Volume 40 Issue 2
Apr.  2023
Turn off MathJax
Article Contents

XU Huihui, LIU Xiaojuan, WANG Mengke, BI Quanxin, WANG Libing, YU Haiyan. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium[J]. Journal of Zhejiang A&F University, 2023, 40(2): 348-355. doi: 10.11833/j.issn.2095-0756.20220202
Citation: XU Huihui, LIU Xiaojuan, WANG Mengke, BI Quanxin, WANG Libing, YU Haiyan. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium[J]. Journal of Zhejiang A&F University, 2023, 40(2): 348-355. doi: 10.11833/j.issn.2095-0756.20220202

Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium

doi: 10.11833/j.issn.2095-0756.20220202
  • Received Date: 2022-03-08
  • Accepted Date: 2022-09-26
  • Rev Recd Date: 2022-09-20
  • Publish Date: 2023-04-20
  •   Objective  This study aims to evaluate the adaptability of different germplasm resources of Xanthoceras sorbifolium in arid areas, so as to provide a basis for screening drought-resistant germplasm resources for arid and semi-arid areas.   Method  The leaves of 200 high-yield X. sorbifolium germplasm resources were collected in Tongliao Germplasm Resources Nursery in Inner Mongolia Autonomous Region. The anatomical structure of leaves was observed by making paraffin section, and 13 indexes related to drought resistance were measured, including leaf thickness, palisade tissue thickness, sponge tissue thickness and wax layer thickness. The drought resistance of different germplasm resources was evaluated by factor analysis, cluster analysis and membership function analysis.   Result  The anatomical structure indexes of leaves showed significant correlation. Based on factor analysis, 4 common factors were extracted, and the cumulative contribution rate to variation was 89.99%, basically covering most of the information of the 13 indicators. The degree of influence on drought resistance ranging from large to small was as follows: F1 (thickness index factor), F2 (tissue index factor), F3 (epidermal proportion factor), and F4 (wax layer proportion factor).   Conclusion  The thickness of upper/lower epidermis, thickness of palisade tissue and vessel diameter, which are the most important factors in F1, can be used as the main indicators for drought resistance evaluation of X. sorbifolium. The selected 90 drought-resistant germplasm resources, with advantges of high-yield, water-saving and drought-risistant, could provide materials for the breeding of drought-resistant X. sorbifolium. [Ch, 1 fig. 6 tab. 32 ref.]
  • [1] YANG Fan, TANG Mengping.  On the structure characteristics of culm form of Phyllostachys edulis in Zhejiang Province . Journal of Zhejiang A&F University, 2021, 38(6): 1289-1296. doi: 10.11833/j.issn.2095-0756.20200796
    [2] WANG Dongli, ZHANG Risheng, FANG Xiang, WANG Kai, WU Yeli, QIN Songyue, LONG Dandan, SHEN Haiou.  Seed germination and seedling growth response to drought stress and resistance evaluation for introduced Pinus sylvestris var. mongolica sandy-fixation plantation . Journal of Zhejiang A&F University, 2020, 37(1): 60-68. doi: 10.11833/j.issn.2095-0756.2020.01.008
    [3] NIU Yuan, AO Yan, LI Yun, TIAN Xiuming, YANG Changwen, LIU Xiaotian, LI Zhihong.  Selection of pollination combinations and analysis of fruit and seed characters of excellent clones of Xanthoceras sorbifolium . Journal of Zhejiang A&F University, 2020, 37(2): 209-219. doi: 10.11833/j.issn.2095-0756.2020.02.003
    [4] ZHANG Yi, AO Yan, LIU Juefei, ZHAO Leilei, YOU Haide.  Variable fruit and seed characteristics of Xanthoceras sorbifolium in different populations . Journal of Zhejiang A&F University, 2019, 36(5): 1037-1043. doi: 10.11833/j.issn.2095-0756.2019.05.025
    [5] LIANG Fang, WEI Xufang, BAI Yongchao, HOU Zhixia.  Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots . Journal of Zhejiang A&F University, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
    [6] GAO Xiaoning, ZHAO Bing, LIU Xumei, HUANG Wenmei.  Physiological response to drought stress and drought resistance evaluation of four Rhododendron cultivars . Journal of Zhejiang A&F University, 2017, 34(4): 597-607. doi: 10.11833/j.issn.2095-0756.2017.04.005
    [7] HONG Zhen, LIAN Faliang, LIU Shuxin, HU Youjin.  Physiological response of three native garden ground cover plant seedlings to increasing drought stress . Journal of Zhejiang A&F University, 2016, 33(4): 636-642. doi: 10.11833/j.issn.2095-0756.2016.04.012
    [8] PAN Yue, RONG Jieqing, SHENG Weixing, GUI Renyi.  Silicon and drought resistance of Phyllostachys violascens . Journal of Zhejiang A&F University, 2013, 30(6): 852-857. doi: 10.11833/j.issn.2095-0756.2013.06.008
    [9] LIU Xinxin, ZHANG Mingru, ZOU Linli, WU Gang, YIN Zhuoyue, Lü Chengxiang.  Leaf anatomical structure for 15 tree species’ seedlings in Zhejiang Province . Journal of Zhejiang A&F University, 2013, 30(4): 484-489. doi: 10.11833/j.issn.2095-0756.2013.04.004
