Volume 40 Issue 5
Sep.  2023
Turn off MathJax
Article Contents

ZHANG Yan, ZHANG Ruixiang, LIU Zhanxin, FENG Xueqi, GUO Erhui. Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1035-1044. doi: 10.11833/j.issn.2095-0756.20220727
Citation: ZHANG Yan, ZHANG Ruixiang, LIU Zhanxin, FENG Xueqi, GUO Erhui. Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1035-1044. doi: 10.11833/j.issn.2095-0756.20220727

Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone

doi: 10.11833/j.issn.2095-0756.20220727
  • Received Date: 2022-11-25
  • Accepted Date: 2023-04-28
  • Rev Recd Date: 2023-04-26
  • Available Online: 2023-09-26
  • Publish Date: 2023-09-26
  •   Objective  This study aims to explore the impact of human disturbance on soil physical properties in the riparian zone, in order to provide a scientific basis for ecological restoration and regulation of the Yellow River riparian ecosystem.  Method  In October 2021, three types of sample sites with different degrees of disturbance were selected in the Luoyang-Zhengzhou section of the Yellow River based on the degree of human trampling, where the topography and surface vegetation coverage were relatively consistent. The near riparian zone was divided into 200 m×200 m sample plots according to a 5×3 grid, and a total of 15 sample points were set up. Differences in soil physical properties such as bulk density, moisture content, capillary water capacity, maximum water capacity, minimum water capacity, total porosity, capillary porosity, and non-capillary porosity in the Yellow River riparian zone with different levels of human disturbance intensity (mild, moderate and severe) were systematically compared and analyzed.   Result  (1) With the increase of human disturbance intensity, soil bulk density and non-capillary porosity increased gradually. Soil moisture content first increased and then decreased. Soil capillary water capacity, maximum water capacity, minimum water capacity, total porosity and capillary porosity decreased gradually. (2) Soil bulk density was negatively correlated with soil moisture content and capillary porosity, but it did not reach a significant level. There was a significant negative correlation between soil bulk density and soil capillary water capacity, maximum water capacity, minimum water capacity and total porosity (P<0.01), and a significant positive correlation with non-capillary porosity (P<0.01).   Conclusion  Excessive human disturbance such as trampling increases the soil compaction in the riparian zone, leading to the degradation of soil physical properties, and a decrease in soil water retention and holding capacity. [Ch, 2 fig. 4 tab. 41 ref.]
  • [1] ZENG Hong, CHEN Conglin, YU Jing, XIANG Lin, SUN Yimiao, HU Mingyue, HAO Jianfeng.  Effects of human interference on species diversity and biomass of Eucalyptus grandis plantation in Cangping Mountain Park in Ya’an . Journal of Zhejiang A&F University, 2021, 38(2): 253-261. doi: 10.11833/j.issn.20950756.20200312
    [2] ZHA Jingjing, WU Yongbo, MAO Anmin, ZHU Ying, LI Wenxia, YANG Jing.  Effects of riparian plantation buffer strips on phosphorus interception in runoff water . Journal of Zhejiang A&F University, 2020, 37(4): 639-645. doi: 10.11833/j.issn.2095-0756.20190509
    [3] ZHANG Rong, LI Tingting, JIN Suo, YU Shunyao, WANG Yu, LI Yujiang, QI Jinqiu, HAO Jianfeng.  Effects of human disturbance on species diversity and soil physiochemical properties of Schima superba community in Mengding Mountain . Journal of Zhejiang A&F University, 2020, 37(5): 867-875. doi: 10.11833/j.issn.2095-0756.20190554
    [4] ZHU Xiaocheng, WU Yongbo, YU Yuying, LI Wenxia.  Removing nitrogen with trees planted in the riparian vegetation buffer strips of Taihu Lake . Journal of Zhejiang A&F University, 2019, 36(3): 565-572. doi: 10.11833/j.issn.2095-0756.2019.03.018
    [5] YAN Yechen, ZHAO Tingning, ZHANG Yan, WANG Meiqi, HU Ping, YANG Ning, CHEN Tong.  Improvements and evaluation of soil physical properties with different plant types in an abandoned quarry . Journal of Zhejiang A&F University, 2019, 36(6): 1062-1068. doi: 10.11833/j.issn.2095-0756.2019.06.002
    [6] YU Hongwei, LIU Zhikun, LÜ Rongjin, LUO Congjun, LÜ Zejun, LI Guangyao.  Surface roughness of high moisture content wood and bamboo laminated lumber sliced veneer (bamboo) . Journal of Zhejiang A&F University, 2017, 34(4): 711-720. doi: 10.11833/j.issn.2095-0756.2017.04.018
