Volume 38 Issue 5
Oct.  2021
Turn off MathJax
Article Contents

HU Yingbing, JIN Jin, TONG Zhipeng, WU Jiasen. Soil fertility in Carya cathayensis plantation: a review[J]. Journal of Zhejiang A&F University, 2021, 38(5): 1066-1075. doi: 10.11833/j.issn.2095-0756.20210501
Citation: HU Yingbing, JIN Jin, TONG Zhipeng, WU Jiasen. Soil fertility in Carya cathayensis plantation: a review[J]. Journal of Zhejiang A&F University, 2021, 38(5): 1066-1075. doi: 10.11833/j.issn.2095-0756.20210501

Soil fertility in Carya cathayensis plantation: a review

doi: 10.11833/j.issn.2095-0756.20210501
  • Received Date: 2021-07-21
  • Rev Recd Date: 2021-09-06
  • Available Online: 2021-10-12
  • Publish Date: 2021-10-20
  • Chinese hickory (Carya cathayensis) is a unique woody nut and oil tree species in China. Chinese hickory industry brings high income for local farmers in its main production region. Soil fertility such as nitrogen, phosphorus and potassium in soils determines the healthy growth of Chinese hickory. Therefore, research related to soil fertility are attracting more attention in China. The soil fertility of Chinese hickory plantation was mainly influenced by elevation, parent materials and antropogenic management, among which the intensive management plays an important role in soil fertility variation. Intensive management could lead to the heavy decrease of soil fertility such as soil acidification, the decrease of soil organic carbon and available nutrient contents. The removement of understory resulted in the severe soil erosion as well as obvious nutrient loss. The composition of soil microbial community changed and its diversity declined. What’s more, due to the deterioration of soil quality, the yield and quality of hickory nut dropped. The application of organic materials and sod cultivation increased soil pH, as well as the contents of soil organic carbon and available nutrients, and further effectively improved soil fertility. Current researches mainly focus on the spatio-temporal changes of soil fertility. Reasonable fertilizer application and the effect of net harvesting of hickory nut on soil fertility need further study. The formation mechanism along with the control techniques of soil erosion in Chinese hickory plantation also need deeply explored, which can provide basic information and technique support. [Ch, 71 ref.]
  • [1] HUANG Jinghan, BI Huaxing, ZHAO Danyang, WANG Ning, LIU Zehui, ZHANG Rong.  Vertical distribution of soil moisture in typical plantation in the loess region of western Shanxi Province . Journal of Zhejiang A&F University, 2024, 41(2): 387-395. doi: 10.11833/j.issn.2095-0756.20230228
    [2] WANG Xiaoxuan, HE Shiyang, YE Zihao, HU Yingbin, FU Weijun, WU Jiasen.  Spatial variability and affecting factors of soil fertility in Chinese hickory stands at village scale . Journal of Zhejiang A&F University, 2023, 40(4): 811-819. doi: 10.11833/j.issn.2095-0756.20220544
    [3] XIE Linfeng, LING Xiaoxiao, HUANG Shengyan, GAO Haozhan, WU Jiasen, CHEN Junhui, HUANG Jianqin, QIN Hua.  Spatial distribution characteristics of soil hydrolase activities and soil fertility evaluation of Carya cathayensis forests in Lin’an District . Journal of Zhejiang A&F University, 2022, 39(3): 625-634. doi: 10.11833/j.issn.2095-0756.20210417
    [4] FANG Wei, YU Xiao, WANG Jing, XU Qiufang, LIANG Chenfei, QIN Hua, CHEN Junhui.  Effects of applying limestone powder and microbial fertilizer on soil chemical properties and microbial community in the diseased Carya cathayensis woodland . Journal of Zhejiang A&F University, 2020, 37(2): 273-283. doi: 10.11833/j.issn.2095-0756.2020.02.011
    [5] JIANG Shikun, ZHOU Yunchao, TAN Wei, CHEN Zhu, HUANG Jianfeng.  Soil fertility of Pinus massoniana forests under different near-natural management measures . Journal of Zhejiang A&F University, 2020, 37(5): 876-882. doi: 10.11833/j.issn.2095-0756.20190549
    [6] GUO Jiahuan, SUN Jiejie, FENG Huili, CAO Penghe, YU Yuanchun.  Research progress on evolution trends and maintenance measures of soil fertility quality in Cunninghamia lanceolata plantations . Journal of Zhejiang A&F University, 2020, 37(4): 801-809. doi: 10.11833/j.issn.2095-0756.20190478
    [7] XU Junli, ZHANG Guilian, ZHANG Xijin, GAO Zhiwen, ZHONG Qicheng, ZHANG Yaping, SONG Kun, DA Liangjun.  Soil physical and chemical properties and effects of plant community characteristics in forest plantations of Shanghai City . Journal of Zhejiang A&F University, 2018, 35(6): 1017-1026. doi: 10.11833/j.issn.2095-0756.2018.06.004
    [8] MA Shanshan, ZHAO Keli, DING Lizhong, HUANG Sha, CAI Ling, ZHAO Weiming, YE Zhengqian.  Soil fertility in Carya cathayensis orchards for major towns of Lin'an City, China . Journal of Zhejiang A&F University, 2016, 33(6): 953-960. doi: 10.11833/j.issn.2095-0756.2016.06.005
    [9] SHENG Weixing, WU Jiasen, XU Jianchun, ZHANG Shaowei, CAI Jianrong.  Years of cultivation along with light and high fractions of soil organic carbon in a Carya cathayensis forest . Journal of Zhejiang A&F University, 2015, 32(5): 803-808. doi: 10.11833/j.issn.2095-0756.2015.05.022
    [10] LI Zi-chuan, ZHUANG Shun-yao, GUI Ren-yi, JI Hai-bao, LI Guo-dong, ZHENG Kang-le.  Chemical properties and distribution of phytotoxic Al species in intensively cultivated soils of Phyllostachys praecox stands . Journal of Zhejiang A&F University, 2011, 28(6): 837-844. doi: 10.11833/j.issn.2095-0756.2011.06.001
