[1] |
徐利岗, 杜历, 李金泽, 等. 基于SPAC系统的干旱区枸杞蒸腾耗水模拟与分析[J]. 节水灌溉, 2017(7): 1 − 5, 10. |
XU Ligang, DU Li, LI Jinze, et al. Simulation and analysis of transpiration water consumption of Lycium barbarum in arid area based on SPAC system [J]. Water Sav Irrig, 2017(7): 1 − 5, 10. |
[2] |
郭孟霞, 毕华兴, 刘鑫, 等. 树木蒸腾耗水研究进展[J]. 中国水土保持科学, 2006, 4(4): 114 − 120. |
GUO Mengxia, BI Huaxing, LIU Xin, et al. Review on the water consumption of tree transpiration [J]. Sci Soil Water Conserv, 2006, 4(4): 114 − 120. |
[3] |
巨关升, 刘奉觉, 郑世锴, 等. 稳态气孔计与其它3种方法蒸腾测值的比较研究[J]. 林业科学研究, 2000, 13(4): 360 − 365. |
JU Guansheng, LIU Fengjue, ZHENG Shikai, et al. A comparison on the transpiration values measured with steady state porometer and other three methods [J]. For Res, 2000, 13(4): 360 − 365. |
[4] |
LAGERGREN F, LINDROTH A. Transpiration response to soil moisturein pine and spruce trees in Sweden [J]. Agric For Meteorol, 2002, 112(2): 67 − 85. |
[5] |
刘子奇, 王渝淞, 张欢, 等. 基于稳定同位素和热比率技术的侧柏水分逆向运移特征与过程[J]. 应用生态学报, 2020, 31(6): 1817 − 1826. |
LIU Ziqi, WANG Yusong, ZHANG Huan, et al. Characteristics and processes of reverse sap flow of Platycladus orientalis based on stable isotope technique and heat ratio method [J]. Chin J Appl Ecol, 2020, 31(6): 1817 − 1826. |
[6] |
孙守家, 孟平, 张劲松, 等. 基于氘示踪剂和热扩散技术的栓皮栎水分运输速率与效率研究[J]. 生态学报, 2012, 32(12): 3892 − 3901. |
SUN Shoujia, MENG Ping, ZHANG Jinsong, et al. Water transport velocity and efficiency in Quercus variabilis detected with deuterium tracer and thermal dissipation technique [J]. Acta Ecol Sin, 2012, 32(12): 3892 − 3901. |
[7] |
孙慧珍, 周晓峰, 康绍忠. 应用热技术研究树干液流进展[J]. 应用生态学报, 2004, 15(6): 1074 − 1078. |
SUN Huizhen, ZHOU Xiaofeng, KANG Shaozhong. Research advance in application of heat technique in studying stem sap flow [J]. Chin J Appl Ecol, 2004, 15(6): 1074 − 1078. |
[8] |
赵平, 邹绿柳, 饶兴权, 等. 成熟马占相思林的蒸腾耗水及年际变化[J]. 生态学报, 2011, 31(20): 6038 − 6048. |
ZHAO Ping, ZHOU Lüliu, RAO Xingquan, et al. Water consumption and annual variation of transpiration in mature Acacia mangium plantation [J]. Acta Ecol Sin, 2011, 31(20): 6038 − 6048. |
[9] |
蔡锡安, 赵平, 曾小平, 等. 两种木兰科植物的树干液流特征及其与环境因子的关系[J]. 生态学杂志, 2012, 31(9): 2163 − 2169. |
CAI Xi’an, ZHAO Ping, ZENG Xiaoping, et al. Dynamics of xylem sap flow of two Magnoliaceae tree species in relation to environmental factors [J]. Chin J Ecol, 2012, 31(9): 2163 − 2169. |
[10] |
赵春彦, 司建华, 冯起, 等. 树干液流研究进展与展望[J]. 西北林学院学报, 2015, 30(5): 98 − 105. |
ZHAO Chunyan, SI Jianhua, FENG Qi, et al. Stem sap flow research: progress and prospect [J]. J Northwest For Univ, 2015, 30(5): 98 − 105. |
[11] |
王檬檬, 党宏忠, 李钢铁, 等. 晋西黄土区苹果树液流特征及其与环境因子的关系[J]. 中国农业科技导报, 2020, 22(7): 140 − 147. |
WANG Mengmeng, DANG Hongzhong, LI Gangtie, et al. Sap flux density characteristics of apple orchards and their relationship with environmental factors in gully region of loess plateau [J]. J Agric Sci Technol, 2020, 22(7): 140 − 147. |
[12] |
温淑红, 韩新生, 蔡进军, 等. 宁南黄土丘陵区山桃树干液流速率及其与气象因子的关系[J]. 西南农业学报, 2020, 33(6): 1301 − 1308. |
WEN Shuhong, HAN Xinsheng, CAI Jinjun, et al. Relationships between sap flow velocity in tree trunks of Amygdalus davidiana and meteorological factors in loess hilly regions of southern Ningxia [J]. Southwest China J Agric Sci, 2020, 33(6): 1301 − 1308. |