    [7] LI Feng, QI Jinqiu, XIAO Hui, CHEN Yuzhu, XIE Jiulong, HUANG Xingyan.  Logging age for the Bambusa rigida culm based on physical-mechanical properties . Journal of Zhejiang A&F University, 2017, 34(5): 849-855. doi: 10.11833/j.issn.2095-0756.2017.05.011
    [8] WU Haibing, LI Aiping, FANG Hailan, HAO Guanjun.  Green-belt soil testing methods for porosity and the importance of porosity on soil fertility evaluation . Journal of Zhejiang A&F University, 2015, 32(1): 98-103. doi: 10.11833/j.issn.2095-0756.2015.01.014
    [9] WU Huqiang, SHAO Yongchang, ZHUANG Yilin, ZHANG Jinchi, HAN Cheng, LIU Xin, ZHUANG Jiayao.  Lateral water flow and volumetric water content with rainfall for soils in a suburban Quercus acutissima forest in Nanjing . Journal of Zhejiang A&F University, 2014, 31(5): 683-689. doi: 10.11833/j.issn.2095-0756.2014.05.004
    [10] LIANG Jing, FANG Hailan, HAO Guanjun, SUN Qian.  Soil respiration for different plant communities in an urban green-belt of Shanghai . Journal of Zhejiang A&F University, 2013, 30(1): 22-31. doi: 10.11833/j.issn.2095-0756.2013.01.004
    [11] TANG Xiao-li, MA Ling-fei.  Physical properties and chemical composition of a hemp core . Journal of Zhejiang A&F University, 2010, 27(5): 794-798. doi: 10.11833/j.issn.2095-0756.2010.05.026
    [12] AI Xun-ru, YI Yong-mei, YAO Lan, WANG Bo-quan, XIONG Biao.  Effects of human disturbance on species diversity of Pinus massoniana-Cunninghamia lanceolata mixed forest in Suobuya Stone Forest . Journal of Zhejiang A&F University, 2010, 27(2): 178-184. doi: 10.11833/j.issn.2095-0756.2010.02.003
    [13] XU Hui-min, ZHANG Jin-feng, XIANG Hong-mei, GUO Hua.  Sub-alpine forest structure resulting from human disturbances in Shangri-La County,China . Journal of Zhejiang A&F University, 2008, 25(5): 591-596.
    [14] LI Dong-lin, JIN Ya-qin, ZHANG Ji-lin, RUAN Hong-hua.  Heavy metal soil pollution in the Qinhuai River riparian zone . Journal of Zhejiang A&F University, 2008, 25(2): 228-234.
    [15] HOUBen-dong, MA Feng-yun, XING Shang-jun, SONG Yu-min, LIUYan.  Soil and vegetation characteristics of wetland communities at different successive stages in the Huanghe River Delta . Journal of Zhejiang A&F University, 2007, 24(3): 313-318.
    [16] YU Qiong-hua, YU You-ming, JIN Yong-ming, MA Ling-fei.  Physico-mechanical properties of planted Phyllostachys praecox . Journal of Zhejiang A&F University, 2004, 21(2): 130-133.
    [17] GUAN Hui-yuan, NISHINO Yoshi-hiko, TANAKA Chi-aki.  Longitudinal vibration properties of wood in moisture content region above the fiber saturation point . Journal of Zhejiang A&F University, 2002, 19(4): 376-381.
    [18] LI Jian-min, XIE Fang, ZHANG Si-yu, CHEN Dong-hua, WU Qi-ren.  Tree species diversity in Betula Luminifora community under different intensities of disturbance . Journal of Zhejiang A&F University, 2001, 18(4): 359-361.
    [19] LIN Yuan-tai.  Restoration ecology on the Castanopsis fargesii forest in Wuyishan, Fujian Ⅰ. The effects of different scale of artificial disturbance on the flora of tree layer of Castanopsis fargesii . Journal of Zhejiang A&F University, 2001, 18(3): 252-256.
    [20] XU Feng-lan, WEI Tan, LIU Ai-qing.  Studies on physical characters of soil in mixed forest of Chinese fir and paulownia . Journal of Zhejiang A&F University, 2000, 17(3): 285-288.
  • [1]
    ZHAO Xiaoxue, RAO Liangyi, SHEN Zhenzhou. Heterogeneous characteristics of soil physical properties of different terrain locations in the Pisha sandstone area [J]. Chinese Journal of Applied Environmental Biology, 2020, 26(6): 1359 − 1368.
    [2]
    DU Jiaojiao, ZHOU Yunchao, BAI Yunxing, et al. Research of soil hydrophysical properties of Pinus Massoniana plantation after the introduction of broad-leaved tree species [J]. Research of Soil and Water Conservation, 2021, 28(4): 105 − 112.
    [3]
    LI Jiangwen, DU Jing, ZHONG Qin, et al. Changes in the profile properties and chemical weathering characteristics of cultivated soils affected by anthropic activities[J/OL]. Scientific Reports, 2021, 11(1): 20822[2022-10-25]. doi: 10.22541/au.162012734.42874138/v1.
    [4]
    YOU Yujie, WANG Yixiang, ZHANG Huafeng, et al. Effects of different human disturbances on soil water conversation and fertility of natural secondary shrub [J]. Acta Ecologica Sinica, 2018, 38(3): 1097 − 1105.