    [11] LIU Li-na, JIN Ai-wu.  Spatial variability of soil nutrients for an intensively managed Phyllostachys pubescens forest . Journal of Zhejiang A&F University, 2011, 28(5): 828-832. doi: 10.11833/j.issn.2095-0756.2011.05.025
    [12] YE Geng-ping, LIU Juan, JIANG Pei-kun, ZHOU Guo-mo, WU Jiao-sen.  Soil respiration during the growing season with intensive management of Phyllostachys pubescens . Journal of Zhejiang A&F University, 2011, 28(1): 18-25. doi: 10.11833/j.issn.2095-0756.2011.01.004
    [13] XU Yan, SHEN Yue-qin, HUANG Jian-qin, LIN Jian-hua.  Farmers’ willingness to adopt ecological management model for Carya cathayensis . Journal of Zhejiang A&F University, 2010, 27(5): 750-756. doi: 10.11833/j.issn.2095-0756.2010.05.018
    [14] QIN Hua, XU Qiu-fang, CAO Zhi-hong.  Soil microbial biomass in long-term and intensively managed Phyllostachys praecox stands . Journal of Zhejiang A&F University, 2010, 27(1): 1-7. doi: 10.11833/j.issn.2095-0756.2010.01.001
    [15] GONG Zhi-wen, KANG Xin-gang, GU Li, ZHAO Jun-hui, ZHENG Yan-feng, YANG Hua.  Research methods on natural forest stand structure:a review . Journal of Zhejiang A&F University, 2009, 26(3): 434-443.
    [16] SUN Da,  HUANG Fang,  CAI Rong-rong,  QIN Hua,  ZHUANG Shun-yao,  ZHANG Miao-xian, CAO Zhi-hong.  Temporal and spatial variation of soil phosphorus in Phyllostachys praecox stands under intensive cultivation management . Journal of Zhejiang A&F University, 2007, 24(6): 670-674.
    [17] CAI Rong-rong, HUANG Fang, SUN Da, QINHua, YANG Fang, ZHUANG Shun-yao, ZHOUGuo-mo, CAO Zhi-hong.  Temporal and spatial variation of soil organic matters in Phyllostachys praecox stands with intensive cultivation management . Journal of Zhejiang A&F University, 2007, 24(4): 450-455.
    [18] Xu Youming, Gao Fang bing, JiangBiao, Cai Shanyin, Hong Xinpu..  Silvicultural techniques of slash pine pulp plantation under short rotation . Journal of Zhejiang A&F University, 1998, 15(2): 116-121.
    [19] Wang Zutan, Xu Shuhong, Ding Lizhong.  An Investigation Report on Intensive Farming and Management of the planted Forests in Brazil . Journal of Zhejiang A&F University, 1996, 13(4): 497-501.
    [20] Lin Kaimin, Lin Guoqing, Zhang Shenlong, Yu Lixuan..  Differences of soil Fertility between Nautral Broadleaved Forest and Replanted Chinese Fir Forest. . Journal of Zhejiang A&F University, 1995, 12(2): 221-225.
  • [1]
    SHEN Yueqin, ZHU Zhen, WU Weiguang, et al. Farmer’s willingness to management way of non-wood forest products and its influencing factors [J]. J Nat Resour, 2010, 25(2): 192 − 199.
    [2]
    WANG Jiping, LI Ya’nan, MA Jianwei. Study on the primary nutrient components of Carya cathayensis [J]. Food Sci, 1998, 19(4): 44 − 46.
    [3]
    GU Shufang. Differentiation and development of female flowers in Carya cathayensis [J]. J Zhejiang For Coll, 1984, 1(1): 23 − 129.
    [4]
    LI Zhangju. Study on the annual cycle of Carya cathayensis [J]. J Zhejiang For Coll, 1982(1): 54 − 62.
    [5]
    LI Zhangju. Study on the relationship between the develpment of buds, rudder and fruits [J]. J Zhejiang For Coll, 1985, 2(2): 31 − 35.
    [6]
    LI Zhangju, QIAN Lianfang. Achievements and measures of increase production of Carya cathayensis Sarg. [J]. J Zhejiang For Sci Technol, 1992, 12(6): 49 − 53, 29.
    [7]
    LÜ Huijin. The natural stands conditions of Carya cathayensis Sarg. in Lin’an County of Zhejiang Province [J]. For Eng, 2005, 21(1): 1 − 3, 6.
    [8]
    YANG Shuzhen, DING Lizhong, LOU Junfang, et al. Occurence regularity of Carya cathayensis canker disease and its control [J]. J Zhejiang For Coll, 2009, 26(2): 228 − 232.
    [9]
    ZHANG Chuanqing, ZHANG Zuping, SUN Pinlei, et al. Comparison of sensitivity of Botryosphaeria dothidea to 7 fungicides and its baseline sensitivity to difenoconazole [J]. Chin J Pestic Sci, 2011, 13(1): 84 − 86.
    [10]
    HU Guoliang, CHENG Yipeng, LOU Junfang, et al. Biological characteristics of blossom midge (Contarinia sp.) in Carya cathayensis and its control techniques [J]. J Zhejiang For Coll, 2007, 24(4): 463 − 467.
    [11]
    SHAO Yarong. Common pests of Carya cathayensis and control techniques [J]. Mod Agric Sci Technol, 2008(14): 126, 137.
    [12]
    HONG Youyou, TANG Xiaohua, WANG Hui. Study on soil fertility of Carya cathayensis forests [J]. J Zhejiang For Sci Technol, 1997, 17(6): 1 − 8.
    [13]
    MA Yugao, WU Zhuming. A preliminary study on the geological background of special fruit products in Zhejiang Province [J]. Geol China, 2004, 31(suppl ): 104 − 111.
    [14]
    MA Shanshan, CHENG Lize, DING Lizhong, et al. Application of B, Zn and Cu fertilizer on growth and yield of Carya cathayensis [J]. J Zhejiang For Sci Technol, 2016, 36(2): 31 − 36.
    [15]
    ZHANG Xudong, ZHANG Jiying. Preliminary study on related factors on Dothiorella gregaria of Carya cathayensis [J]. For Pest Dis, 1994(1): 10 − 13.
    [16]
    PAN Zhiqiang. Influences of site conditions on the occurrence of Dothiorella gregaria of Carya cathayensis [J]. For Sci Technol, 2008(8): 31 − 32.
    [17]
    LI Hao, DONG Jianhua, YUAN Ziqian, et al. Soil fungi community structure in Carya cathayensis forest [J]. J Zhejiang For Sci Technol, 2018, 38(5): 67 − 72.
    [18]
    SONG Suling. Carya cathayensis Sarg. Forest Soil Degradation and Its Improvement through Fertilization[D]. Hangzhou: Zhejiang A&F University, 2014.
    [19]