[13] |
杨洁, 吕金林, 何秋月, 等. 黄土丘陵区辽东栎和刺槐树干液流时滞效应与蒸腾特征的关联性[J]. 应用生态学报, 2019, 30(8): 2607 − 2613. |
YANG Jie, LÜ Jinlin, HE Qiuyue, et al. Time lag of stem sap flow and its relationships with transpiration characteristics in Quercus liaotungensis and Robina pseudoacacia in the loess hilly region, China [J]. Chin J Appl Ecol, 2019, 30(8): 2607 − 2613. |
[14] |
孙慧珍, 康绍忠, 胡笑涛. 梨树干木质部液流速度径向分布特征[J]. 园艺学报, 2008, 35(7): 937 − 944. |
SUN Huizhen, KANG Shaozhong, HU Xiaotao. The radial distribution of xylem sap flow velocity in trunks of pear trees [J]. Acta Hortic Sin, 2008, 35(7): 937 − 944. |
[15] |
靳新红, 王百田, 郭红艳, 等. 黄土半干旱区枣、榆水分利用效率的比较研究[J]. 中国生态农业学报, 2009, 17(1): 90 − 93. |
JIN Xinhong, WANG Baitian, GUO Hongyan, et al. Comparison of water use efficiency of Zizyphus jujube and Ulmus pumila in semi-arid zones of the Loess Plateau [J]. Chin J Eco-Agric, 2009, 17(1): 90 − 93. |
[16] |
HUBER B, SCHMIDT E. Eine kompensationsmethode zur thermoelektrischen messung langsamer saftströme [J]. Ber Deutsch Bot Ges, 1937, 59(9): 514 − 529. |
[17] |
MARSHALL D C. Measurement of sap flow in conifers by heat transport [J]. Plant Physiol, 1958, 33(6): 385 − 396. |
[18] |
SWANSON R, WHITFIELD D. A numerical analysis of heat pulse velocity theory and practice [J]. J Exp Bot, 1981, 32(1): 221 − 239. |
[19] |
COHEN Y, FUCHS M, GREEN G C. Improvement of the heat pulse method for determining sap flow in trees [J]. Plant Cell Environ, 1981, 4(5): 391 − 397. |
[20] |
BURGESS S S O, ADAMS M A, TURNER N C, et al. An improved heat pluse method to measure low and reverse rates of sap flow in woody plants [J]. Tree Physiol, 2001, 21: 589 − 598. |
[21] |
岳广阳, 张铜会, 刘新平, 等. 热技术方法测算树木茎流的发展及应用[J]. 林业科学, 2006, 42(8): 102 − 108. |
YUE Guangyang, ZHANG Tonghui, LIU Xinping, et al. Development and application of thermal methods in measuring stem sap flow [J]. Sci Silv Sin, 2006, 42(8): 102 − 108. |
[22] |
SAKURATANI T. A heat balance method for measuring water flux in the stem of intact plants [J]. J Agric Meteorol, 1981, 37(1): 9 − 17. |
[23] |
ČERMÁK J, DEML M, PENKA M. A new method of sap flow rate determination in trees [J]. Biol Plantrum, 1973, 15(3): 171 − 178. |
[24] |
GRANIER A. A new method of sap flow measurement in tree stems [J]. Ann Des Sci For, 1985, 42(2): 193 − 200. |
[25] |
万艳芳, 于澎涛, 刘贤德, 等. 祁连山青海云杉树干液流密度的优势度差异[J]. 生态学报, 2017, 37(9): 3106 − 3114. |
WAN Yanfang, YU Pengtao, LIU Xiande, et al. Variation in sap flow density among levels of tree dominance in Picea crassifolia in the Qilian Mountains [J]. Acta Ecol Sin, 2017, 37(9): 3106 − 3114. |
[26] |
朱敏捷, 赵从举, 徐文娴, 等. 尾叶桉树干液流方位差异及其对环境因子的响应[J]. 海南师范大学学报(自然科学版), 2017, 30(2): 177 − 184. |
ZHU Minjie, ZHAO Congju, XU Wenxian, et al. The differences of Eucalyptus urophylla stem sap flow velocities in different directions and relations between velocities and environmental factors [J]. J Hainan Norm Univ Nat Sci, 2017, 30(2): 177 − 184. |
[27] |
姚增旺, 褚建民, 吴利禄, 等. 民勤绿洲荒漠过渡带梭梭树干液流的时滞特征[J]. 应用生态学报, 2018, 29(7): 2339 − 2346. |
YAO Zengwang, CHU Jianmin, WU Lilu, et al. Time lag characteristics of the stem sap flow of Haloxylon ammodendron in the Minqin oasis desert ectone, China [J]. Chin J Appl Ecol, 2018, 29(7): 2339 − 2346. |
