Volume 39 Issue 6
Nov.  2022
Turn off MathJax
Article Contents

REN Junjie, PANG Xinbo, LIU Zhaoyang, LI Jingya, ZHANG Wanying, YIN Shule, WANG Libing, LI Yingchao. Diversity of phenotypic characters of Quercus mongolica seeds from different provenances[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1221-1228. doi: 10.11833/j.issn.2095-0756.20220133
Citation: REN Junjie, PANG Xinbo, LIU Zhaoyang, LI Jingya, ZHANG Wanying, YIN Shule, WANG Libing, LI Yingchao. Diversity of phenotypic characters of Quercus mongolica seeds from different provenances[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1221-1228. doi: 10.11833/j.issn.2095-0756.20220133

Diversity of phenotypic characters of Quercus mongolica seeds from different provenances

doi: 10.11833/j.issn.2095-0756.20220133
  • Received Date: 2022-01-21
  • Accepted Date: 2022-05-26
  • Rev Recd Date: 2022-05-11
  • Available Online: 2023-06-05
  • Publish Date: 2022-12-20
  •   Objective  The objective is to study the diversity of phenotypic characters of Quercus mongolica seeds from different provenances, so as to provide scientific basis for collection, evaluation and utilization of Q. mongolica germplasm resources.   Method  Seeds were collected from 11 provenances in natural distribution areas of Q. mongolica in China and 5 phenotypic characters were measured, including seed length, seed width, seed shape index, single grain weight, and thousand grain weight. SPSS software was used to analyze the character difference, correlation and principal component of Q. mongolica seeds from different provenances.   Result  (1) Seed length, seed width, seed shape index and single seed weight varied greatly among different provenances, and there were significant differences (P< 0.05) in thousand grain weight among different provenances. (2) There was a significant positive correlation (P<0.01) between seed length and seed width, single grain weight and thousand grain weight among different provenances. (3) There was a significant negative correlation (P< 0.05) between altitude and seed width, and a very significant negative correlation (P<0.01) with single grain weight and thousand grain weight. (4) According to the importance, the factors affecting seed characteristics in descending order were single grain weight, thousand grain weight, frost-free period and north latitude. According to the results of cluster analysis, the 11 provenances can be divided into 4 categories: Ⅰ, Ⅱ, Ⅲ and Ⅳ respectively. Among them, the provenances from Heihe City in Heilongjiang Province, Benxi City and Fushun City in Liaoning Province were grouped into Class Ⅰ, whose single grain weight and thousand grain weight were significantly higher (P<0.05) than those of other provenances, and they were the best provenances.   Conclusion  The phenotypic characters of Q. mongolica seeds vary significantly with geographical gradient, and the quality of provenances decreases gradually from northeast to southwest. Single grain weight and thousand grain weight can be used as the priority screening index for rapid screening of provenances. [Ch, 1 fig. 5 tab. 37 ref.]
  • [1] HE Shuilian, HUANG Bei, LI Tianyuan, TIAN Min.  Diversity of rhizosphere soil fungi and root endophytic fungi of Calanthe tsoongiana . Journal of Zhejiang A&F University, 2023, 40(6): 1158-1166. doi: 10.11833/j.issn.2095-0756.20230179
    [2] CHEN Xiaolei, SHAO Weili, LI Siyuan, LIU Zhigao, MA Hongling, SHEN Yamei, DONG Bin, ZHANG Chao.  Genetic analysis of phenotypic traits in F1 hybrids of 6 Clematis cultivars . Journal of Zhejiang A&F University, 2023, 40(1): 72-80. doi: 10.11833/j.issn.2095-0756.20220214