    ZHANG Hongju, MA Shanshan, ZHAO Keli, et al. Soil fertility and its spatial distribution for Carva cathayensis stands in Lin’an, Zhejiang Province [J]. J Zhejiang A&F Univ, 2018, 35(4): 664 − 673.
    [20]
    SHEN Yifan, QIAN Jinfang, ZHENG Xiaoping, et al. Spatial-temporal variation of soil fertility in Chinese walnut (Carya cathayensis) plantation [J]. Sci Silv Sin, 2016, 52(7): 1 − 12.
    [21]
    WANG Yanyan, ZHAO Weiming, ZHAO Keli, et al. Effects of altitude on pH value and available nutrients in Chinese hickory orchards [J]. Mod Agric Sci Technol, 2012(17): 24 − 225, 231.
    [22]
    WU Jiasen, ZHANG Jinchi, HUANG Jianqin, et al. Distribution characteristics of soil organic carbon in Carya cathayensis producing regions of Lin’an City, Zhejiang Province [J]. J Zhejiang Univ Agric Life Sci, 2013, 39(4): 413 − 420.
    [23]
    HUANG Xingzhao, HUANG Jianqin, CHEN Dinghong, et al. Comparison on soil physical and chemical properties at different vertical zones of Carya cathayensis stands [J]. J Zhejiang For Sci Technol, 2010, 30(6): 23 − 27.
    [24]
    QIAN Xiaoyan, HUANG Jianqin, SHUAI Xiaobai, et al. Comparison of soil physiochemical properties at Carya cathayensis stands in Lin’an [J]. J Zhejiang For Sci Technol, 2013, 33(1): 7 − 11.
    [25]
    DONG Jianhua, ZHAO Weiming, ZHAO Keli, et al. Factor analysis of soil fertility under different geological background conditions in Carya cathayensis plantation [J]. Non-wood For Res, 2018, 36(4): 52 − 58.
    [26]
    CHEN Shiquan, HUANG Jianqin, HUANG Xingzhao, et al. Nutrient elements in soil and Carya cathayensis leaves from four parent rock materials [J]. J Zhejiang For Coll, 2010, 27(4): 572 − 578.
    [27]
    SONG Mingyi, CHEN Wenguang, SI Xiaojun, et al. Study on site conditions of Carya cathayensis stand in Anji County [J]. J Zhejiang For Sci Technol, 2008, 28(6): 11 − 15.
    [28]
    QIAN Xinbiao, XU Wenxin, ZHANG Yuanyuan, et al. Trace elements in kernels of Chinese hickory (Carya cathayensis) grown in limestone and non-limestone soils [J]. J Zhejiang For Coll, 2009, 26(4): 511 − 515.
    [29]
    YANG Huisi, ZHAO Keli, YE Zhengqian, et al. Spatial response of Carya cathayensis quality to soil nutrients [J]. J Plant Nutr Fert, 2019, 25(10): 1752 − 1762.
    [30]
    QIAN Jinfang, WU Jiasen, HUANG Jianqin. Effects of sod-cultural practices on soil nutrients and microbial diversity in the Carya cathayensis forest [J]. Acta Ecol Sin, 2014, 34(15): 4324 − 4332.
    [31]
    HE Ziping, JIANG Zhongcheng, LÜ Weili, et al. Effect of karst dynamic systems on fertility of typical calcareous soils [J]. Carsologica Sin, 2001(3): 65 − 69.
    [32]
    ZHOU Xiufeng, ZHANG Jinlin, FENG Xiuzhi, et al. Effects of intensive management on carbon content of soil humus composition in Carya cathayensis forest [J]. Bull Soil Water Conserv, 2017, 37(1): 67 − 71.
    [33]
    MA Shanshan, ZHAO Keli, DING Lizhong, et al. Soil fertility in Carya cathayensis orchards for major towns of Lin’an City, China [J]. J Zhejiang A&F Univ, 2016, 33(6): 953 − 960.
    [34]
    WU Weifeng, LIN Haiping, FU Weijun, et al. Soil organic carbon content and microbial functional diversity were lower in monospecific Chinese hickory stands than in natural Chinese hickory-broad-leaved mixed forests [J]. Forests, 2019, 10(4): 357 − 369.
    [35]
    WU Jiasen, HUANG Jianqin, LIU Dan, et al. Effect of 26 years of intensively managed Carya cathayensis stands on soil organic carbon and fertility[J]. Sci World J, 2014(6): 857641. doi: 10.1155/2014/857641.
    [36]
    FANG Xianghua, ZHANG Jinchi, MENG Miaojing, et al. Forest-type shift and subsequent intensive management affected soil organic carbon and microbial community in southeastern China [J]. Eur J For Res, 2017, 136(4): 689 − 697.
    [37]
    SHENG Weixing, WU Jiasen, XU Jianchun, et al. Years of cultivation along with light and high fractions of soil organic carbon in a Carya cathayensis forest [J]. J Zhejiang A&F Univ, 2015, 32(5): 803 − 808.
    [38]
    WU Qifeng, ZHANG Xiumei, RUAN Yifei, et al. Soil fertility characteristics and fertilization strategies of Carya cathayensis stands in Lin’an City, China [J]. J Zhejiang Agric Sci, 2017, 58(7): 1132 − 1135.
    [39]
    CHEN Weixin, WU Qifeng, HUANG Sansan, et al. Soil fertility status and existing problems of Carya cathayensis stands in Lin’an City, China [J]. China Agric Technol Ext, 2013, 29(6): 45 − 46.
    [40]
    ZHANG Chunmiao, ZHANG Youzhen, YAO Fang, et al. Temporal and spatial variation of soil pH and nutrient availability for Carya cathayensis orchards in Lin’an [J]. J Zhejiang A&F Univ, 2011, 28(6): 845 − 849.
    [41]
    PAZ-FERREIRO J, FU Shenglei. Biological indices for soil quality evaluation: perspectives and limitations [J]. Land Degradation Dev, 2016, 27(1): 14 − 25.
    [42]
    SHAO Xiangjun, XU Jianchun, WU Jiasen, et al. Changes in soil microbial biomass carbon and nitrogen of Carya Cathayensis plantations under intensive managements [J]. Bull Soil Water Conserv, 2016, 36(2): 72 − 75, 81.
    [43]
    LI Hao, DONG Jianhua, DONG Jianming, et al. Comparison on soil bacteria diversity between degrated and healthy Carya cathayensis forests [J]. J Zhejiang For Sci Technol, 2017, 37(5): 42 − 47.
    [44]
    ZHANG Mei, LIN Mashui, CAO Xiuxiu, et al. Difference in pH value and nutrient and bacterial diversity in the Carya cathayensis forest soil under different management models [J]. Biodiv Sci, 2018, 26(6): 611 − 619.
    [45]
    ZHANG Mei. The Microbial Diversity Difference in the Carya cathayensis Forest Soil under Different Management Models[D]. Hangzhou: Zhejiang A&F University, 2018.