    [5]
    JIAO Shuying, LI Junran, LI Yongqiang, et al. Variation of soil organic carbon and physical properties in relation to land uses in the Yellow River Delta, China[J/OL]. Scientific Reports, 2020, 10(1): 20317[2022-10-25]. doi: 10.1038/s41598-020-77303-8.
    [6]
    GUO Baobao. Effects of different human interference on forest soil water-physical properties [J]. Journal of Subtropical Resources and Environment, 2014, 9(2): 70 − 74.
    [7]
    PANG Xueyong, LIU Qing, LIU Shiquan, et al. Effect of human-induced disturbance on soil physical properties of subalpine coniferous forests in western Sichuan [J]. Chinese Journal of Applied and Environmental Biology, 2002, 8(6): 583 − 587.
    [8]
    ZHANG Xibiao, SHANGGUAN Zhouping. Effect of human-induced disturbance on physical properties of soil in artificial Pinus tabulaeformis Carr. forests of the Loess Plateau [J]. Acta Ecologica Sinica, 2006, 26(11): 3685 − 3695.
    [9]
    WANG Ting, XU Qing, GAO Deqiang, et al. Effects of thinning and understory removal on the soil water-holding capacity in Pinus massoniana plantations[J/OL]. Scientific Reports, 2021, 11(1): 13029[2022-10-25]. doi: 10.1038/s41598-021-92423-5.
    [10]
    SONG Hongli, MOU Xiaojie, LIU Xingtu. Anthropogenic effect on wetland vegetation growth in the Yellow River Delta [J]. Ecology and Environmental Sciences, 2019, 28(12): 2307 − 2314.
    [11]
    ZENG Hong, CHEN Conglin, YU Jing, et al. Effects of human interference on species diversity and biomass of Eucalyptus grandis plantation in Cangping Mountain Park in Ya’an [J]. Journal of Zhejiang A&F University, 2021, 38(2): 253 − 261.
    [12]
    LI Shengping, WANG Kelin. Effect of human disturbance on soil nutrient and plant diversity of grassland in karst mountain [J]. Research of Soil and Water Conservation, 2016, 23(5): 20 − 27.
    [13]
    WEI Bin, ZHANG Xia, WU Refeng. Theoretical analysis of disturbance in ecology and its application [J]. Chinese Journal of Ecology, 1996, 15(6): 50 − 54.
    [14]
    CONG Xiaofeng, LIU Licheng, WANG Yuchao, et al. Influence of different interference on physical properties of urban green space soil [J]. Chinese Agricultural Science Bulletin, 2015, 31(28): 166 − 172.
    [15]
    WANG Ling, FENG Maosong, HONG Zhigang, et al. Soil physical properties of Toona sinensis plantation in Xingwen County [J]. Soils, 2014, 46(3): 512 − 517.
    [16]
    YAN Jiyou, XU Kairan, SHEN Xinshan. Influences of grazing disturbance on soil physical properties in planted forest [J]. Bulletin of Soil and Water Conservation, 2008, 28(6): 138 − 141.
    [17]
    TANG Mingyan, YANG Yongxing. Analysis of vegetation and soil degradation characteristics under different human disturbance in lakeside wetland, Napahai [J]. Acta Ecologica Sinica, 2013, 33(20): 6681 − 6693.
    [18]
    SUN Zhigao, LIU Jingshuang, LI Bin. The actuality, problems and sustainable utilization countermeasures of wetland resources in China [J]. Journal of Arid Land Resources and Environment, 2006, 20(2): 83 − 88.
    [19]
    GUO Erhui, YANG Xitian, CHEN Liding. Research of resident’s perceptions to ecological functions of riparian buffers and their preferences for river landscape [J]. Chinese Landscape Architecture, 2017, 33(1): 95 − 99.
    [20]
    GUO Erhui, FANG Xiao, MA Li, et al. Effects of different recovery years on the ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in riparian farmland: a case study of Wenyu River [J]. Acta Ecologica Sinica, 2020, 40(11): 3785 − 3794.
    [21]
    LAURANCE S G W, BAIDER C, VINCENT FLORENS F B, et al. Drivers of wetland disturbance and biodiversity impacts on a tropical oceanic island [J]. Biological Conservation, 2012, 149(1): 136 − 142.
    [22]
    ZHU Xianbin, WANG Lei, ZHANG Xun, et al. Effects of different types of anthropogenic disturbances and natural wetlands on water quality and microbial communities in a typical black-odor river[J/OL]. Ecological Indicators, 2022, 136: 108613[2022-08-25]. doi: 10.1016/j.ecolind.2022.108613.
    [23]
    BAI Junhong, ZALEWSKI M, ZHOU Demin, et al. Editorial: estuarine wetland ecohydrology and hydrobiology in Yellow River Delta of China, from prospective of intensive human disturbance [J]. Ecohydrology &Hydrobiology, 2020, 20(4): 473 − 474.
    [24]