    [3] XIE Lihong, HUANG Qingyang, CAO Hongjie, YANG Fan, WANG Jifeng, WANG Jianbo, NI Hongwei.  Population structure and dynamic characteristics of Quercus mongolica in Wudalianchi Volcanoes, China . Journal of Zhejiang A&F University, 2022, 39(5): 960-970. doi: 10.11833/j.issn.2095-0756.20210785
    [4] CAO Chunjing, HE Jianlong, WANG Zhanjun, WEI Shuhua.  Insect community diversity of Cerasus humilis orchards in different regions of Ningxia . Journal of Zhejiang A&F University, 2021, 38(6): 1253-1260. doi: 10.11833/j.issn.2095-0756.20200774
    [5] LIU Zheng, LI Ying, ZHU Pei, CHU Xudong, HE Guoqing, SUN Yong.  Diversity and flora of wetland plants of Changxing County, Zhejiang Province . Journal of Zhejiang A&F University, 2020, 37(3): 465-471. doi: 10.11833/j.issn.2095-0756.20190436
    [6] YU Wangyin, YAO Guan, Tashi Lhamo, Phur Qiong, LIU Jingjing, ZHOU Xiang.  Effects of two cultivation environments on diversity of bacterial symbionts in Dendrobium catenatum . Journal of Zhejiang A&F University, 2020, 37(2): 284-290. doi: 10.11833/j.issn.2095-0756.2020.02.012
    [7] ZUO Zheng, ZHENG Xiaoxian.  Forest structure and tree species diversity across a disturbance gradient in evergreen broadleaved secondary forests . Journal of Zhejiang A&F University, 2019, 36(1): 21-30. doi: 10.11833/j.issn.2095-0756.2019.01.004
    [8] QIN Min, YIN Guangtian, YANG Jinchang, LI Rongsheng, ZOU Wentao.  Phenotypic trait variation for different provenances of Mytilaria laosensis . Journal of Zhejiang A&F University, 2017, 34(1): 112-119. doi: 10.11833/j.issn.2095-0756.2017.01.016
    [9] LIU Yixi, ZHANG Hao, ZHU Shengchao.  Diversity and geographical distribution of Pteridophytes in Wenzhou . Journal of Zhejiang A&F University, 2016, 33(5): 778-783. doi: 10.11833/j.issn.2095-0756.2016.05.008
    [10] MIAO Fujun, JIANG Hong, WANG Hongqiu, YUAN Xiaolong, CHEN Jian, YANG Yuming, WANG Juan.  The rDNA ITS diversity of mycorrhizal fungi with Cypripedium flavum . Journal of Zhejiang A&F University, 2015, 32(5): 815-820. doi: 10.11833/j.issn.2095-0756.2015.05.024
    [11] LIU Jiamin, ZHANG Hui, HUANG Xiufeng, XU Huachao.  Insect diversity to monitor and evaluate forest environmental quality . Journal of Zhejiang A&F University, 2013, 30(5): 719-723. doi: 10.11833/j.issn.2095-0756.2013.05.013
    [12] YOU Longhui, YE Gongfu, CHEN Zenghong, BAI Yonghui, ZHU Meiqin.  Species diversity in a Casuarina equisetifolia understory along a highway . Journal of Zhejiang A&F University, 2013, 30(1): 38-47. doi: 10.11833/j.issn.2095-0756.2013.01.006
    [13] LIU Qing-hua, ZHOU Zhi-chun, ZHANG Kai-ming, LAN Yong-zhao, WU Ji-fu, NIE Guo-qin.  Influence of phosphorus on growth and wood basic density of Pinus massoniana provenances . Journal of Zhejiang A&F University, 2012, 29(2): 185-191. doi: 10.11833/j.issn.2095-0756.2012.02.006
    [14] WU Shang-ying, ZHANG Yang, LIU Ai-rong, XU Tong.  Diversity of endophytic fungi in Rhizophora stylosa and Kandelia candel . Journal of Zhejiang A&F University, 2010, 27(4): 489-493. doi: 10.11833/j.issn.2095-0756.2010.04.002
    [15] MENG He, JIANG Zhen-jie, ZHANG Guo-sheng.  Using the Grey System Theory for analysis of relationship between Sabina vulgaris growth and ecological factors . Journal of Zhejiang A&F University, 2010, 27(1): 51-56. doi: 10.11833/j.issn.2095-0756.2010.01.008
    [16] LIN Lei, ZHOU Zhi-chun, FAN Hui-hua, JIN Guo-qing, CHEN Liu-ying, WANG Yue-sheng.  Genetic variation of growth and form in Schima superba provenances with selection for wood processing materials . Journal of Zhejiang A&F University, 2009, 26(5): 625-632.
    [17] HUANG Yao-hua, ZHENG Rong, SHAO Ji-feng, FANG Wei.  Cold resistance in Dendrocalamopsis oldhami from four different geographical provenances . Journal of Zhejiang A&F University, 2009, 26(2): 188-195.
    [18] WEI Xin-liang.  Quantitative evaluation of rural forest-ecological adaptability . Journal of Zhejiang A&F University, 2009, 26(1): 1-6.