    [46]
    GAO Zhi, LIU Zhiqiang, LI Yuannong. Soil and water loss status and ecological restoration countermeasures in Lin’an City, Zhejiang Province [J]. Res Soil Water Conserv, 2014, 21(5): 327 − 331.
    [47]
    YE Jing, WU Jiasen, ZHANG Jinchi, et al. Hydrological effects of litters and soils in Carya Cathayensis forest with different managing time [J]. Bull Soil Water Conserv, 2014, 34(3): 87 − 91.
    [48]
    WANG Ying, LU Rongjie, WU Jiasen, et al. Preliminary study on annual dynamics of nitrogen and phosphorus losses at Carya cathayensis stand on slope [J]. J Zhejiang For Sci Technol, 2017, 37(4): 77 − 81.
    [49]
    ZHAO Weiming, WANG Yanyan, MA Jiawei, et al. Phosphorus status and its leaching loss risks in the soils of Chinese hickory orchards in Lin’an City, Zhejiang Province [J]. Acta Agric Zhejiang, 2014, 26(1): 154 − 158.
    [50]
    JIANG Wen, HUANG Chengpeng, YAO Yuqing, et al. Dynamic changes of soil nutrients leaching in different hickory stands [J]. J Zhejiang For Sci Technol, 2012, 32(2): 18 − 22.
    [51]
    WU Jianping, LIU Zhanfeng, CHEN Dima, et al. Understory plants can make substantial contributions to soil respiration: evidence from two subtropical plantations [J]. Soil Biol Biochem, 2011, 43(11): 2355 − 2357.
    [52]
    KOU Jiancun, YANG Wenquan, HAN Mingyu, et al. Research progress on interplanting grass in orchard in China [J]. Pratacult Sci, 2010, 27(7): 154 − 159.
    [53]
    YAN Xiaojie. Soil Properties with Grass Cover in Carya cathayensis[D]. Hangzhou: Zhejiang A&F University, 2012.
    [54]
    WU Jiasen, LIN Haiping, MENG Cifu, et al. Effects of intercropping grasses on soil organic carbon and microbial community functional diversity under Chinese hickory (Carya cathayensis Sarg.) stands [J]. Soil Res, 2014, 52(6): 575 − 583.
    [55]
    YE Xiefeng, YANG Chao, LI Zheng, et al. Effects of green manure in corporation on soil enzyme activities and fertility in tobacco-planting soils [J]. J Plant Nutr Fert, 2013, 19(2): 445 − 454.
    [56]
    YU Lin, CHEN Jun, CHEN Lijuan, et al. Effect of interplantation of green manure varieties on yield of hickory forests [J]. J For Eng, 2011, 25(3): 92 − 95.
    [57]
    XIA Wei, YAN Jiangming, ZHU Aiguo. Controling measures and effects of soil and water loss in Carya cathayensis stand [J]. J Zhejiang Agric Sci, 2008, 49(3): 287 − 289.
    [58]
    ZHENG Youmiao, WANG Yun’nan, YUE Chunlei, et al. Effect of different plant compositions on water and soil conservation under Carya cathayensis forest [J]. J Zhejiang For Sci Technol, 2014, 34(4): 72 − 75.
    [59]
    LU Yulin, DAI Shengqian, LI Yunhuai, et al. Factor analysis of agro-geological environment of Carya Cathayensis plantation in Ningguo City, Anhui Province [J]. Chin J Soil Sci, 2006, 37(6): 1203 − 1206.
    [60]
    YUAN Ziqian, YE Zhengqian, LI Hao, et al. Main soil fertility factors and their critical ranges for Chinese walnut (Carya cathayensis Sarg.) production [J]. J Plant Nutr Fert, 2020, 26(1): 163 − 171.
    [61]
    ZENG Shiyuan, DING Lizhong, MA Shanshan, et al. Effect of biogas residue, potassium humate and calcium-magnesium phosphate application on improving soil in degraded Carya cathayensis forest and its nut yield [J]. Jiangsu J Agric Sci, 2019, 35(3): 618 − 623.
    [62]
    SHI Hongjing, MA Shanshan, ZHAO Keli, et al. Effect of organic materials on improvement of Carya cathayensis forest acidic soil [J]. J Zhejiang A&F Univ, 2017, 34(4): 670 − 678.
    [63]
    NI Xing, DOU Chunying, DING Lizhong, et al. Organic materials improved the soil fertility in Carya cathayensis forest lands [J]. J Plant Nutr Fert, 2018, 24(5): 1266 − 1275.
    [64]
    DING Lizhong, PAN Weihua, MA Shanshan, et al. Effects of testing soil for formulated fertilization on growth and yield in Carya cathayensis [J]. Non-wood For Res, 2018, 36(4): 33 − 39.
    [65]
    FANG Wei, YU Xiao, WANG Jing, et al. Effects of applying limestone powder and microbial fertilizer on soil chemical properties and microbial community in the diseased Carya cathayensis woodland [J]. J Zhejiang A&F Univ, 2020, 37(2): 273 − 283.
    [66]
    HUANG Chengpeng, WU Jiasen, XU Kaiping, et al. Runoff losses of nitrogen and phosphorus under Carya cathayensis Sarg. stand with different fertilization [J]. J Soil Water Conserv, 2012, 26(1): 43 − 46, 52.
    [67]
    TONG Genping, WANG Weiguo, ZHANG Yuanyuan, et al. Seasonal changes of soil and leaf nutrient levels in a Carya cathayensis orchard [J]. J Zhejiang For Coll, 2009, 26(4): 516 − 521.
    [68]
    YAN Daoliang, HUANG Youjun, JIN Shuihu, et al. Temporal variation of C, N, P stoichiometric in functional organs rootlets, leaves of Carya cathayensis and forest soil [J]. J Soil Water Conserv, 2013, 27(5): 255 − 259.
    [69]
    YAN Daoliang, MEI Li, XIA Guohua, et al. Leaves nutrient resorption characteristics and stoichiometry of C, N, P and K in Carya cathayensis and soil [J]. J Northeast For Univ, 2013, 41(6): 41 − 45.
    [70]
    CHEN Qiang, KRAVCHENKO Y S, CHEN Yuan, et al. Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tollage [J]. Acta Pedol Sin, 2014, 51(1): 11 − 21.
    [71]
    YAN Yong, WANG Huili, LIU Qiang, et al. Research on allocation mode of controling measures for soil and water loss in Carya cathayensis forest [J]. Technol Soil Water Conserv, 2018(5): 35 − 37.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(833) PDF downloads(48) Cited by()