[28] |
王志超, 许宇星, 竹万宽, 等. 雷州半岛尾叶桉人工林夜间耗水特征及驱动因素[J]. 浙江农林大学学报, 2020, 37(4): 646 − 653. |
WANG Zhichao, XU Yuxing, ZHU Wankuan, et al. Characteristics and driving factors of nocturnal water consumption of Eucalypt usurophylla plantations in Leizhou Peninsula [J]. J Zhejiang A&F Univ, 2020, 37(4): 646 − 653. |
[29] |
NADEZHDINA N, VANDEGEHUCHTE M W, STEPPE K. Sap flux density measurements based on the heat field deformation method [J]. Trees, 2012, 26(5): 1439 − 1448. |
[30] |
TRIBUTSCH H, NADEZHDINA N, CERMÁK J. Infrared images of heat fields around a linear heater in tree trunks: what can be learned about sap flow measurement? [J]. Ann For Sci, 2006, 63: 653 − 660. |
[31] |
NADEZHDINA N, ČERMAK J, DOWNEY A, et al. Sap flow index as an indicator of water storage use [J]. J Hydrol Hydromechan, 2015, 63(2): 124 − 133. |
[32] |
NADEZHDINA N, DAVID J S, PINTO C A, et al. Root sap flow as a tool to establish hydro logical thresholds for plant growth and survival [J/OL]. Agric Water Manage, 2020, 241: 106388[2021-02-12]. doi: 10.1016/j.agwat.2020.106388. |
[33] |
NADEZHDINA N. Integration of water transport pathways in a maple tree: responses of sap flow to branch severing [J/OL]. Ann For Sci, 2010, 67: 107[2021-03-01]. doi: 10.1051/forest/2009092 . |
[34] |
HELFTER C, SHEPHARD J D, MARTÍNEZ-VILALTA J, et al. A noninvasive optical system for the measurement of xylem and phloem sap flow in woody plants of small stem size [J]. Tree Physiol, 2007, 27(2): 169 − 179. |
[35] |
CLEARWATER M J, LUO Zhiwei, MAZZEO M, et al. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems [J]. Plant Cell Environ, 2009, 32(12): 1652 − 1663. |
[36] |
SKELTON R P, WEST A G, DAWSON T E, et al. External heat-pulse method allows comparative sap flow measurements in diverse functional types in a Mediterranean-type shrubland in South Africa [J]. Func Plant Biol, 2013, 40(10): 1076 − 1087. |
[37] |
GREEN S, CLOTHIER B, JARDINE B. Theory and practical application of heat pulse to measure sap flow [J]. Agron J, 2003, 95(6): 1371 − 1379. |
[38] |
TESTI L, VILLALOBOS F J. New approach for measuring low sap velocities in trees [J]. Agric For Meteorol, 2009, 149(3): 730 − 734. |
[39] |
LANGENSIEPEN M, KUPISCH M, GRAF A, et al. Improving the stem heat balance method for determining sap-flow in wheat [J]. Agric For Meteorol, 2014, 186: 34 − 42. |
[40] |
TRCALA M, ČERMÁK J. Improvement of the trunk heat balance method including measurement of zero and reverse sap flows [J]. Agric For Meteorol, 2012, 166/167: 120 − 126. |
[41] |
TRCALA M, ČERMÁK J. A new heat balance equation for sap flow calculation during continuous linear heating in tree sapwood [J]. Appl Therm Eng, 2016, 102: 532 − 538. |
[42] |
NAKANO Y, IWASAKI N. Determination of phloem sap flow rate using a combination of the heat balance method and girdling in citrus [J/OL]. Agric For Meteorol, 2019, 278: 107669[2021-01-20]. doi: 10.1016/j.agrformet.2019.107669. |
[43] |
LU Ping, URBAN L, ZHAO Ping. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice [J]. Acta Bot Sin, 2004, 46(6): 631 − 646. |
[44] |
马玉洁, 李春友, 武鹏飞, 等. 基于实测白榆蒸腾速率校正计算液流速率的Granier原始公式[J]. 林业科学, 2020, 56(6): 179 − 185. |