    [19] LIU Yong-hong, YANG Pei-hua, HAN Chuang-ju, FAN Jun-feng, LI Xin-hui, LI An-ping, YANG Shi-rong.  Phenotypic variation in seed cones and seeds of species and families in different provenances of Pinus tabulaeformis . Journal of Zhejiang A&F University, 2008, 25(2): 163-168.
    [20] GAO Xiao-hui, HE Xiao-yong, HE Lin.  Diversity of wild ornamental trees in southwest of Zhejiang . Journal of Zhejiang A&F University, 2001, 18(4): 389-393.
  • [1]
    SHEN Yanmei, GUO Pingping, LIU Shuling, et al. Review of advances in progress and utilization of Mongolian oak [J]. For Eng, 2014, 30(5): 58 − 60.
    [2]
    Hebei Vegetation Editorial Committee, Office of Hebei Agricultural Zoning Commission. Hebei Vegetation[M]. Beijing: Science Press, 1996: 1 − 15.
    [3]
    SUN Jiaqing. Study on the cultivation technique for arge sized timber of rare tree species [J]. J Jilin For Sci Technol, 2012, 41(6): 14 − 18.
    [4]
    WANG Rongfang, ZHANG Ziyan, LI Dehai. Effects of extraction methods on extraction components and antioxidant activity of Quercus mongolica shell[J/OL]. J Beijing For Univ, 2022[2022-05-09]. doi: 10.12171/j.1000-1522.20210352.
    [5]
    YAO Dadi, YU Haihong. Analysis of composition of leave and fruits on Quercus mongolica [J]. J Jilin For Univ, 1998, 14(4): 205 − 207.
    [6]
    LI Jianing. A Preliminary Study on the Characteristics of Reproductive Biology of Quercus mongolica[D]. Shenyang: Shenyang Agricultural University, 2020.
    [7]
    GREIPSSON S, DAVY A J. Seed mass and germination behaviour in populations of the dune-building grass Leymus arenarius [J]. Ann Bot, 1995, 76(5): 493 − 501.
    [8]
    HUO Yan, ZHAO Xueqing, HUANG Houyi, et al. Phenotypic genetic diversity of ornamental pomegranate cultivars [J]. J Zhejiang A&F Univ, 2020, 37(5): 939 − 949.
    [9]
    ZHANG Zhen, ZHANG Hanguo, ZHOU Yu, et al. Variation of seed characters in Korean pine (Pinus koraiensis) multiclonal populations [J]. J Beijing For Univ, 2015, 37(2): 67 − 78.
    [10]
    XIE Ganggang, OUYANG Liting, XIE Jun, et al. Analyses on diversity of leaf phenotypic traits and genetic relationships of Prunus domestica in Xinjiang region [J]. J Plant Resour Environ, 2018, 27(3): 72 − 78.
    [11]
    YAN Bing, LIU Gang, CHEN Aihua, et al. Quercus mongolica seeds’ character and starch content comparisons of different provenance in the three northeastern Provinces [J]. J Anhui Agric Sci, 2015, 43(30): 121 − 123.
    [12]
    LIANG Deyang, JIANG Luping, ZHANG Qinhui, et al. Variance analysis of seed traits in provenances and families on Quercus mongolica [J]. J Northeast For Univ, 2019, 47(11): 1 − 5.
    [13]
    LI Ya’nan, LI Dongsheng, XU Zhongqi, et al. The process of emergence and height growth of Quercus species in different provenances [J]. J Northwest For Univ, 2014, 29(4): 139 − 144.
    [14]
    HU Yuzhu. Morphological analysis of 4 different provenances of Quercus mongolica seeds [J]. J Jilin For Sci Technol, 2020, 49(1): 1 − 3.
    [15]
    LI Yueqiao. Resource Investigation and Superior Germplasm Resources Selection of Woody Energy Plants Quercus mongolica Fisch. and Quercus liaotungensis Koidz[D]. Beijing: Chinese Academy of Forestry, 2011: 17 − 20.
    [16]
    BAO Songlian, LI Zhiguo, ZHANG Jianyun, et al. A preliminary study on morphological variation of seeds of Tara in Yunnan [J]. Amino Acids Biotic Resour, 2011, 33(2): 17 − 19, 38.
    [17]
    DENWAR N N, AWUKU F J, DIERS B, et al. Genetic diversity, population structure and key phenotypic traits driving variation within soyabean (Glycine max) collection in Ghana [J]. Plant Breed, 2019, 138(5): 577 − 587.
    [18]