    [10] CHEN Wen, ZHAO Ying, YE Zhengqian, WANG Meiqin, WANG Jing, WANG Guoming.  Growth and physiological characteristics of five island tree species with drought stress . Journal of Zhejiang A&F University, 2013, 30(4): 490-498. doi: 10.11833/j.issn.2095-0756.2013.04.005
    [11] ZHAI Li-li, FANG Wei-min, CHEN Fa-di, WANG Xiao-shuai, WU Hong-mi, ZHANG Lin.  Drought resistance of Guoqing chrysanthemum with small inflorescences . Journal of Zhejiang A&F University, 2012, 29(2): 166-172. doi: 10.11833/j.issn.2095-0756.2012.02.003
    [12] ZOU Wu, WEN Guo-sheng, XU Gui-yan, ZHOU Guo-mo, YU Shu-quan.  Water characteristics of three fire resistant tree species using pressure-volume (P-V) technique . Journal of Zhejiang A&F University, 2010, 27(1): 76-80. doi: 10.11833/j.issn.2095-0756.2010.01.012
    [13] CHEN You-gen, LI Kun, SUN Yong-yu, ZHANG Chun-hua.  Physiological and biochemical characteristics of Jatropha curcas seedlings under osmotic stress . Journal of Zhejiang A&F University, 2010, 27(5): 677-683. doi: 10.11833/j.issn.2095-0756.2010.05.007
    [14] ZHANG Wen-ting, XIE Fu-chun, WANG Hua-tian, YU Wen-sheng, CHI Bing-qing, DU Jun, SONG Li, JIANG Cheng-ping.  Physiological response of three garden plants to drought stress . Journal of Zhejiang A&F University, 2009, 26(2): 182-187.
    [15] HAN Yan, LIN Xia-zhen.  Drought resistance in seedlings of five evergreen broadleaf tree species . Journal of Zhejiang A&F University, 2009, 26(6): 822-828.
    [16] WANG Gai-ping, CEN Xian-chao, PENG Fang-ren, YANG Hong-ning.  Drought resistance in seedlings of Catalpa bungei cultivars . Journal of Zhejiang A&F University, 2009, 26(6): 815-821.
    [17] CHEN Ke, WANG Xiao-de.  Physiological indices of three liana species(Mucuna sempervirens, Hedera nepalensis var. sinensis and Euonymus fortunei) with drought resistance . Journal of Zhejiang A&F University, 2008, 25(3): 314-318.
    [18] CEN Xian-chao, PENG Fang-ren, CHEN Long-sheng, YANG Yan.  Pressure-volume curves and drought resistance of Catalpa bungei cultivars . Journal of Zhejiang A&F University, 2008, 25(6): 760-764.
    [19] HUANG Jian-qin, FANG Wei, DING Yu-long, HE Fu-ji.  Analysis on factors effecting survival rate in Carya cathayensis grafting . Journal of Zhejiang A&F University, 2002, 19(3): 227-230.
    [20] XIE Yin-feng, SHEN Hui-juan.  Correlation of nitrate reductase and superoxide dismutase activities with drought resistance in seedlings of three conifer species under water stress . Journal of Zhejiang A&F University, 2000, 17(1): 24-27.
  • [1]
    YU Haiyan, FAN Siqi, BI Quanxin, et al. Seed morphology, oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production [J]. Industrial Crops and Products, 2017, 97: 425 − 430.
    [2]
    MA Yunxia. Variation of Xanthoceras sorbifolium Bunge Seed Characteristics and Selection of Superior Rootstock Provenance[D]. Huhhot: Inner Mongolia Agricultural University, 2021.
    [3]
    YU Haiyan, HU Xiaoyu, HE Chunxia, et al. Differential response of water stress on leaf morphological anatomical structures of varied provenances Xanthocera sorbifolium [J]. Journal of Beijing Forestry University, 2019, 41(1): 57 − 63.
    [4]
    TIAN Mengni, BI Quanxin, HE Xiaohui, et al. Analysis and evaluation of drought resistance of Xanthoceras sorbifolium leaf anatomical structure [J]. Molecular Plant Breeding, 2019, 17(24): 8261 − 8270.
    [5]
    ZHAO Yang, BI Quanxin, JU Jiao, et al. Geographic variation of seed and seedling growing traits in Xanthoceras sorbifolium [J]. Forest Research, 2019, 32(1): 163 − 171.
    [6]
    LI Fanglan, BAO Weikai. Responses of the morphological and anatomical structure of the plant leaf to environmental change [J]. Chinese Bulletin of Botany, 2005, 22(suppl 1): 118 − 127.
    [7]
    CEN Xiangtao, SHEN Wei, NIU Junle, et al. Research progress of stress resistance evaluation based on the anatomy of plant leaves [J]. Northern Horticulture, 2021(18): 140 − 147.
    [8]
    ZHAO Xue, ZHANG Xiuzhen, MU Hongxiang, et al. Effect of drought stress on anatomical structure and photosynthesis of Xanthoceras sorbifolia leaves in seedling [J]. Northern Horticulture, 2017(13): 38 − 44.
    [9]
    WANG Mengke, TIAN Mengni, BI Quanxin, et al. Evaluation of drought tolerance based on stomatal characters and selection of germplasm resources from Xanthoceras sorbifolia [J]. Bulletin of Botanical Research, 2021, 41(6): 957 − 964.
    [10]
    MA Xiaofen, WANG Xingfang, LI Qiang, et al. The analysis of drought resistance and the comparison of anatomical structuresof the leave of Xanthoceras sorbifolia Bunge introduced from different regions [J]. Journal of Arid Land Resources and Environment, 2013, 27(6): 92 − 96.