    CHI Yuan, SHI Honghua, ZHENG Wei, et al. Spatiotemporal characteristics and ecological effects of the human interference index of the Yellow River Delta in the last 30 years [J]. Ecological Indicators, 2018, 89: 880 − 892.
    [25]
    SANG Kaixin, HU Ganlin, HUANG Chao, et al. Effects of root structure characteristics of 5 plant types on soil infiltration in the Yellow River riparian [J]. Science of Soil and Water Conservation, 2020, 18(5): 1 − 8.
    [26]
    MEITZEN K M, PHILLIPS J N, PERKINS T, et al. Catastrophic flood disturbance and a community’s response to plant resilience in the heart of the Texas Hill Country [J]. Geomorphology, 2018, 305: 20 − 32.
    [27]
    YANG Rong, SAI Na, SU Liang, et al. Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus of the Yellow River wetland in Baotou, Inner Mongolia [J]. Acta Ecologica Sinica, 2020, 40(7): 2205 − 2214.
    [28]
    LIU Dong, ZHANG Jian, BAO Yalan, et al. Effects of soil moisture on Phragmites australis leaves and soil C, N and P ecological stoichiometric characteristics in Yangguan wetland, Dunhuang [J]. Acta Ecologica Sinica, 2020, 40(11): 3804 − 3812.
    [29]
    ZHANG Xiaoyue, QI Jinqiu ZHANG Liuhua, et al. Effects of human disturbance on species diversity and soil physical and chemical properties of revetment forest in Wenjiang Section of the Jinma River [J]. Bulletin of Botanical Research, 2019, 39(1): 78 − 86.
    [30]
    HE Qihua, HE Yonghua, BAO Weikai. Dynamics of soil water contents on south-facing slope of dry valley area in the upper reaches of the Minjiang River [J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(1): 68 − 74.
    [31]
    YAO Junyu, QI Jinqiu, ZHANG Liuhua, et al. Effects of anthropogenic disturbance on species diversity and soil physicochemical properties of Symplocos sumuntia secondary forest in Bifengxia [J]. Chinese Journal of Ecology, 2018, 37(10): 2942 − 2950.
    [32]
    ZHANG Rong, LI Tingting, JIN Suo, et al. Effects of human disturbance on species diversity and soil physiochemical properties of Schima superba community in Mengding Mountain [J]. Journal of Zhejiang A&F University, 2020, 37(5): 867 − 875.
    [33]
    GUITET S, SABATIER D, BRUNAUX O, et al. Disturbance regimes drive the diversity of regional floristic pools across Guianan Rainforest Landscapes[J/OL]. Scientific Reports, 2018, 8(1): 3872[2022-10-25]. doi: 10.1038/s41598-018-22209-9.
    [34]
    WU Hao, MA Xinxin, XIAO Nannan, et al. Effects of soil physical properties on morphological traits of constructive trees and species diversity of pine-oak mixed forest in Qinling Mountains [J]. Soils, 2020, 52(5): 1068 − 1075.
    [35]
    LI Qian. Impacts of tourist disturbance on soil properties and plant communities in the natural reservation area of Changbai Mountain [J]. Journal of Shandong Agricultural University (Natural Science Edition), 2015, 46(1): 74 − 77.
    [36]
    YANG Daxin, GONG Hede, PAN Yang, et al. Effects of human disturbance on plant communities and physicochemical soil properties in the natural reservation area of Jiaozi mountain [J]. Science Technology and Engineering, 2016, 16(32): 8 − 14.
    [37]
    YANG Yifan, HU Zongda, LI Yafei, et al. Water conservation capacity of ground cover and soils in the subalpine Quercus aquifolioides shrubs in of western Sichuan, China [J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(4): 951 − 960.
    [38]
    LI Songyang, YU Hang, LUO Qinghu, et al. Change characteristics of soil physical properties at the initial natural recovery stage in disaster disturbed and damaged areas [J]. Journal of Soil and Water Conservation, 2020, 34(5): 162 − 168.
    [39]
    LI Jingpeng, XU Mingfeng, SU Zhiyao, et al. Soil fertility quality assessment under different vegetation restoration patterns [J]. Acta Ecologica Sinica, 2014, 34(9): 2297 − 2307.
    [40]
    LI Yuyuan, SHAO Min’an, CHEN Hongsong, et al. Impacts of vegetation recovery on soil physical properties in the cross area of wind-water erosion [J]. Acta Ecologica Sinica, 2010, 30(16): 4306 − 4316.
    [41]
    LEI Siyue, GUO Jinwei, HE Liang, et al. Spatial differentiation characteristics of grassland restoration and soil physical properties of slope in hilly-gully region of Loss Plateau [J]. Journal of Soil and Water Conservation, 2021, 35(1): 251 − 258.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(4)