    LI Yueqiao, LI Yingchao, WU Zhizhuang. Variation in phenotype characters and starch content of Quercus mongolica Fisch. seed from different provenances [J]. For Res, 2013, 26(4): 528 − 532.
    [19]
    LI Yingchao. Resource Investigation and Provenance Analysis of Woody Starch Engergy Plant Quercus variabilis BL. and Quercus acutissima Carr.[D]. Beijing: Chinese Academy of Forestry, 2013: 51 − 71.
    [20]
    SIEFERT A, FRIDLEY J D, RITCHIE M E. Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter? [J/OL]. PLoS One, 2014, 9(10): e111189[2021-01-11]. doi: 10.1371/journal.pone.0111189.
    [21]
    AN Hailong, XIE Qianjin, LIU Chao, et al. Effects of water stress and provenance on leaf functional traits of Salix gordejevii [J]. Sci Silv Sin, 2015, 51(10): 75 − 84.
    [22]
    ADLER P B, LAMBERS J H R. The influence of climate and species composition on the population dynamics of ten prairie forbs [J]. Ecology, 2008, 89(11): 3049 − 3060.
    [23]
    LIANG Xiaoyu, ZHANG Xinquan. Effect of elevation on seed production of Dactlis glomerata cv. Baoxing [J]. Pratacult Sci, 2007, 24(12): 64 − 66.
    [24]
    WANG Zhiheng, CHEN Anping, PIAO Shilong, et al. Pattern of species richness a long an altitudinal gradient on Gaoligong Mountains, Southwest China [J]. Biodiversity Sci, 2004, 12(1): 82 − 88.
    [25]
    GUO Shuqing, QI Wei, WANG Yulin, et al. Effects of altitude on seed size on the eastern Qinghai-Tibetan Plateau [J]. Acta Pratacult Sin, 2010, 19(1): 50 − 58.
    [26]
    LI Dan, PENG Shaolin. Genetic diversity in three Pinnus massoniana populations in different elevations and its relation with ecological factors [J]. Acta Ecol Sin, 2001, 21(3): 415 − 440.
    [27]
    PLUESS A R, SCHÜTZ W, STCKLIN J. Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species [J]. Oecologia, 2005, 144(1): 55 − 61.
    [28]
    ARFT A M, WALKER M D, GUREVITCH J, et al. Responses of tundra plants to experimental warming: metal analysis of the international tundra experiment [J]. Ecol Monographs, 1999, 69(4): 491 − 511.
    [29]
    DIEMER M. Population stasis in a high-elevation herbaceous plant under moderate climate warming [J]. Basic Appl Ecol, 2002, 3(1): 77 − 83.
    [30]
    FITCH E A, WALCK J L, HIDAYATI S N. Agroecosystem management for rare species of Paysonia (Brassicaceae): integrating their seed ecology and life cycle with cropping regimens in a changing climate [J]. Am J Bot, 2007, 94(1): 101 − 110.
    [31]
    LI Bin, GU Wanchun, LU Baoming. A study on phenotypic of seeds and cones characteristics in Pinus bungeana [J]. Biodiversity Sci, 2002, 10(2): 181 − 188.
    [32]
    ZHANG Qing, XIAO Guiying, LI Pinrong, et al. Seed morphological characteristics and variation of Quercus cocciferoides from the same provence [J]. Heilongjiang Agric Sci, 2019(8): 26 − 31.
    [33]
    KENNEDY P G, HAUSMANN N J, WENK E H, et al. The importance of seed reserves for seedling performance: an integrated approach using morphological, physiological, and stable isotope techniques [J]. Oecologia, 2004, 141: 547 − 554.
    [34]
    LEBRIJA-TREJOS E, REICH P B, HERNNDEZ A, et al. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest [J]. Ecol Lett, 2016, 19: 1071 − 1080.
    [35]
    ZHANG Jun, SHANG Jiahui, CHENG Guangyou, et al. Preliminary study on intraspecific variation of growth traits of Quercus mongolica Fisch. [J]. J Beihua Univ Nat Sci, 2020, 21(4): 447 − 451.
    [36]
    CHANG Enfu, ZHANG Qing, XIAO Guiying, et al. Morphological characteristics and variation analysis of seeds from different provenances and families of Quercus cocciferoides [J]. Seed, 2020, 39(6): 53 − 58.
    [37]
    LI Wenwen. Study on Variation of Provence and Vegetative Propagation in Quercus mongolica Fisch.[D]. Beijing: Chinese Academy of Forestry, 2010: 13 − 36.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(5)