    [11]
    HAN Yongliang, LI Shiyun, LU Zhengying, et al. Comprehensive identification and selection of drought resistance of 62 cotton varieties (lines) at cotton seedling stage [J]. Agricultural Research in the Arid Areas, 2021, 39(6): 28 − 38.
    [12]
    SONG Junqiao. Research of the Relationship between Morphologic and Anatomic Structure and Drought Resistance of Rice[D]. Wuhan: Huazhong Agricultural University, 2010.
    [13]
    ZHAO Yongchao. Study on Performance Evaluation of Potato Water-saving Irrigation Based on Factor Analysis and Cluster Analysis: A Case of Wenshan Prefecture in Yunnan Province[D]. Kunming: Yunnan Normal University, 2021.
    [14]
    GAO Yuan, WANG Xia, GAO Shuren, et al. Analysis of drought resistance of 80 maize inbred lines based on membership function at germination stage[J/OL]. Molecular Plant Breeding, 2021-09-28[2022-01-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20210927.2137.006.html.
    [15]
    MA Sheng, QI Enfang, WEN Guohong, et al. Comprehensive evaluation of drought resistance of different potato varieties based on leaf microstructure [J]. Chinese Potato Journal, 2021, 35(6): 500 − 506.
    [16]
    GUO Yan, ZHANG Shuhang, LI Ying, et al. Studies on the leaf morphology, anatomical structure and drought resistance evaluation of 238 Chinese chestnut varieties (strains) [J]. Acta Horticulturae Sinica, 2020, 47(6): 1033 − 1046.
    [17]
    GAO Xiaoning, ZHAO Bing, LIU Xiaomei, et al. Physiological response to drought stress and drought resistance evaluation of four Rhododendron cultivars [J]. Journal of Zhejiang A&F University, 2017, 34(4): 597 − 607.
    [18]
    BRITO C, DINIS L T, MOUTINHO-PEREIRA J, et al. Drought stress effects and olive tree acclimation under a changing climate [J]. Plants, 2019, 8(7): 232.
    [19]
    ZHAO Junru, ZHU Zhoujun, XIAO Shixin, et al. Study on drought resistance of leaf anatomical structure of Camellia gauchowensis Chang clone [J]. Molecular Plant Breeding, 2022, 20(16): 5435 − 5443.
    [20]
    ZHU Kailin. Leaf Anatomical Characteristics and Environmental Adaptability of Sorbus Species[D]. Nanjing: Nanjing Forestry University, 2021.
    [21]
    WANG Yanxia, FAN Junfeng, CHENG Weizhe, et al. Drought resistances analysis of 12 poplar clones based on leaf anatomical structures [J]. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(11): 147 − 154.
    [22]
    HE Xiaosan, WANG Yujuan, XU Linchu, et al. Effects of drought stress on leaf anatomical structure of different Camellia oleifera cultivars [J]. Journal of Central South University of Forestry &Technology, 2020, 40(10): 1 − 17.
    [23]
    LIU Guanghui, CHEN Quanjia, WU Penghao, et al. Screening and comprehensive evaluation of drought resistance indices of cotton at blossming and boll-forming Stages [J]. Journal of Plant Genetic Resources, 2016, 17(1): 53 − 62, 69.
    [24]
    VELIKOVA V, ARENA C, IZZO L G, et al. Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats[J/OL]. International Journal of Molecular Sciences, 2020, 21(11): 3912[2022-01-30]. doi: 10.3390/ijms21113912.
    [25]
    WU Lijun, LI Zhihui, YANG Mohua, et al. Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress [J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3619 − 3626.
    [26]
    MANSOOR U, FATIMA S, HAMEED M, et al. Structural modifications for drought tolerance in stem and leaves of Cenchrus ciliaris L. ecotypes from the Cholistan Desert[J/OL]. Flora, 2019, 261: 151485[2022-01-30]. doi: 10.1016/j.flora.2019.151485.
    [27]
    LI Zhaoliang. Studies on the Drought Resistance Characteristics of Anatomical Structure of the Leaves and Stems of Different Mulberry Varieties[D]. Yangling: Northwest A&F University, 2014.
    [28]
    HU Yang, YANG Lu, GAO Chao, et al. A comparative study on the leaf anatomical structure of Camellia oleifera in a low-hot valley area in Guizhou Province, China[J/OL]. PLoS One, 2022, 17(1): e0262509[2022-01-30]. doi: 10.1371/journal.pone.0261942.
    [29]
    GONG Zhizhong, XIONG Liming, SHI Huazhong, et al. Plant abiotic stress response and nutrient use efficiency [J]. Science China-Life Sciences, 2020, 63(5): 663 − 674.
    [30]
    BACELAR E A, CORREIA C M, MOUTINHO-PEREIRA J M, et al. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions [J]. Tree Physiology, 2004, 24(2): 233 − 239.
    [31]
    ZHANG Gang. Studies on Drought Resistance of Xanthoceras sorbifolia Seedlings[D]. Yangling: Northwest A&F University, 2014.
    [32]
    LIU Bin, MA Wenjun, WANG Junhui, et al. Drought-resistance of Sophora moorcroftiana from different population from leaf anatomical structure [J]. Bulletin of Botanical Research, 2017, 37(3): 325 − 333.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(6)