Article views(312) PDF downloads(25) Cited by()

Related
Proportional views

Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone

doi: 10.11833/j.issn.2095-0756.20220727

Abstract:   Objective  This study aims to explore the impact of human disturbance on soil physical properties in the riparian zone, in order to provide a scientific basis for ecological restoration and regulation of the Yellow River riparian ecosystem.  Method  In October 2021, three types of sample sites with different degrees of disturbance were selected in the Luoyang-Zhengzhou section of the Yellow River based on the degree of human trampling, where the topography and surface vegetation coverage were relatively consistent. The near riparian zone was divided into 200 m×200 m sample plots according to a 5×3 grid, and a total of 15 sample points were set up. Differences in soil physical properties such as bulk density, moisture content, capillary water capacity, maximum water capacity, minimum water capacity, total porosity, capillary porosity, and non-capillary porosity in the Yellow River riparian zone with different levels of human disturbance intensity (mild, moderate and severe) were systematically compared and analyzed.   Result  (1) With the increase of human disturbance intensity, soil bulk density and non-capillary porosity increased gradually. Soil moisture content first increased and then decreased. Soil capillary water capacity, maximum water capacity, minimum water capacity, total porosity and capillary porosity decreased gradually. (2) Soil bulk density was negatively correlated with soil moisture content and capillary porosity, but it did not reach a significant level. There was a significant negative correlation between soil bulk density and soil capillary water capacity, maximum water capacity, minimum water capacity and total porosity (P<0.01), and a significant positive correlation with non-capillary porosity (P<0.01).   Conclusion  Excessive human disturbance such as trampling increases the soil compaction in the riparian zone, leading to the degradation of soil physical properties, and a decrease in soil water retention and holding capacity. [Ch, 2 fig. 4 tab. 41 ref.]

ZHANG Yan, ZHANG Ruixiang, LIU Zhanxin, FENG Xueqi, GUO Erhui. Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1035-1044. doi: 10.11833/j.issn.2095-0756.20220727
Citation: ZHANG Yan, ZHANG Ruixiang, LIU Zhanxin, FENG Xueqi, GUO Erhui. Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1035-1044. doi: 10.11833/j.issn.2095-0756.20220727
  • 土壤物理性质反映土壤结构的稳定性,在一定程度上可以表征土壤的质量与退化状况[1]。除地形地貌、土壤特征、降雨差异和植被类型等外[2],人类活动也是影响土壤性质和土壤形成过程的重要因素[34]。适度的干扰会对物种多样性和生物量以及种群、群落、生态系统甚至整体景观格局有正向促进作用,而长期的人为干扰会造成土壤压实,降低土壤团聚体稳定性、持水能力和微生物活性等[5]。郭宝宝[6]通过研究不同人为干扰强度对森林土壤水分物理性质的影响发现:土壤容重随人为干扰强度的增加呈明显增加的趋势。庞学勇等[7]通过研究人为干扰对川西亚高山针叶林土壤物理性质的影响发现:随人为干扰强度的增加,土壤粉粒、黏粒含量和大团聚体数量减少,土壤表层孔隙度减小,土壤有效水降低。张希彪等[8]通过研究人为干扰对黄土高原子午岭油松Pinus tabuliformis人工林土壤物理性质的影响发现:随人为干扰强度的增加,0~50 cm土层土壤砂粒含量均增加,粉粒含量与黏粒含量均下降,土壤容重增加了0.11~0.41 g·cm−3,土壤总孔隙度、毛管孔隙度、非毛管孔隙度、毛管持水量、自然含水量、饱和持水量、田间持水量和土壤有效水含量均下降。人为干扰通过影响土壤物理性质会改变地表径流和土壤侵蚀程度[9],进而影响植物群落分布[10]、物种多样性和生物量[11]、土壤养分含量[12]以及生态系统稳定性[13]。目前,不同程度人为干扰对土壤物理性质的影响多集中在城市绿化用地[14]、山地和森林[1516]、湖滨湿地[17]等方面,而针对河岸带湿地的研究相对较少。

    河岸带是一种生态交错带类型,是水陆交互影响下形成的特殊生境和生态系统,具有防止河岸侵蚀与水土流失、调节洪水、净化水质、维持生物多样性等生态功能[1819]。河岸带生态系统是一个脆弱的、易受水文、人类活动等干扰而退化的生态区域,具有明显的边缘效应和独特的生态过程[20],且其退化和破坏速度显著快于其他陆地生态系统[21]。农业开垦、城市开发、水利工程、道路和桥梁的修建等人为干扰影响植被类型演替[2223],造成河岸带退化,加剧水土流失,危害河岸带景观的连续性,破坏了河岸带生态服务功能,严重威胁河岸带生态系统安全与健康[2426]

    本研究以黄河中下游河岸带为例,根据实地调研结果,对不同干扰强度(轻度干扰、中度干扰、重度干扰)河岸带的土壤物理性质进行调查,分析河岸带土壤物理性质随土层深度的变化规律,对比不同干扰强度河岸带土壤物理性质的差异,探索不同干扰强度河岸带土壤物理性质的相互关系,为河岸带的生态修复和管理提供理论依据。

    • 以黄河流域中下游洛阳—郑州段河岸带湿地作为研究对象,地理位置为34.823°~34.980°N,112.777°~113.665°E。研究区春季干旱少雨,夏季炎热多雨,秋季凉爽,冬季气候干燥雨雪稀少。年平均气温为15.0 ℃,最冷月平均气温为0 ℃;最热月平均气温为27.0 ℃,年均降水量为610.0 mm。主要植被类型有芦苇Phragmites australis、白茅Imperata cylindrica、狗牙根Cynodon dactylon、雀麦Bromus japonicus、柽柳Tamarix chinensis等。