Article views(257) PDF downloads(57) Cited by()

Related
Proportional views

Diversity of phenotypic characters of Quercus mongolica seeds from different provenances

doi: 10.11833/j.issn.2095-0756.20220133

Abstract:   Objective  The objective is to study the diversity of phenotypic characters of Quercus mongolica seeds from different provenances, so as to provide scientific basis for collection, evaluation and utilization of Q. mongolica germplasm resources.   Method  Seeds were collected from 11 provenances in natural distribution areas of Q. mongolica in China and 5 phenotypic characters were measured, including seed length, seed width, seed shape index, single grain weight, and thousand grain weight. SPSS software was used to analyze the character difference, correlation and principal component of Q. mongolica seeds from different provenances.   Result  (1) Seed length, seed width, seed shape index and single seed weight varied greatly among different provenances, and there were significant differences (P< 0.05) in thousand grain weight among different provenances. (2) There was a significant positive correlation (P<0.01) between seed length and seed width, single grain weight and thousand grain weight among different provenances. (3) There was a significant negative correlation (P< 0.05) between altitude and seed width, and a very significant negative correlation (P<0.01) with single grain weight and thousand grain weight. (4) According to the importance, the factors affecting seed characteristics in descending order were single grain weight, thousand grain weight, frost-free period and north latitude. According to the results of cluster analysis, the 11 provenances can be divided into 4 categories: Ⅰ, Ⅱ, Ⅲ and Ⅳ respectively. Among them, the provenances from Heihe City in Heilongjiang Province, Benxi City and Fushun City in Liaoning Province were grouped into Class Ⅰ, whose single grain weight and thousand grain weight were significantly higher (P<0.05) than those of other provenances, and they were the best provenances.   Conclusion  The phenotypic characters of Q. mongolica seeds vary significantly with geographical gradient, and the quality of provenances decreases gradually from northeast to southwest. Single grain weight and thousand grain weight can be used as the priority screening index for rapid screening of provenances. [Ch, 1 fig. 5 tab. 37 ref.]

REN Junjie, PANG Xinbo, LIU Zhaoyang, LI Jingya, ZHANG Wanying, YIN Shule, WANG Libing, LI Yingchao. Diversity of phenotypic characters of Quercus mongolica seeds from different provenances[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1221-1228. doi: 10.11833/j.issn.2095-0756.20220133
Citation: REN Junjie, PANG Xinbo, LIU Zhaoyang, LI Jingya, ZHANG Wanying, YIN Shule, WANG Libing, LI Yingchao. Diversity of phenotypic characters of Quercus mongolica seeds from different provenances[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1221-1228. doi: 10.11833/j.issn.2095-0756.20220133
  • 蒙古栎Quercus mongolica为壳斗科Fagaceae栎属Quercus植物,广泛分布于寒温带、温带和暖温带地区[1]。距今2 000~7 000 a,以栎为主的栎类阔叶林和草甸是河北省平原地区的原生植被[2]。蒙古栎是重要的用材[3]、柞蚕[1, 4]、染料、栲胶[5]、食品、药用[6]、酿酒原料和景观树种,也是营造防风林、水源涵养林及防火林的优良树种,具有十分重要的经济、文化和生态功能。到目前为止,蒙古栎大多数处于野生状态,良种水平较为低下,良种选育研究仅限于对天然群体变异选种或以用材等为目的的种源试验研究阶段,而以结实为目的的良种选育研究尚未开始。因此,加强良种选育工作,提高蒙古栎的良种化水平迫在眉睫。

    种子表型性状作为重要的经济性状[7],是遗传多样性的重要基础[8]。因此,对种子遗传变异进行分析显得尤为重要[9]。通过表型性状分析种质资源的遗传多样性直观易行,能够快速了解植物的遗传变异水平[10]。目前,针对东北三省(黑龙江省、辽宁省、吉林省)[11-12]及其他个别地区[13-14]蒙古栎不同种源的苗木生长情况、种子性状的分析研究较多,但对于全国蒙古栎不同种源的种子特性及环境因子的分析较少。本研究对全国蒙古栎天然分布区进行调查收集,了解现有蒙古栎的自然分布状况,采集种子作为种质资源保存,并对各种源收集的蒙古栎种子进行表型性状测定和统计分析,以期为蒙古栎种质资源收集、杂交育种及品种改良提供基础数据。

    • 于2020年8—11月蒙古栎种子成熟期,在全国蒙古栎天然分布区调查并收集8省12个种源的蒙古栎种质资源,种源确定依据河北省洪崖山国有林场2018—2019年的全国蒙古栎种质资源踏查结果,结合厉月桥[15]关于蒙古栎分布的研究,选择蒙古栎主要天然分布区且具有优良林分的蒙古栎天然林,所选种源基本涵盖了蒙古栎主要天然分布区,可代表全国蒙古栎分布情况。所选采种林分为当地分布的天然林分,林龄>30 a,每个种源选取30株以上采种母树,母树间距50 m以上,收集的种子均已成熟饱满,无病虫害。蒙古栎不同种源的主要生态因子见表1