MA Yujie, LI Chunyou, WU Pengfei, et al. Correction of Granier’s original formula coefficient for calculating sap flow based on the measured transpiration rate of Ulmus pumila [J]. Sci Silv Sin, 2020, 56(6): 179 − 185. |
[45] |
SANTOS I M S, VELLAME L M, ARAÚJO J F, et al. Calibration of the thermal dissipation probe for atemoya (Annona squamosa × A. cherimola) [J]. Engenharia Agrícola, 2020, 40(4): 545 − 554. |
[46] |
PASQUALOTTO G, CARRARO V, MENARDI R, et al. Calibration of Granier-Type (TDP) sap flow probes by a high precision electronic potometer [J/OL]. Sensors, 2019, 19: 2419[2021-02-10]. doi: 10.3390/s19102419. |
[47] |
LINK R M, FUCHS S, AGUILAR D A, et al. Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species [J]. Agric For Meteorol, 2020, 287:107913[2021-03-13]. doi: 10.1016/s.agrformet.2020.107913. |
[48] |
王胜. 水蚀风蚀交错区典型乔灌树种蒸腾耗水特征研究[D]. 北京: 中国科学院, 2019. |
WANG Sheng. Transpiration Characteristics of Typical Shrub and Tree Species in the Water-Wind Erosion Crisscross Region [D]. Beijing: Chinese Academy of Sciences, 2019. |
[49] |
杜梦鸽, 王胜, 樊军. 五针热脉冲探头在测定树干液流中的应用[J]. 应用生态学报, 2017, 28(8): 2438 − 2444. |
DU Mengge, WANG Sheng, FAN Jun. Application of the penta-needle heat pulse probes to determine the stem sap flow [J]. Chin J Appl Ecol, 2017, 28(8): 2438 − 2444. |
[50] |
田清远. 基于热平衡方式的植物茎流检测系统研究[D]. 昆明: 昆明理工大学, 2013. |
TIAN Qingyuan. A Study of Sap Flow Detection System based on Heat Balance [D]. Kunming: Kunming University of Science and Technology, 2013. |
[51] |
刘庆新. 热扩散法液流误差校正及其在林分水量平衡中的应用[D]. 北京: 中国林业科学研究院, 2012. |
LIU Qingxin. Error Correction of Thermal Dissipation Method for Sap Flow and Its Application in the Research of Stand Water Balance [D]. Beijing: Chinese Academy of Forestry, 2012. |
[52] |
NADEZHDINA N, ČERMÁK J, CEULEMANS R. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors [J]. Tree Physiol, 2002, 22(13): 907 − 918. |
[53] |
CLEARWATER M J, MEINZER F C, ANDRADE J L, et al. Potential errors in measurement of nonuniform sap flow using heat dissipation probes [J]. Tree Physiol, 1999, 19(10): 681 − 687. |
[54] |
郑怀舟, 朱锦懋, 魏霞, 等. 5种热动力学方法在树干液流研究中的应用评述[J]. 福建师范大学学报(自然科学版), 2007, 23(4): 18 − 23. |
ZHENG Huaizhou, ZHU Jinmao, WEI Xia, et al. Review on the five thermodynamic technology applied in the research of sap flow [J]. J Fujian Norm Univ Nat Sci Ed, 2007, 23(4): 18 − 23. |
[55] |
孙慧珍, 孙龙, 王传宽, 等. 东北东部山区主要树种树干液流研究[J]. 林业科学, 2005, 41(3): 36 − 42. |
SUN Huizhen, SUN Long, WANG Chuankuan, et al. Sap flow of the major tree species in the eastern mountainous region in northeast China [J]. Sci Silv Sin, 2005, 41(3): 36 − 42. |
[56] |
MINER G L, HAM J M, KLUITENBERG G J. A heat-pulse method for measuring sap flow in corn and sun- flower using 3D-printed sensor bodies and low-cost electronics [J]. Agric For Meteorol, 2017, 246: 86 − 79. |
[57] |
SIQUEIRA J M, PAÇO T A, da SILVA J M, et al. Biot-Granier sensor: a novel strategy to measuring sap flow in trees [J/OL]. Sensors, 2020, 20: 3538[2021-01-28]. doi: 10.3390/s20123538. |
[58] |
龙秋波, 贾绍凤. 茎流计发展及应用综述[J]. 水资源与水工程学报, 2012, 23(4): 18 − 23. |
LONG Qiubo, JIA Shaofeng. Review on the development and application of sap flow gauge [J]. J Water Resour Water Eng, 2012, 23(4): 18 − 23. |