    • 在黄河洛阳—郑州段选择地形地貌和地表植被覆盖相对一致的河岸带区域,依据人为踩踏程度的不同,选择3种不同干扰强度的样地类型,分别为洛阳市偃师市邙岭乡轻度干扰河岸带、郑州市巩义市S237省道大桥中度干扰河岸带、郑州市黄河湿地公园重度干扰河岸带。样地具体情况如表1所示。其中,洛阳市偃师市邙岭乡河岸带位于黄河保护区内,周围采用栅栏圈围,受人为干扰程度较小,人流量20人·周−1;郑州市巩义市S237省道大桥下河岸带人流量50人·周−1;郑州市黄河湿地公园河岸带人类活动较多,人流量120人·周−1

      干扰强度地理位置北纬(N)东经(E)海拔/m优势植被
      轻度 洛阳市偃师市邙岭乡 34.823° 112.785° 91 芦苇、白茅、雀麦、狗牙根、柽柳
      中度 郑州市巩义市S237省道大桥 34.839° 113.060° 87 芦苇、白茅、雀麦、狗牙根
      重度 郑州市黄河湿地公园 34.841° 113.140° 88 白茅、雀麦、狗牙根

      Table 1.  Basic condition of study piots

      2021年10月,在3种不同干扰强度的区域内选择近河岸带200 m×200 m样地,进行5×3网格化划分,共设置15个样点,记录每个样点的经纬度。以每个网格划分点为中心采样点设置5 m×5 m大样方,在每个大样方内随机设置3个1 m×1 m的小样方,用环刀法与土钻法分层采集0~10、10~20、20~30 cm土层样品,分别装入带编号的密封袋内。

    • 土壤容重采用环刀法测定,土壤含水率采用烘干法测定,土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度、土壤毛管孔隙度和土壤非毛管孔隙度采用浸水法测定[1]

      采用Excel 2016和SPSS 25.0软件进行数据处理和分析。采用单因方差分析(one-way ANVOA)检验不同干扰程度土壤物理性质的差异显著性;采用 Pearson 相关分析法分析土壤物理性质之间的相关性;采用Origin 2019绘图。

    • 图1可见:河岸带土壤总孔隙度、土壤毛管孔隙度随人为干扰程度的增加而减小;土壤容重、土壤非毛管孔隙度随人为干扰强度的增加而增加。河岸带0~30 cm土层土壤容重为1.28~1.41 g·cm−3,均值为1.37 g·cm−3,中度、重度干扰土壤容重显著(P<0.05)高于轻度干扰。河岸带0~30 cm土层土壤总孔隙度为44.5%~49.8%,均值为46.6%,中度和重度干扰土壤总孔隙度显著(P<0.05)低于轻度干扰;河岸带0~30 cm土层土壤毛管孔隙度为41.0%~43.1%,均值为42.0%,轻度干扰土壤毛管孔隙度显著(P<0.05)高于重度干扰;河岸带0~30 cm土层土壤非毛管孔隙度为7.1%~14.5%,均值为11.4%,中度、重度干扰土壤非毛管孔隙度显著(P<0.05)高于轻度干扰。

      Figure 1.  Effects of different human disturbance intensity on soil bulk density and porosity of 0−30 cm riparian zone of Yellow River

      表2可见:3种不同人为干扰强度河岸带土壤容重均随土层深度增加而增加,但均无显著差异。轻度、重度干扰的土壤总孔隙度、土壤毛管孔隙度和土壤非毛管孔隙度在3个土层间均无显著差异。中度干扰下,0~10 cm土层土壤总孔隙度、土壤毛管孔隙度显著高于20~30 cm土层,而中度干扰下20~30 cm土层土壤非毛管孔隙度显著(P<0.05)高于0~10 cm土层。

      干扰强度土层深度/cm土壤容重/(g·cm−3)土壤总孔隙度/%土壤毛管孔隙度/%土壤非毛管孔隙度/%
      轻度0~101.24±0.03 a50.73±0.79 a43.85±0.82 a5.42±1.38 a
      10~201.26±0.02 a49.38±0.88 a42.57±0.59 a8.05±1.18 a
      20~301.32±0.03 a49.45±0.82 a42.86±0.79 a7.69±1.34 a
      中度0~101.40±0.02 a47.46±1.02 a43.70±0.73 a8.83±1.71 b
      10~201.41±0.02 a44.92±0.88 ab41.45±0.87 ab13.63±1.70 ab
      20~301.43±0.02 a43.65±1.13 b40.39±1.00 b15.96±2.09 a
      重度0~101.41±0.02 a44.72±0.68 a41.35±0.61 a13.93±1.27 a
      10~201.41±0.01 a43.81±0.56 a40.41±1.60 a15.78±1.14 a
      20~301.42±0.01 a45.02±0.79 a41.32±0.74 a13.66±1.51 a
        说明:不同小写字母表示不同土层间差异显著(P<0.05)。

      Table 2.  Distribution characteristics of soil density and porosity under different degrees of human disturbance