      种源编号种源地北纬(N)东经(E)海拔/m年均气温/℃年降水量/mm无霜期/d
      1黑龙江省黑河市  49°49′18″127°16′48″294−1.0525110
      2辽宁省抚顺市   41°56′33″125°14′24″6735.1863130
      3辽宁省本溪市   40°40′05″124°00′55″4876.5926170
      4河北省张家口市  39°53′36″114°57′17″1 5736.0400152
      5河北省承德市围场县42°10′21″117°15′31″1 3303.337080
      6河北省承德市兴隆县40°33′34″117°30′00″1 0927.6763130
      7河北省秦皇岛市  40°08′33″119°25′28″1 1108.9741180
      8北京市门头沟区  39°59′01″115°26′28″1 2706.4420150
      9吉林省延边市   43°11′32″129°32′20″3703.9580146
      10内蒙古赤峰市   42°06′57″118°19′36″1 1757.7559157
      11山东省泰安市   53°27′05″117°16′20″86813.0750200

      Table 1.  Main ecological factors of Q. mongolica from different provenances

    • 8—9月,选取健壮植株,挂牌标记,拍摄植株照片,进行蒙古栎种质资源踏查,并准确记录采种地的经纬度、海拔及年均气温等;9—11月,收集挂牌标记且具代表性的蒙古栎植株种子。

    • 分别对每个种源所采集的蒙古栎单株种子等量混合后,采用四分法随机选取300粒种子进行种长、种宽及种子单粒重、千粒重的测定,用电子游标卡尺进行蒙古栎种宽和种长的测定,精确到0.01 mm,用电子天平进行种子单粒重的测定,用百粒法测量种子千粒重,精确到0.01 g。

    • 用Excel对测量的基础数据进行整理和统计;种形指数为种子的宽(直径)和长(纵径)之比[16];运用SPSS 11.5进行方差分析、相关分析(Pearson相关)、主成分分析;同时运用SPSS 11.5将原始数据进行标准化转换,采用欧式距离法进行聚类分析。

    • 表2所示:不同种源蒙古栎种长、种宽差异较大,种长为11.38~20.96 mm,种宽为11.07~17.80 mm。其中辽宁省抚顺市蒙古栎种子的种长和种宽最长,均值分别为20.96、17.80 mm,其种宽、单粒重显著高于其他地区(P<0.05);内蒙古赤峰市最低,种长和种宽均值分别为11.38、11.07 mm,显著低于其他地区(P<0.05)。河北省承德市围场县与兴隆县蒙古栎种子的种长、种宽无显著差异。种形指数均存在一定差异,但差异较小,其中河北省秦皇岛市最高,山东省泰安市最低,均值分别为1.28、1.02。

      种源地种长/mm种宽/mm种形指数单粒重/g千粒重/g
      黑龙江省黑河市  20.94±0.38 a16.58±0.44 bc1.26±0.04 ab2.93±0.07 ab2 949.41±9.65 b
      辽宁省抚顺市   20.96±0.73 a17.80±0.71 a1.18±0.01 ab3.05±0.16 a3 027.39±7.74 a
      辽宁省本溪市   18.37±0.46 bc15.46±0.64 d1.20±0.02 ab2.83±0.02 b2 878.82±7.03 c
      河北省张家口市  16.47±0.51 de13.11±0.68 f1.26±0.10 ab1.82±0.10 e1 824.11±9.20 h
      河北省承德市围场县16.49±0.50 de13.94±0.23 ef1.17±0.12 ab1.41±0.07 f1 482.71±1.36 j
      河北省承德市兴隆县16.18±0.22 e14.01±0.49 ef1.15±0.01 abc1.79±0.07 e1 765.37±4.14 i
      河北省秦皇岛市  18.22±0.88 c14.29±0.23 e1.28±0.04 a2.07±0.06 d2 075.77±2.53 f
      北京市门头沟区  19.38±1.19 b16.02±0.97 cd1.21±0.10 ab2.31±0.11 c2 310.59±7.58 e
      吉林省延边市   19.39±0.23 b17.26±0.19 ab1.12±0.02 bcd2.45±0.07 c2 421.51±2.44 d
      内蒙古赤峰市   11.38±0.38 f11.07±0.81 g1.03±0.09 cd1.22±0.09 g1 244.40±5.51 k
      山东省泰安市   17.40±1.04 cd17.10±0.42 abc1.02±0.09 d1.92±0.03 de1 926.28±1.40 g
        说明:同列不同字母表示不同种源地之间差异显著(P<0.05)

      Table 2.  Difference analysis of seeds phenotypic characters in Q. mongolica from different provenances

      单粒重和千粒重差异较大,其中各种源千粒重之间均存在显著差异(P<0.05),最高为辽宁省抚顺市(3 027.39 g),最低为内蒙古赤峰市(1 244.40 g),可以看出千粒重的变异幅度较大。