Article views(549) PDF downloads(42) Cited by()

Related
Proportional views

Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium

doi: 10.11833/j.issn.2095-0756.20220202

Abstract:   Objective  This study aims to evaluate the adaptability of different germplasm resources of Xanthoceras sorbifolium in arid areas, so as to provide a basis for screening drought-resistant germplasm resources for arid and semi-arid areas.   Method  The leaves of 200 high-yield X. sorbifolium germplasm resources were collected in Tongliao Germplasm Resources Nursery in Inner Mongolia Autonomous Region. The anatomical structure of leaves was observed by making paraffin section, and 13 indexes related to drought resistance were measured, including leaf thickness, palisade tissue thickness, sponge tissue thickness and wax layer thickness. The drought resistance of different germplasm resources was evaluated by factor analysis, cluster analysis and membership function analysis.   Result  The anatomical structure indexes of leaves showed significant correlation. Based on factor analysis, 4 common factors were extracted, and the cumulative contribution rate to variation was 89.99%, basically covering most of the information of the 13 indicators. The degree of influence on drought resistance ranging from large to small was as follows: F1 (thickness index factor), F2 (tissue index factor), F3 (epidermal proportion factor), and F4 (wax layer proportion factor).   Conclusion  The thickness of upper/lower epidermis, thickness of palisade tissue and vessel diameter, which are the most important factors in F1, can be used as the main indicators for drought resistance evaluation of X. sorbifolium. The selected 90 drought-resistant germplasm resources, with advantges of high-yield, water-saving and drought-risistant, could provide materials for the breeding of drought-resistant X. sorbifolium. [Ch, 1 fig. 6 tab. 32 ref.]

XU Huihui, LIU Xiaojuan, WANG Mengke, BI Quanxin, WANG Libing, YU Haiyan. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium[J]. Journal of Zhejiang A&F University, 2023, 40(2): 348-355. doi: 10.11833/j.issn.2095-0756.20220202
Citation: XU Huihui, LIU Xiaojuan, WANG Mengke, BI Quanxin, WANG Libing, YU Haiyan. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium[J]. Journal of Zhejiang A&F University, 2023, 40(2): 348-355. doi: 10.11833/j.issn.2095-0756.20220202
  • 文冠果Xanthoceras sorbifolium为无患子科Sapindaceae文冠果属Xanthoceras植物,是中国北方特有的木本油料树种,其种仁含油率高,且富含不饱和脂肪酸,具有很高的食用价值和营养价值[1]。文冠果具有较强的生理适应性,抗寒旱、耐瘠薄,是北方造林绿化和防风固沙的优良生态树种[2]。文冠果不同的种质资源适应干旱的能力有明显的差异,丰产和抗旱的种质资源较为匮乏[3-4]。在全球水资源短缺问题不断加重的情况下,开展文冠果抗旱性评价,筛选文冠果抗旱种质资源对推动文冠果进一步扩大种植和推广及改善生态环境具有重要意义[5]。叶片是植物进行光合和蒸腾的主要部位,当植物长期生长在干旱少雨的地方时,其形态结构会发生变化来响应干旱胁迫,因此叶片的形态指标可以反映植物对干旱环境的适应情况[6-7]。基于叶片形态特征,研究者们发现文冠果叶片可通过提高蜡质层厚度和栅海比以及增加上表皮厚度来响应干旱,叶片厚度、栅海比、气孔密度和气孔开口面积指数等都可作为评价文冠果抗旱性的主要指标[8-10]。目前,中国通过叶片解剖结构指标来综合评价不同文冠果种质资源的抗旱性研究较少,因此,本研究基于文冠果种质资源圃内前期筛选的200份丰产型文冠果种质资源,通过观测叶片解剖结构的特征,采用因子和聚类分析的方法评价文冠果不同种质资源的抗旱性,以期为文冠果丰产抗旱型新品种选育提供理论依据。