    • 图2可见:河岸带0~30 cm土层土壤含水率为13.00%~24.29%,均值为17.86%,中度干扰土壤含水率显著(P<0.05)高于轻度、重度干扰。与轻度干扰相比,中度干扰土壤含水率显著增加了32.9%,重度干扰土壤含水率减少了25.43%。河岸带土壤毛管持水量、土壤最大持水量与土壤最小持水量随人为干扰强度的增加而减小。河岸带0~30 cm土层土壤毛管持水量为168.80~185.96 g·kg−1,均值为176.79 g·kg−1,轻度干扰土壤毛管持水量显著(P<0.05)高于重度干扰。河岸带0~30 cm土层土壤最大持水量为182.23~217.87 g·kg−1,均值为196.50 g·kg−1,轻度干扰土壤最大持水量显著(P<0.05)高于中度和重度干扰。河岸带0~30 cm土层土壤最小持水量为148.99~165.50 g·kg−1,均值为156.91 g·kg−1,轻度干扰土壤最小持水量显著(P<0.05)高于重度干扰。

      Figure 2.  Effects of different human disturbance intensity on river soil moisture characteristics of 0−30 cm riparian zone of Yellow River

      表3可见:轻度干扰河岸带0~10 cm土层土壤最小持水量显著(P<0.05)高于20~30 cm土层。中度干扰河岸带0~10 cm土层土壤最大持水量显著(P<0.05)高于20~30 cm土层。其他不同土层间土壤含水率、土壤毛管持水量、土壤最大持水量与土壤最小值持水量均无显著差异。

      干扰强度土层深度/cm土壤含水率/%土壤毛管持水量/(g·kg−1)土壤最大持水量/(g·kg−1)土壤最小持水量/(g·kg−1)
      轻度0~1018.58±3.19 a195.71±3.48 a227.13±5.87 a175.99±3.87 a
      10~2016.15±2.37 a189.83±2.90 a219.42±5.55 a169.02±2.02 ab
      20~3014.17±2.13 a172.33±2.44 a207.06±6.83 a151.49±1.49 b
      中度0~1025.71±3.64 a186.28±6.18 a199.37±6.50 a166.16±6.18 a
      10~2023.79±3.61 a173.14±5.71 a186.63±5.49 ab153.29±5.93 a
      20~3023.36±3.28 a167.45±5.40 a179.19±5.16 b149.27±5.46 a
      重度0~1013.07±2.67 a170.32±3.03 a184.25±3.26 a150.91±2.59 a
      10~2012.83±2.54 a166.74±2.27 a180.90±2.71 a146.81±2.31 a
      20~3013.09±2.37 a169.35±3.48 a184.55±3.84 a149.26±3.25 a
        说明:不同小写字母表示不同土层间差异显著(P<0.05)。

      Table 3.  Characteristics of soil moisture distribution under different degrees of human disturbance

    • 相关性分析表明(表4):土壤含水率与土壤毛管孔隙度、土壤最小持水量、土壤毛管孔隙度呈极显著(P<0.01)正相关,与土壤最大持水量呈显著(P<0.05)正相关,与土壤非毛管孔隙度呈显著(P<0.05)负相关;土壤容重与土壤毛管孔隙度、土壤最大持水量、土壤最小持水量、土壤总孔隙度呈极显著(P<0.01)负相关,与土壤非毛管孔隙度呈极显著(P<0.01)正相关。

      相关性含水率容重毛管持水量最大持水量最小持水量总孔隙度毛管孔隙度
      容重 −0.067 1
      毛管持水量 0.304** −0.508** 1
      最大持水量 0.170* −0.788** 0.802** 1
      最小持水量 0.366** −0.522** 0.980** 0.775** 1
      总孔隙度 0.119 −0.516** 0.613** 0.879** 0.574** 1
      毛管孔隙度 0.244** −0.058 0.626** 0.545** 0.608** 0.755** 1
      非毛管孔隙度 −0.185* 0.339** −0.659** −0.783** −0.628** −0.953** −0.918**
        说明:*表示P<0.05,**表示P<0.01。

      Table 4.  Correlation between soil physical properties in riparian zone

    • 土壤水分是植被生长的物质基础,影响着植被群落的演替和土壤养分的变化[10]。研究区黄河河岸带的土壤容重(1.28~1.41 g·cm−3)高于纳帕海湖滨湿地(1.00~1.30 g·cm−3)[17]和包头黄河湿地(1.01~1.49 g·cm−3)[27],低于敦煌阳关湿地(1.37~1.50 g·cm−3)[28]。研究区土壤含水率(13.00%~24.29%)低于金马河温江段护岸林地(21.46%~28.02%)[29]、包头黄河湿地(23.63%~57.32%)[27]、敦煌阳关湿地(8.82%~32.54%)[28],表明研究区黄河河岸带湿地的土壤含水量相对较低。