    • 表3所示:不同种源蒙古栎种子表型性状存在一定的相关性。其中蒙古栎种子的种长、种宽、单粒重、千粒重相互之间均存在极显著正相关(P<0.01),即种长越长,种宽越宽,单粒重和千粒重随着种长、种宽的增大而增加,表明这4个表型性状是相互影响的。种形指数与种长、种宽、单粒重和千粒重的相关性呈不显著正相关。

      性状种长种宽种形指数单粒重千粒重
      种长  1.000.88**0.520.88**0.88**
      种宽  1.000.060.79**0.78**
      种形指数1.000.400.41
      单粒重 1.001.00**
        说明:**表示极显著相关(P<0.01)

      Table 3.  Correlation of seeds phenotypic characters in Q. mongolica from different provenances

    • 从不同种源蒙古栎种子表型性状与生态因子之间的相关性分析(表4)可知:海拔与种宽呈显著负相关(P<0.05),与单粒重、千粒重呈极显著负相关(P<0.01),相关系数达−0.67、−0.75、−0.75,即海拔越高,种宽、单粒重和千粒重越小。东经与千粒重、单粒重呈显著正相关(P<0.05),相关系数均达0.72,即随着经度的增加,单粒重、千粒重增大。无霜期与单粒重呈正相关,即无霜期越长,单粒重越大。种长、种形指数与生态因子之间也存在一定的相关性,但差异不显著,说明蒙古栎种子表型性状的差异与种源生态环境因子有一定的相关性,即存在地理变异特性。

      生态因子种长种宽种形指数单粒重千粒重
      东经  0.560.580.060.72*0.72*
      北纬  0.180.44−0.410.130.13
      海拔  −0.57−0.67*0.07−0.75**−0.75**
      年均气温−0.41−0.15−0.50−0.40−0.41
      年降水量0.200.34−0.170.450.45
      无霜期 −0.130.05−0.290.01−0.01
        说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)

      Table 4.  Correlation between seeds phenotypic characters in Q. mongolica and ecological factors from different provenances

    • 以11个种源间蒙古栎种子相关特性为样本,将种子5个表型性状和6个生态因子数据进行主成分分析。由表5可知:特征值大于1有3个主成分,贡献率分别为43.78%、22.92%、12.57%,累计贡献率达79.27%。其中,第1主成分特征值为5.37,对应的特征向量千粒重和单粒重最大,均为0.41。可以把第1主成分称为种子质量因子。第2主成分特征值为2.52,对应的特征向量无霜期最大,为0.51,可以把第2主成分称为环境因子;第3主成分特征值为1.38,对应的特征向量北纬最小,可以把第3主成分称为地理因子。综上可知,影响蒙古栎种子特性的因素从大到小为单粒重、千粒重、无霜期、北纬。

      主成分特征向量特征值贡献率/%累计贡献率/%
      种长种宽种形指数单粒重千粒重东经北纬海拔年均气温年降水量无霜期
      10.380.370.130.410.410.360.12−0.37−0.210.18−0.045.3743.7843.78
      2−0.090.14−0.420.000.000.000.29−0.150.500.420.512.5222.9266.70
      30.16−0.040.470.190.18−0.24−0.550.260.260.280.321.3812.5779.27

      Table 5.  Principal component analysis of seeds related characteristics in Q. mongolica from different provenances

    • 由聚类分析结果(图1)可以看出:根据单粒重和千粒重,不同种源蒙古栎共分为4类,分别为Ⅰ、Ⅱ、Ⅲ和Ⅳ类种群,其中黑龙江省黑河市、辽宁省本溪市、辽宁省抚顺市为Ⅰ类,种子的单粒重和千粒重远高于所有种源的均值,为最优种源;北京市门头沟区、吉林省延边市为Ⅱ类,单粒重和千粒重略高于均值;河北省张家口市、河北省承德市兴隆县、山东省泰安市、河北省秦皇岛市为Ⅲ类,单粒重和千粒重略低于均值;河北省承德市围场县、内蒙古赤峰市为Ⅳ类,单粒重和千粒重最小。从聚类分析结果看,蒙古栎种子表型性状表现出了一定的区域性,天然种源基本上分布于东北部地区,Ⅰ类分布于东部偏冷地区,Ⅱ类分布于东部和北部地区,Ⅲ类分布于中部地区(华北和华东),Ⅳ类分布于北部地区,表现出从东北向西南的走向,种源质量逐渐降低,这与相关性分析结果相吻合。