    • 样品采集自内蒙古自治区通辽市开鲁县东风林场文冠果种质资源圃,43°40′~ 43°42′N,121°34′~121°37′E。该种质资源圃是2005年从全国范围内收集文冠果适生区内多个种源(新疆、宁夏、甘肃、内蒙古、黑龙江、吉林、辽宁、北京、山东、陕西、山西、河南、河北等)播种建立的,位于内蒙古东部,属大陆性温带半干旱季风气候。年平均气温 为5.9 ℃,年平均降水量为 338.3 mm,无霜期约148 d。

    • 选择树龄一致(15年生)、无病虫害、长势良好的实生丰产型文冠果植株,于2019年,在经历自然干旱且叶片完全展开时(7月下旬),在每株树正西方向中部选取朝向一致的6片成熟叶片,放入甲醛-乙酸-乙醇固定液(FAA)中固定。

    • 将FAA固定液中的叶片取出,在每个叶片主脉中部选取0.5 cm×0.5 cm正方形组织块。采用常规石蜡切片法对叶片进行脱水、透明、浸蜡和包埋等处理,然后使用徕卡切片机切片,厚度为8~10 μm,番红固绿染色后用中性树胶封片,之后使用奥林巴斯BX51显微镜进行观察并拍照。使用Digimizer软件测量叶片厚度(leaf thickness, LT),上表皮厚度(thickness of upper epidermis, TU),下表皮厚度 (thickness of lower epidermis, TL),栅栏组织厚度(thickness of palisade tissue, TP),海绵组织厚度 (thickness of spongy tissue, TS),蜡质层厚度(leaf cuticle thickness, LCT),导管直径(vessel diameter, VD)。计算栅海比(palisade tissue and spongy tissue ratio, P/S),上表皮占比(proportion of the upper epidermis, PU),下表皮占比(proportion of lower epidermis, PL),蜡质层占比(proportion of leaf cuticle thickness, PLCT),组织结构紧密度(tightness of leaf palisade tissue, CTR)和组织结构疏松度(looseness of leaf spongy tissue, SR),每次测量选取3个视野,每个视野测定重复10次,所有数据为30个测定值的平均值。其中:栅海比(P/S)=栅栏组织厚度(TP)/海绵组织厚度(TS)×100%;上表皮占比(PU)=上表皮厚度(PU)/叶片厚度(LT)×100%;下表皮占比(PL)=下表皮厚度(PL)/叶片厚度(LT)×100%;蜡质层占比(PLCT)=蜡质层厚度(PLCT)/叶片厚度(LT)×100%;组织结构紧密度(CTR)=栅栏组织厚度(TP)/叶片厚度(LT)×100%;组织结构疏松度(SR)=海绵组织厚度(TS)/叶片厚度(LT)×100%。

    • 数据使用 Excel 2019、SPSS 26.0与Rstudio 软件进行整理,根据不同文冠果种质资源的叶片解剖结构特征进行因子分析和聚类分析及方差分析。因子分析法是根据研究指标之间的相互关系,把多个具有错综复杂关系的变量归结为少数几个不相关的综合因子的一种多元统计分析方法[11]。因子分析前,先进行KMO (Kaiser-Meyer-Olkin)检验和巴特利特(Bartlett)球形检验,判定变量是否适合做因子分析。KMO值,即抽样适度测定值,取值范围为0~1,KMO值越接近于1 (>0.5),变量之间的相关性越强,原有变量越适合作因子分析;巴特利特球形检验(Bartlett)卡方值的显著水平P<0.05,因子分析的效果比较好[12-13]。为了确保结果的可靠性,通过SPSS软件采用标准差标准化(Z标准化)法对13个评价指标进行标准化处理,进行KMO检验和巴特利特(Bartlett)球形检验后运用分析模块进行因子分析,按照特征根≥1的原则提取公因子。并采用最大方差法对因子载荷矩阵进行旋转,再对旋转后的指标变量进行因子分析,从而明确各公因子代表的变量和意义。