Related
Proportional views

Soil fertility in Carya cathayensis plantation: a review

doi: 10.11833/j.issn.2095-0756.20210501

Abstract: Chinese hickory (Carya cathayensis) is a unique woody nut and oil tree species in China. Chinese hickory industry brings high income for local farmers in its main production region. Soil fertility such as nitrogen, phosphorus and potassium in soils determines the healthy growth of Chinese hickory. Therefore, research related to soil fertility are attracting more attention in China. The soil fertility of Chinese hickory plantation was mainly influenced by elevation, parent materials and antropogenic management, among which the intensive management plays an important role in soil fertility variation. Intensive management could lead to the heavy decrease of soil fertility such as soil acidification, the decrease of soil organic carbon and available nutrient contents. The removement of understory resulted in the severe soil erosion as well as obvious nutrient loss. The composition of soil microbial community changed and its diversity declined. What’s more, due to the deterioration of soil quality, the yield and quality of hickory nut dropped. The application of organic materials and sod cultivation increased soil pH, as well as the contents of soil organic carbon and available nutrients, and further effectively improved soil fertility. Current researches mainly focus on the spatio-temporal changes of soil fertility. Reasonable fertilizer application and the effect of net harvesting of hickory nut on soil fertility need further study. The formation mechanism along with the control techniques of soil erosion in Chinese hickory plantation also need deeply explored, which can provide basic information and technique support. [Ch, 71 ref.]

