要求,有目的地筛选育种材料。本研究中辣椒正反交F2代群体的植株性状与叶片性状间存在显著正相关,与前人研究结果基本一致。辣椒正反交组合F1、F2代群体中,单株结果数、分枝级数、单节叶腋着生花数和叶长都存在显著变异,不易通过杂交育种保留其叶形与开花性状,而株高和株幅变异较少,遗传稳定性较好。MAMEDOR等[18]、王昆等[19]也得出了相似的结果。

    辣椒遗传规律受到基因的作用与控制,不同学者在辣椒各表型性状上进行了研究。隋益虎等[20]使用紫色辣椒和绿色辣椒品种配制杂交组合,测定其叶片花青素相对含量,研究其遗传规律,发现辣椒叶片花青素含量遗传模式符合2对加性-显性-上位性主基因+加性-显性-上位性多基因模型,因此,对辣椒紫叶性状的遗传选择应在分离早期世代进行。本研究针对辣椒叶形的研究显示:长卵圆形叶片对披针形叶片为显性,且披针形叶片对卵圆形叶片具有隐性上位作用。此研究结果可为选育具有奇特叶型的辣椒种质材料提供理论依据。李全辉等[21]以线辣椒C. annuum var. longunt黄色突变体为母本,野生型红色自交系辣椒为父本进行杂交,发现辣椒果实红色对黄色为显性,线辣椒成熟果色黄色性状受1对隐性基因控制。本研究针对辣椒果实着生方式进行研究,发现辣椒簇生对单生和有限分枝对无限分枝均为单基因控制隐性遗传性状。株型和叶形受2对等位基因控制,这与LÜ等[22]的研究结果一致。株型、叶形、果实的着生方式是观赏性辣椒重要的表现性状,可为选育优良性状的观赏辣椒种质资源提供依据。

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return