      同时采用隶属函数分析法对种质资源的抗旱性进行综合评价[14],隶属函数值越高,抗旱性越强,反之,抗旱性越弱[15]。其中,隶属函数值的计算公式如下:正相关:Ypq=(λpqλqmin)/(λqmaxλqmin);负相关:Ypq=1−(λpqλqmin)/ (λqmaxλqmin)。其中:Ypqp组的第q个指标的隶属函数值;λpq为第p组的第q个指标的测定值;λqmaxλqmin分别为第q个指标的最大值和最小值。

    • 表1可见:叶片解剖结构13个指标的变异系数为18.78%~51.17%,说明200份文冠果种质资源的叶片解剖结构存在明显差异。其中,蜡质层厚度(LCT)为1.23~10.44 μm,在各材料中的变异系数最大,为51.17%。相比于其他性状,组织结构紧密度(CTR)的变异系数为18.78%,变异相对较小。各指标相关性分析(表2)发现:大多数性状之间显著(P<0.05)或极显著(P<0.01)相关。其中叶片厚度(TL)与上表皮厚度(TU)、下表皮厚度(TL)、栅栏组织厚度(TP)、海绵组织厚度(TS)和蜡质层厚度(LCT)等性状呈极显著相关(P<0.01)。组织结构疏松度(SR)与栅海比(P/S)、导管直径(VD)、蜡质层厚度(LCT)等性状呈极显著负相关(P<0.01)。性状之间的相关性表明:用单个叶片解剖结构指标来评价文冠果种质资源的抗旱性具有片面性,不能全面准确地评价干旱情况下文冠果叶片特性。

      指标最小
      值/μm
      最大
      值/μm
      均值/
      μm
      标准
      偏差
      变异系
      数/%
      叶片厚度(LT) 60.22 270.04 140.90 50.99 36.19
      上表皮厚度(TU) 3.97 24.10 11.95 5.22 43.65
      下表皮厚度(TL) 4.26 21.36 10.13 4.04 39.87
      栅栏组织厚度(TP) 22.34 182.31 62.66 28.22 45.04
      海绵组织厚度(TS) 20.30 104.51 51.90 17.08 32.92
      蜡质层厚度(LCT) 1.23 10.44 3.86 1.97 51.17
      导管直径(VD) 4.03 25.01 9.74 4.41 45.31
      栅海比(P/S) 35.26 263.46 121.69 38.93 32.00
      上表皮占比(PU) 4.27 17.96 8.40 1.73 20.59
      下表皮占比(PL) 4.19 21.34 7.26 1.84 25.28
      蜡质层占比(PLCT) 1.25 5.43 2.68 0.74 27.47
      组织结构紧密度(CTR) 23.08 93.76 43.79 8.22 18.78
      组织结构疏松度(SR) 22.81 90.89 37.93 7.72 20.35
        说明:样本数为200

      Table 1.  Statistics of 13 characters of leaf anatomical structure in X. sorbifolium

      指标LTTUTLTPTSLCTVDP/SPUPLPLCTCTRSR
      LT 1
      TU 0.890** 1
      TL 0.823** 0.881** 1
      TP 0.903** 0.827** 0.754** 1
      TS 0.832** 0.726** 0.734** 0.653** 1
      LCT 0.832** 0.772** 0.769** 0.783** 0.719** 1
      VD 0.851** 0.86** 0.829** 0.785** 0.711** 0.741** 1
      P/S 0.393** 0.405** 0.313** 0.678** −0.075 0.366** 0.362** 1
      PU 0.139* 0.552** 0.452** 0.187** 0.115 0.195** 0.334** 0.152** 1
      PL −0.110 0.146* 0.447** −0.061 0.016 0.056 0.117 −0.064 0.595** 1
      PLCT 0.214** 0.263** 0.357** 0.252** 0.233** 0.691** 0.261** 0.157* 0.221** 0.309** 1
      CTR 0.230** 0.276** 0.251** 0.602** −0.021 0.266** 0.248** 0.838** 0.227** 0.137 0.213** 1
      SR −0.394** −0.354** −0.220** −0.493** 0.154* −0.281** −0.323** −0.792** 0.010 0.293** 0.018 −0.412** 1
        说明:缩写指代的指标见表1。*表示显著相关 (P<0.05);**表示极显著相关 (P<0.01)

      Table 2.  Correlation between 13 traits of leaf anatomical structure in 200 X. sorbifolium samples