HU Yingbing, JIN Jin, TONG Zhipeng, WU Jiasen. Soil fertility in Carya cathayensis plantation: a review[J]. Journal of Zhejiang A&F University, 2021, 38(5): 1066-1075. doi: 10.11833/j.issn.2095-0756.20210501
Citation: HU Yingbing, JIN Jin, TONG Zhipeng, WU Jiasen. Soil fertility in Carya cathayensis plantation: a review[J]. Journal of Zhejiang A&F University, 2021, 38(5): 1066-1075. doi: 10.11833/j.issn.2095-0756.20210501
  • 山核桃Carya cathayensis是中国特有的木本粮油树种,主要分布于浙皖交界天目山区的浙江省杭州市临安区和安徽省宁国市,其果实具有良好的营养保健作用和重要的经济价值,在主产区,山核桃产业的收入占林农收入的60%~70%[1-2]。由于在经营过程中长期过度施肥,且为清除林下植被采收方便而大量施用除草剂,山核桃人工林出现土壤酸化、养分供应水平失衡、水土流失严重等环境问题。土壤肥力水平高低对山核桃林分的抗病能力和果实营养价值具有重要影响。山核桃林地土壤肥力衰退使得山核桃树势减弱,干腐病、根腐病病害严重,果实品质下降。本研究总结了山核桃人工林土壤肥力研究现状,并提出今后需改进的经营措施,为山核桃林地管理与山核桃安全生产提供参考。

    • 山核桃为落叶乔木,雌雄异花同株,雌花芽于4−5月分化完成,雄花芽分化约需11个月,但二者同时成熟,果实成熟于9月上旬[3-4]。光照充足、雨水充沛、温度适宜时,山核桃春梢抽芽、花芽分化、花器发育、果肉生长良好,空果率低[4-6]

      中国山核桃总面积约9.33万hm2,主要分布在浙、皖交界处的天目山系,该地区气候适宜,土壤主要由石灰岩发育而来,有机质、腐殖质含量较高[7]。山核桃林施肥期以春秋两季为佳,春季施肥可促进花器分化、发育及春梢的生长发育,减少落花落果;秋季采收后施肥有利于延长叶片寿命以积累养分[5]。林农在生产经营中常施用磷肥、尿素或复合肥。山核桃采收方式以竹棒敲打采收为主,此法易对树体造成机械损伤,使得裸芽脱落,影响翌年产量[6]。另外,林农也会顺应地势在果树下张网,待果实自然脱落后进行收集。

      干腐病是山核桃栽培生产中的一种主要病害,在主干、枝条、果实上均可发病,导致山核桃树势衰弱甚至死亡,发病果实味苦、品质下降。生产中常用刮除病斑与戊唑醇、腐霉利等化学药物防治山核桃干腐病[8-9]。山核桃花蕾蛆Contarinia sp.是山核桃花期害虫,受害植株因花提前枯萎导致果实产量锐减。生产中可在4月中下旬用400 g·kg−1毒丝本乳油、300 g·kg−1乙酰甲胺磷乳油和300 g·kg−1吡虫啉乳油,采用树冠喷雾的方法进行防治[10]。在4月初用地乐灵1∶500倍液,或在4月中下旬用50%已酰甲胺磷1∶1500倍液进行地面喷药也可有效防治[11]

    • 山核桃人工栽培已有100~200 a的历史,自20世纪70年代末以来,山核桃种植面积不断扩大,经营过度,导致山核桃林地土壤肥力不断恶化。土层深厚、土壤团粒结构良好、质地适宜、容重合适的土壤,其土质疏松、透气透水性能较好、保肥性能较强,利于深根性树种山核桃的生长发育和产量提高[12-14]。微酸性至中性的土壤适宜山核桃生长,过酸土壤会增加山核桃根腐病、干腐病的致病风险,不利于林木健康,还会降低山核桃营养价值[15-17]。长期单一化肥的施入致使土壤养分供应失衡,土壤普遍酸化[18]。山核桃主产区过度经营后,土壤pH、有机碳、碱解氮及速效钾含量呈下降趋势,土壤有效磷含量增加;林地土壤pH及有机碳、碱解氮、有效磷、速效钾含量的变异程度均下降,土壤pH、碱解氮及有效磷含量空间分布连续性减弱,但有机碳及速效钾含量空间自相关性增强[19-20]。林农在经营过程中大量使用草甘膦等除草剂清除林下草、灌植物,导致土壤物质循环及养分转化受到影响,养分空间结构发生变异。

    • 海拔通过影响降水、温度使得植被分布具有垂直地带性,使得凋落物、细根周转、根系分泌向土壤归还有机质发生变化,且土壤微生物活动也会受到区域气候影响,故土壤养分水平在垂直空间上具有明显差异[21]。杭州市临安区在海拔400~700 m的山核桃林地土壤肥力较好,该海拔范围土壤有机质和速效养分供应能力较强,但该范围内土壤踩踏频繁,导致土壤容重较大,不利于土壤透气透水[22-23]