      Figure 1.  Cluster analysis for Q. mongolica seeds from different provenances

    • 种质资源的调查和评价是研究品种起源、演化和驯化的基础,对优异资源筛选、品种选育具有重要意义[17]。本研究通过对蒙古栎种子5种表型性状的测定和分析,得出不同种源蒙古栎种实表型性状之间存在差异,其中种长、千粒重均存在显著差异(P<0.05),这与厉月桥等[18]对蒙古栎、李迎超[19]对栓皮栎Q. variabilis、麻栎Q. acutissima的研究结果一致,且种长与种宽、单粒重、千粒重之间均存在极显著正相关(P<0.01),表明蒙古栎种质资源丰富,各生长性状在种源间存在较大的遗传改良潜力。

      植物与其生存环境的关系一直是关注的热点[20],处于不同生态环境的同种物种,经过长期对当地生境的适应,发生了地理变异,形成了不同的地理种源[21]。蒙古栎地理分布较为广泛,生存环境存在较大差异。气候条件,如气温、水分等对植物的有性繁殖有着重要的影响[22],海拔等对种子、果实的品质也具有影响[23-27],而气候条件的波动及其他环境条件的改变会影响物种更新和种群动态[28-30]。本研究表明:蒙古栎不同种源种子表型特征与生态因子之间均存在相关性,其中海拔与种宽存在显著负相关,这与厉月桥等[18]对蒙古栎研究结果相同,单粒重和千粒重受分布区海拔的影响存在垂直变异,说明蒙古栎具有广泛的适应性,随着环境条件的变化,出现遗传变异。这与李斌等[31]对白皮松Pinus bungeana及张清等[32]对铁橡栎Quercus cocciferoides的研究结果一致,即变异越大,适应环境的能力就越强。单粒重与东经存在显著正相关,随着经度的降低,单粒重和千粒重逐渐降低,种形指数无显著变化,种源质量相对降低,可能由于种子储藏营养物质的量直接影响幼苗建植,大种子有利于幼苗建植早期根系的发育和生物量的积累[33],从而具有更强的生长势、逆境耐受能力和对资源的竞争能力[34]。种子的形状与种长和年均气温的相关性较大,说明蒙古栎种子形状受自身遗传物质控制,同时也受周边环境因子的影响,存在地理变异,由于长期生长在生态条件明显不同的地区,蒙古栎种源间可能产生遗传分化,这与相关的研究结果[15, 35]一致。

    • 本研究表明:影响种子特性的因素按照重要性从大到小依次为单粒重、千粒重、无霜期、北纬。主成分分析表明:贡献率最大的第1主成分表征的特征向量为单粒重和千粒重,因此可将单粒重和千粒重作为快速筛选种源优良与否的优先筛选指标,这与常恩福等[36]对铁橡栎的研究结果一致。第2、3主成分主要为环境因子和地理因子,这与常恩福等[36]、张清等[32]的研究结果存在差异。常恩福等[36]研究表明:第2、3、4主成分是种形指数、纬度和海拔,即形状因子和生态环境因子;张清等[32]研究表明:第2主成分为种形指数,可能与树种特性及分布范围存在一定关系。

      根据种子性状的综合聚类分析结果,将11个种源按单粒重和千粒重聚为4类,地理分布相近的种源并没有聚在一起,说明了种源间表型性状变异不具有连续性。Ⅰ类种群中,黑河同辽宁地理位置距离较大,但聚为同一类群,可能由于其经度相似,经度和千粒重、单粒重呈显著正相关有关,这与李文文[37]对蒙古栎种源变异的研究结果一致。Ⅱ类和Ⅲ类种群中,河北和山东相隔距离较大,可能由于同一类群在不同种源之间地形起伏较大,形成了一定程度上的地理隔离,从而造成同一类群的种源,地理距离反而较大,这与李文文[37]的研究结果一致。Ⅲ类种群除山东泰安外,均位于河北地区,地理距离相对集中,且与Ⅳ类种群相隔地理距离较小,单粒重和千粒重均低于均值,种源质量相对较差。

      其中Ⅰ类种群在种源质量方面优于Ⅱ、Ⅲ和Ⅳ类,Ⅰ类分布区均为蒙古栎集中分布区[15],同时根据蒙古栎适生分布区的研究可知:不同种源间地理梯度变异明显,呈东北—西南走向,这与李斌等[31]对白皮松的研究结果相同。

      只通过5种表型性状特征确定各种源之间的表型差异存在一定的局限性,因此,还需进一步连续多年收集测定或继续开展分子水平方面的研究,深入分析蒙古栎不同种源之间的遗传变异。

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return