    • 本研究中13个指标的KMO值为0.715,巴特利特(Bartlett)球形检验近似卡方值为4 891.701,显著性P=0.00(<0.05),说明本研究适合使用因子分析法来统计分析。在13个因子中,共提取出4个公因子F1F2F3F4。4个公因子经旋转后的方差贡献率分别为42.154%、22.300%、14.885%、10.650%,累计贡献率达89.988%,能够较好地反映13个评价指标的信息。各因子的特征值、贡献率以及累计贡献率见表3表4为旋转后的公因子载荷矩阵及得分系数矩阵,其中F1公因子在叶片厚度、海绵组织厚度、上表皮厚度、导管直径、下表皮厚度、栅栏组织厚度和蜡质层厚度上载荷较大,且这些变量均与叶片厚度呈显著正相关,因此F1公因子定义为厚度因子;F2公因子在栅海比、组织结构紧密度和组织结构疏松度上载荷较大,可定义为组织结构因子,其中组织结构疏松度对组织结构因子的影响是负向的;F3公因子的主要载荷量在上表皮占比和下表皮占比上,可定义为表皮占比因子;F4公因子中蜡质层占比最大,成为蜡质层占比因子。

      指标初始特征值旋转后主因子
      特征根贡献
      率/%
      累积贡
      献率/%
      特征根贡献
      率/%
      累积贡
      献率/%
      LT 6.554 50.418 50.418 5.480 42.154 42.154
      TU 2.303 17.714 68.132 2.899 22.300 64.454
      TL 1.799 13.837 81.969 1.935 14.885 79.339
      TP 1.043 8.019 89.988 1.384 10.650 89.988
      TS 0.608 4.677 94.665
      LCT 0.409 3.145 97.811
      VD 0.179 1.377 99.188
      P/S 0.037 0.288 99.476
      PU 0.023 0.176 99.652
      PL 0.018 0.137 99.789
      PLCT 0.014 0.109 99.898
      CTR 0.009 0.066 99.964
      SR 0.005 0.036 100
        说明:缩写指代的指标见表1

      Table 3.  Total variance contribution

      指标变量因子载荷因子得分
      F1F2F3F4F1F2F3F4
      LT X1 0.961 0.225 −0.105 0.051 0.211 −0.017 −0.115 −0.081
      TU X2 0.900 0.250 0.282 0.003 0.179 0.006 0.116 −0.172
      TL X3 0.848 0.137 0.397 0.157 0.151 −0.035 0.160 −0.044
      TP X4 0.800 0.537 −0.025 0.122 0.123 0.126 −0.068 −0.012
      TS X5 0.913 −0.263 −0.035 0.139 0.236 −0.209 −0.092 0.001
      LCT X6 0.788 0.194 −0.021 0.558 0.095 −0.018 −0.133 0.379
      VD X7 0.880 0.207 0.155 0.045 0.180 −0.011 0.038 −0.113
      P/S X8 0.179 0.970 0.025 0.074 −0.074 0.370 0.006 0.020
      PU X9 0.225 0.115 0.868 −0.039 0.003 0.034 0.490 −0.197
      PL X10 −0.018 −0.115 0.890 0.229 −0.072 −0.037 0.473 0.075
      PLCT X11 0.182 0.063 0.168 0.942 −0.106 −0.008 −0.052 0.779
      CTR X12 0.062 0.827 0.208 0.202 −0.115 0.326 0.096 0.125
      SR X13 −0.196 −0.821 0.207 0.148 0.009 −0.309 0.096 0.142
        说明:缩写指代的指标见表1

      Table 4.  Factor loadings and factor scores coefficient after rotated

      表4可以得到各指标在4个公因子上的得分。将各项指标变量定义为X1X2$, \cdots , $ X13,其在4个公因子上的得分表示为F1F2F3F4,综合得分表示为F

      根据4个公因子的权重,求得综合得分(F)的表达式为F=(λ1F1+λ2F2+λ3F3+λ4F4)/(λ12+λ3+λ4),其中λi (i=1, 2$, \cdots , $ 4)分别为4个公因子的特征根。即:

      F=0.066X1+0.084X2+0.083X3+0.076X4+0.044X5+0.063X6+0.075X7+0.060X8+0.068X9+0.044X10+0.032X11+0.058X12−0.040X13

      其中:Xi (i=1, 2$, \;\cdots , $ 13)为各样本经过标准化后各性状指标对应的数值。

      由上述表达式指标前的系数值(即权重)可以看出:13项指标中上表皮厚度(0.084)、下表皮厚度(0.083)、栅栏组织厚度(0.076)和导管直径(0.075)指标最能反映文冠果种质资源的抗旱能力,而组织结构疏松度(−0.040)与综合得分呈负相关关系,即叶片组织结构越疏松,综合得分越低,抗旱性越差。