    • 母岩是土壤形成的原始物,其性状及分布对土壤结构具有重要影响,由岩浆岩发育而来的山核桃林地土壤石砾含量较高,石灰岩发育土壤物理性砂粒含量可超过30%[24]。母岩类型是林地土壤pH、有机质及养分含量的影响因素之一[24-27]。山核桃主要分布于含钙量高的石灰岩山地,钙能够与腐殖质形成不易分解的稳定态有机质,且易与土壤磷结合形成沉淀物质,造成土壤有效磷含量不高,且由于石灰岩发育而来的土壤pH较高,导致一些微量元素有效性也受到抑制[28-31]。有研究表明:不同母岩发育而来的山核桃林地土壤pH、有机质与多个养分元素显著相关,说明母岩能够通过多因素互作影响山核桃林地土壤肥力[26]

    • 山核桃高经济效益驱动林农不断扩大山核桃纯林面积,现有的山核桃纯林中约50%面积是通过人工砍伐山核桃-阔叶混交林中的非山核桃树种所形成的[32]。人为经营的模式和强度能够显著影响山核桃林地土壤养分供应水平与土壤结构。不同乡镇林农在扩大经营过程中采取的人工劈草、生草栽培、禁用内吸式除草剂等不同经营措施,造成不同乡镇的山核桃林土壤有机碳、pH、速效养分含量及土壤容重、孔隙度存在较大差异[24, 32-33]

      土壤有机碳是影响土壤保肥保水性能、结构稳定性、生物生命活动的主要因子,是代表土壤肥力最重要的因子之一。山核桃林长期清耕导致地表裸露,土壤侵蚀损失大量土壤有机碳,土壤昼夜温差增大又加速了有机碳的分解,加之枯落物归还量大幅降低,导致有机碳含量逐年递减;易分解有机碳的消耗大于输入则致使有机碳分子芳香核数量增多,轻组有机碳比例下降而分解程度更深的重组有机碳比例增加,有机碳结构复杂化,土壤碳库稳定性增强[22, 34-37]。相较同区域天然混交林,集约经营25 a的山核桃纯林土壤芳香碳的含量及芳香度显著下降[36]。土壤腐殖质作为土壤有机碳中的活跃组分,对土壤养分水平、结构形成、水分供应具有重要作用,其组成与特性在一定程度上能够反映土壤肥力水平。山核桃林下灌木、草被的缺失减少了土壤腐殖质物质来源,生产经营活动干扰了土壤微生物活动、破坏了土壤团聚体结构,致使山核桃林土壤腐殖质聚合程度降低,分子结构简单化,土壤腐殖质品质下降[32]

      临安区山核桃多生长于石灰岩母质的土壤,土壤多呈碱性,但由于酸沉降频繁、大量施用氮肥等原因,山核桃产区林地土壤酸化现象严重[38]。山核桃主产区土壤pH平均值仅为5.5,相较1982年(pH 7.3)下降显著[39]。2013年临安山核桃林中75%样点的土壤pH低于5.5,大量施肥削弱了土壤pH的空间相关性[33]

      土壤氮磷钾养分的动态变化能够反映土壤提供养分的状况[40]。岛石镇是临安区山核桃的中心产区,林农在经营过程中过量施入生理酸性肥料,使用草甘膦等除草剂清除林下植被,经过5 a集约经营后,山核桃林地土壤速效氮、磷、钾质量分数分别下降了35.0、1.0、140.0 mg·kg−1[20]。经过26 a强度经营的山核桃林,林地土壤全量氮磷钾质量分数也发生了显著变化,对比相同区域常绿阔叶林分别下降了21.83%、7.58%、13.63%[35]。林农在生产经营过程中大量施入的复合肥加速了土壤酸化过程,促进了土壤矿质元素的溶解。氮素与钾素易发生转化随水流失,而磷素易被土壤固定,土壤酸化造成磷易溶解,故山核桃林地土壤呈现“高磷低氮低钾”现象。

    • 土壤微生物广泛参与土壤物质转化与养分循环,对人为管理措施引起的土壤环境变化十分敏感[41]。天然混交林改造为山核桃林后,由于经营过程中受到了强烈的人为干扰,相比天然混交林地表枯落物覆盖层减少,土壤有机质输入下降。单一种类化肥的过度施用造成土壤酸化,林分原有生境改变,导致土壤微生物区系发生改变,土壤微生物对土壤有机碳氮利用减弱,土壤微生物量碳、微生物量氮含量下降,但随着经营年限延长,土壤微生物优势种形成,土壤有机物质向微生物转移增强,因此土壤微生物量碳/氮上升[34, 42-44]。山核桃林地土壤酸化会导致土壤微生物优势种、数量和多样性发生改变,这可能是酸化严重的山核桃林分干腐病指数显著高于生态经营林分的原因[45]

    • 清除林下植被对山核桃林分的水文效应具有显著影响。山核桃林地大都坡度大而地形破碎,土层瘠薄且岩石出露率高,加之为管理、采收方便所有林下植被被清除,导致山核桃林地土壤抗蚀性减弱,土壤养分大量流失[46]。枯落层可减轻土壤溅蚀、增加雨水入渗、拦截地表径流,起到良好的蓄水保土作用。但由于山核桃林地活地被物层缺失,植物凋落物归还量减少,导致山核桃纯林地表枯落物层蓄积量及土壤持水力随经营年限递减[47]

      施肥与山核桃林地土壤养分流失具有密切关系。山核桃林地坡面径流量受降水量影响强烈,在高温多雨的6−9月,降水的稀释作用及施肥后氮素分解转化的复杂过程之下,径流中硝态氮的浓度呈先上升后下降至相对稳定的趋势[48]。石灰岩发育而来的山核桃林地土壤含钙量高,磷素易与钙素结合为难溶磷酸钙类沉淀物被固定,径流水中总磷质量浓度仅为0.01~0.09 mg·L−1。但在过度施肥条件下,土壤磷淋失风险增大[48-49]。下渗是土壤可溶性养分流失的另一途径。6−11月,山核桃种植区降水频繁,硝态氮是氮流失的主要形式,施肥后渗漏水中总氮、可溶性氮、硝态氮、亚硝态氮浓度在短期内达到峰值后下降至小幅波动[50]