      本研究发现:在0~30 cm各土层土壤含水率从高到低均为中度干扰、轻度干扰、重度干扰。张潇月等[29]研究发现:土壤含水量随着干扰强度的增加而减小,这与本研究结果不一致。中度干扰河岸带土壤含水率比轻度干扰显著增加了32.88%,可能是因为中度干扰对河岸带属于增益性干扰,可见适度人为干扰可以提高土壤蓄水保水能力,在土壤肥力和固碳增汇等方面起到更好的作用[3031]。尤誉杰等[4]研究不同人为干扰措施对天然次生灌丛土壤肥力及蓄水能力的影响发现:适度人为干扰可以提高土壤蓄水保水能力,但人为干扰越强对河岸带土壤水分的负向影响就越大[32]。人为干扰强度增加超过河岸带生态系统承受范围,会导致地表的裸露程度增大,植物对土壤的保水能力下降,地表蒸发随之增加,土壤水分不易保持[9],从而导致重度干扰河岸带土壤含水率比轻度干扰减少了25.4%。土壤含水率对土壤有机质的分解和氮的转化及有效性有积极影响[14],重度人为干扰导致土壤含水率下降,影响植物生长发育,进而可能导致群落逐渐向逆向演替的方向发展,湿生的植被逐渐被中生和旱生的植被所替代。GUITET等[33]通过研究雨林发现:干扰是自然生态系统功能中多样性维持的重要驱动力,零星的强烈干扰及持续性的中等干扰会显著增加景观植物多样性;但当干扰更加频繁或更强烈时,景观植物多样性会略微减少。

      土壤水分的蓄持能力和供给状况是限制植物生存的主要条件。土壤容重反映了土壤的紧实度,并直接影响土壤孔隙状况。土壤最大持水量、土壤毛管孔隙度分别反映了土壤的蓄水和供水能力[34],土壤非毛管孔隙直接影响着土壤透气与渗水能力。本研究发现:与轻度干扰相比,中度、重度干扰河岸带土壤容重分别显著增加了9.63%和9.75%;土壤总孔隙度、土壤毛管孔隙度分别显著减少了9.93%和11.98%、2.98%和5.05%,这与李茜[35]、杨大新等[36]的研究结果一致。土壤非毛管孔隙度是指孔隙直径大于0.1 mm的土壤孔隙所占土壤体积的百分比。本研究表明:土壤非毛管孔隙度随人为干扰强度增加而增加,这与张希彪等[8]的研究结果一致。中度和重度干扰河岸带土壤毛管持水量比轻度干扰分别减少了15.64%和18.90%,中度和重度干扰河岸带土壤最大持水量比轻度干扰分别减少了5.88%和10.16%,中度和重度干扰河岸带土壤最小持水量比轻度干扰分别显著减少了5.93%和11.08%,也证明人为干扰强度增加显著降低了河岸带土壤的蓄水和供水能力。这可能是因为随着人为踩踏等干扰强度的增加,河岸带土壤紧实度增加,直接或间接影响了土壤的颗粒组成以及团聚体数量和大小,从而导致土壤保水和持水能力下降,并导致土壤入渗能力降低,土壤的抗蚀能力下降,最终导致土壤退化[8]

    • 相关性分析表明:土壤容重与土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度呈极显著负相关,与土壤非毛管孔隙度呈极显著正相关。郭宝宝[6]在研究格氏栲Castanopsis kawakamii自然保护区时发现:土壤容重分别与土壤总孔隙度、土壤毛管孔隙度、土壤毛管持水量、土壤最大持水量、土壤最小持水量呈极显著负相关。丛晓峰等[14]在陕西省植物园的研究发现:土壤容重与土壤总孔隙度、土壤通气孔隙度、土壤田间持水量、土壤自然含水量、土壤饱和导水率之间呈极显著负相关。这表明土壤容重与土壤持水量呈负相关。土壤容重随土壤总孔隙度、土壤毛管孔隙度、土壤持水量的减小而显著增加,土壤中储存的有效水就越少,河岸带土壤持水能力就越差[37]。这说明土壤容重可以作为衡量土壤物理性质变化的重要指标之一。

      长期和过度的人为干扰会显著影响河岸带土壤的含水量和容重等物理性质,进而对黄河河岸带滩涂湿地生态系统造成不可逆的胁迫和退化。研究表明:植被自然恢复过程能改善土壤的通气透水能力等物理性质[38],从而在一定程度上可以有效改善脆弱和退化生态系统环境[39]。李裕元等[40]在黄土高原北部的交错带研究表明:植被恢复可以降低土壤容重,增加土壤孔隙度,但是短期内(<30 a)植被恢复对土壤颗粒组成并无显著影响,需要长期的植被恢复过程才能有所改善[39]。因此,需要继续加强对不同人为干扰强度下河岸带滩涂湿地土壤特征的监测和研究,并进行合理的生态管理以维持河岸带生态系统的健康[41]

    • 本研究表明:黄河下游河岸带3种不同干扰强度的土壤含水率为13.0%~24.3%,均值为17.9%,中度干扰可以提高土壤含水率。土壤容重为1.28~1.41 g·cm−3,中度、重度干扰土壤容重显著高于轻度干扰。土壤的总孔隙度、毛管孔隙度、毛管持水量、最大持水量和最小持水量均随人为干扰强度的增加而减小。土壤容重、非毛管孔隙度随人为干扰强度的增加而增加。人为干扰对土壤物理性质的影响主要集中在0~10 cm表层土壤。

      土壤含水率与土壤毛管孔隙度、土壤最小持水量、土壤毛管孔隙度呈极显著正相关,与土壤最大持水量呈显著正相关,与土壤非毛管孔隙度呈显著负相关。河岸带区域过度的人为干扰会显著影响河岸带土壤的水分含量和容重等物理性质变化,进而造成河岸带滩涂湿地土壤质量的退化。

Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return