    • 基于因子分析得到的4个公因子的得分及综合得分,以Euclidean距离为度量标准,利用Ward法对200份种质资源进行系统聚类分析,将200份种质资源分成了A、B共2组,其中A组包括90份种质资源,B组包括110份种质资源。根据公式得到A组文冠果种质资源的综合得分为0.610,远高于B组得分−0.449(表5)。由图1可以看出:A组的叶片栅栏组织排列紧密且占比较大,紧密的栅栏组织可以有效地减少叶片的蒸腾作用,提高叶片的保水能力,从而提高植株适应干旱的能力。而B组的叶片栅栏组织和海绵组织则呈疏松状排列,细胞间隙较大,在植物受到干旱胁迫时,叶片不能维持稳定的含水量,从而影响植株的生长。

      类型隶属函数值综合评价值综合得分F
      LTTUTLTPTSLCTVDP/SPUPLPLCTCTRSR
      A组0.6100.6380.5630.4110.4710.4760.4670.4610.3460.1950.4330.3380.8200.4790.610
      B组0.2050.2030.1680.1250.2540.1310.1180.3100.2650.1640.2740.2560.2570.210−0.449
        说明:缩写指代的指标见表1

      Table 5.  Subordinative function of 2 types of X. sorbifolium leaf anatomical structure

      Figure 1.  Leaf anatomical structure characteristics of 2 types of X. sorbifolium

      对2组种质资源指标数据进行隶属函数分析(表5):A组的隶属函数值为0.479,高于B组(0.210),这与因子分析的综合得分结果一致,表明因子分析法对于评价文冠果种质资源抗旱性的适用性。方差分析结果(表6)表明:A组和B组种质资源的各项指标中除下表皮占比不存在显著差异外,其余指标均存在极显著差异。A组的叶片厚度、上/下表皮厚度、栅栏组织厚度和蜡质层厚度等都显著高于B组,而B组的组织结构疏松度较高,为40.321%。这表明在同一干旱环境条件下,A组种质资源叶片的保水能力要强于B组,即A组的抗旱性要强于B组,A组的文冠果种质资源更适宜在干旱地区种植。

      类型LT/μmTU/μmTL/μmTP/μmTS/μmLCT/μmVD/μmP/S/%PU/%PL/%PLCT/%CTR/%SR/%
      A组188.11716.82013.87988.03764.8635.61813.818140.4999.0117.5403.06046.98735.053
      B组103.1348.0627.12342.30441.7162.4396.499106.1007.8897.0012.39341.15740.321
      P0.0000.0000.0000.0000.0000.0000.0000.0000.0000.9100.0000.0000.000
        说明:缩写指代的指标见表1

      Table 6.  Variance of 2 types of X. sorbifolium leaf anatomical structure

    • 叶片形态的变化是植物对干旱胁迫的重要响应机制之一。长期生长在干旱环境中的植物会形成多种抗旱、耐旱的叶片结构特征,其中叶片解剖结构的多项指标在植物抗旱性评价中广泛应用[16-18],如叶片厚度[19]、上表皮厚度、下表皮厚度[19]、栅海比[20-21]、组织结构紧密度[22]等都是评价植物抗旱性的主要指标,但使用单一指标评价植物的抗旱性具有片面性,对多项指标进行综合分析是准确评价植物种质资源抗旱性的关键。本研究基于13项叶片解剖结构指标对文冠果种质资源的抗旱性进行了评价,结果表明:文冠果不同种质资源的叶片解剖结构指标的变异范围较大,且指标之间具有显著相关性。为使综合评价结果更加客观合理,采用因子分析法从上述指标中提取出4个公因子:厚度指数因子、组织指数因子、表皮占比因子和蜡质层占比因子,其中载荷量较大的上/下表皮厚度、栅栏组织厚度和导管直径可作为评价文冠果抗旱性的主要指标。

      基于因子分析的结果,结合聚类和隶属函数分析法将种质资源划分成为A组和B组。其中A组的90份种质资源具有较高的综合得分和隶属函数值,在表皮厚度、栅栏组织厚度、组织结构紧实度和导管直径等方面均具有较好的表现,即在干旱胁迫下,A组种质资源相比于B组具有较强的适应能力。叶片越厚,储水能力越强[22-24],栅栏组织厚实,细胞排列紧密能有效减少叶片水分的流失[25-26],而较大的导管直径可提高水分运输效率,使植株更好地适应干旱环境[27]。因子分析和隶属函数分析结果的一致性表明:因子分析法能够准确地评价并筛选出抗旱性文冠果种质资源,筛选出的A组种质资源能兼顾丰产和节水抗旱的优点,可为干旱地区提供适宜的种质材料。

      叶片解剖结构特征是反映植物抗旱性和筛选抗旱型种质资源的一个重要方面[28-29]。抗旱性则是植物长期适应干旱环境而产生的一种复杂的性状,涉及植物的形态构造、生理生化反应等多方面[30-32]。在今后的研究中,可以综合考虑多种因素并结合生产实践来评价并筛选抗旱种质资源。

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return