    • 林下草灌、藤本植物是森林生态系统的重要成员,对土壤结构、土壤养分水平、土壤生物及凋落物回归分解等具有重要作用,因此,林下植被的管理对于森林生态系统稳定性具有重要意义[51]。果园生草是利用行间或全园种植豆科Leguminosae或禾本科Gramineae植物,或者以自然生草为覆盖,定期刈割后覆盖地表的果园管理措施,能够增强土壤肥力、改善园间小气候[52]。生草能减小山核桃林地表裸露面积,减缓土壤水分蒸散、土温波动、植物根系延展及生理活动,降低土壤容重,提高土壤透气性[53-54]。生草栽培还有助于减少土壤侵蚀,提高土壤腐殖质、水溶性有机质及土壤养分含量[30, 53-54]。此外,刈割的生草提供了有机质来源,为土壤微生物创造了适宜的生存繁殖条件,提高了土壤脲酶、蔗糖酶、过氧化氢酶的活性,从而增强微生物群落转化土壤养分和储存养分的作用[30, 53-55]。山核桃林下套种黑麦草Lolium perenne和白三叶Trifolium repens有利于山核桃害虫天敌的繁殖,从而提高山核桃的产量和品质[56]。生草栽培对土壤养分流失也具有一定的控制效果。生草根系能够固结土壤以减少土壤侵蚀并促进径流下渗,地上部分具有削弱雨水击溅的作用,形成的枯枝落叶层则有利于提高土壤孔隙率、抗剪强度,增强土壤水土保持能力,从而减轻水土流失,提高土壤有机质、速效养分含量[57-58]

    • 土壤中的元素组成及含量对植物的生长发育具有调控作用,能够影响山核桃的叶片营养、花粉活力等,制约山核桃长势、产量、养分组成[59-60]。针对山核桃林地土壤特征和林木需求,施用肥料能够在满足林木生长发育的同时提高土壤肥力。施用有机物料,如沼渣、肥得力、黄腐酸钾、竹炭,能提高山核桃林地土壤pH和速效氮磷钾含量,降低土壤交换性酸铝离子浓度,且改良效果随有机物料施用量增加而提高,部分有机物料还能够显著提高土壤微量元素含量[61-63]。有机物料、有机无机复合肥、结合适量磷肥、钾肥的施用,还能促使树势衰弱的山核桃树的根系、枝条、叶片增多与叶色增绿,提高山核桃抗逆性和平均单株产量[62, 64]。微生物肥料,如芽孢杆菌Bacillus液、微生物复合肥,能够缓解土壤酸化,提高土壤有机质及速效氮磷钾含量,维持良性土壤微生物群落[65]。与常规施肥相比,山核桃专用肥的施用还可以降低土壤氮、磷流失负荷[66]

      另外,山核桃在不同生长阶段养分库源关系和养分的需求有异,且山核桃对氮磷钾的吸收利用受这3种元素的耦合效应影响[67-69]。因此,在生产实践中应当根据山核桃养分的需求及其吸收特征调整肥料配方及施用技术,从而提高肥料利用效率,减小面源污染风险[14, 38]

    • 通过免耕改善土壤结构并减小地表裸露面积以提高坡耕地经济林经济、生态效益[70]。采取封禁,结合补植、补播修复等相关工程,禁用化学除草剂并采用人工劈草和就地覆盖,可以促进雨水下渗、蓄集,提高林地养分固持能力[46, 71]

    • 山核桃多生长于坡度陡峭、土层浅薄、岩石出露率高的山体,原生生态环境较为脆弱,加之经营强度大,长期过量投入化肥农药,导致山核桃林地林下植被层缺失,土壤普遍酸化,土壤养分供应失衡,水土流失问题不断加剧,山核桃林地土壤衰退严重。生草栽培与有机物料改良是当前山核桃林地土壤改良的有效措施,前者能够减少土壤裸露、增加枯落物,起到固持土壤养分的作用;后者能够有效改良土壤酸度和养分水平。山核桃人工林土壤肥力改良是山核桃林可持续经营的重点难点,建议针对山核桃林地土壤肥力改良采取以下措施:①测土配方施肥。依据山核桃需肥规律和土壤样品检测结果,由专家把控肥料配方及推荐施用量,结合实际考虑肥料品种、配比、施肥量、施肥时间和施肥方法,改善土壤养分供应能力和酸碱度。②禁用化学除草剂,补植林下植被。在山核桃林经营过程中禁用化学除草剂,补植林下植被如紫云英Astragalus sinicus、油菜Brassica campestris、白三叶等,以增加活地被物,为土壤生物提供能源物质,缓解水土流失问题。③推广自然落果张网采收。依照山势在离地50~100 cm的高度架铺山核桃收集网,收集成熟后自然脱落的山核桃果实,这可避免在采收前清除林下植被,增加植物细根周转和凋落物回归,并能避免敲打损伤树体影响第2年产量。

      现有水土流失研究主要关注径流和泥沙流失量及采用植物篱、植被缓冲带对其流失的影响。为有效控制山核桃人工林水土流失,今后还需根据山核桃林分的特珠性,深入研究水土流失的形成机制及控制技术。

Reference (71)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return