-
大气氮沉降增加是全球范围内气候变化研究的热点问题[1]。过去150 a,由化石燃料燃烧和氮肥使用等人为活动输入的活性氮增加了10倍以上,导致大气氮沉降急剧增加[2−3]。研究表明:1860年,全球人类每年所创造的活性氮(Nr)约15 Tg,到20世纪90年代初期增加到了156 Tg,中国已成为全球三大主要氮沉降地区之一[1]。近些年,氮沉降的未来趋势可能因全球各地区经济结构调整和氮减排相关法规和政策的不同而异[2−4],高氮沉降区域可能会更加广泛,包括南美洲、非洲以及亚洲的大部分地区[5]。1984—2016年,全球无机氮沉降量增加了8%,从86.6 Tg·a−1增加到93.0 Tg·a−1,这一趋势包括可变区域模式的平衡[4],如东亚和巴西南部地区无机氮沉降的增加,欧洲及北美地区无机氮沉降的下降,以及1990—2015年欧洲氮氧化物(NOx)和氨(NH3)总排放量分别下降了50%和30%[6]。1980—2018年中国总氮沉降量和干氮沉降量的时空动态变化表明:总氮沉降在2000年达到峰值,2001—2005年开始趋于稳定,到2016—2018年下降了45%[7−9],至2019年NOx排放量降低了33%[10−11],预计还会继续下降[12]。这些变化引起了研究者对氮沉降生态效应的重新思考。
森林冠层表面积大,是氮沉降的重要汇,大气氮捕获效率高于其他土地利用类型[13]。SCHWEDE等[14]估算2010年全球森林生物群落的总氮沉降量为19~23 Tg·a−1。大气氮输入的增加导致许多森林生态系统的氮循环被破坏,从封闭循环转变为开放循环[15−17]。一般认为,高纬度的温带和寒带地区是“氮限制”森林[18],热带和亚热带具有开放式氮循环,为“富氮”森林,对氮沉降有较高的耐受性[19]。长期过量的氮输入致使许多森林的氮远超临界负荷[20−21],持续高氮沉降(40~60 kg·hm−2·a−1)造成“氮饱和”,致生态系统处于持续的高氮负荷状态[22−23],显著改变了森林生态系统的结构和功能,影响碳-氮库,导致土壤酸化和林木生长降低等,甚至促使森林由氮限制趋向磷限制[24−29],这些都将威胁森林的可持续性。
在氮沉降降低背景下,科学评估大气氮沉降及其生态效应具有重要的理论和实践意义。早期关于氮沉降降低后森林的潜在恢复研究都是在欧洲和北美地区(寒带森林和温带森林)开展的,包括NITREX (nitrogen saturation experiments)屋顶“清洁雨”(roof clean rain)试验和森林施氮肥试验[30−34]。鉴于此,本研究围绕森林生态系统土壤(酸化和溶液化学)、结构(植被-微生物多样性)与功能(生产力和碳吸存)对大气氮沉降降低的现有研究成果及新进展进行综述,试图阐明高氮负荷森林生态系统对氮沉降降低的响应及可能恢复的趋势,并提出未来研究方向,以期为森林生态系统对未来氮沉降进一步降低响应的生态效应提供参考与借鉴。
HTML
[1] | LIU Xuejun, ZHANG Ying, HAN Wenxuan, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494(7438): 459 − 462. | |
[2] | ZHANG L, JACOB D J, KUMAR K N, et al. Nitrogen deposition to the United States: distribution, sources, and processes [J]. Atmospheric Chemistry and Physics, 2012, 12: 4539 − 4554. | |
[3] | FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century [J/OL]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 20130164[2023-06-20]. doi: 10.1098/rstb.2013.0164. | |
[4] | ACKERMAN D, MILLET D B, CHEN Xin. Global estimate of inorganic nitrogen deposition across four decades [J]. Global Biogeochemical Cycles, 2019, 33(1): 100 − 107. | |
[5] | GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 2004, 70: 153 − 226. | |
[6] | DIRNBÖCK T, PROLL G, AUSTNES K, et al. Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests [J/OL]. Environmental Research Letters, 2018, 13(12): 125010[2023-06-20]. doi: 10.1088/1748-9326/aaf26b. | |
[7] | 郑丹楠, 王雪松, 谢绍东, 等. 2010年中国大气氮沉降特征分析[J]. 中国环境科学, 2014, 34(5): 1089 − 1097. | ZHENG Dannan, WANG Xuesong, XIE Shaodong, et al. Simulation of atmospheric nitrogen deposition in China in 2010 [J]. China Environmental Science, 2014, 34(5): 1089 − 1097. |
[8] | ZHANG Wen, WEN Xu, QI Li, et al. Changes of nitrogen deposition from 1980−2018 [J/OL]. Environment International, 2020, 144: 106022[2023-06-20]. doi: 10.1016/j.envint.2020.106022. | |
[9] | ZHU Jianxing, ZHI Chen, WANG Qiufeng, et al. Potential transition in the effects of atmospheric nitrogen deposition in China [J/OL]. Environmental Pollution, 2020, 258: 113739[2023-06-20]. doi: 10.1016/j.envpol.2019.113739. | |
[10] | 生态环境部. 2016—2019年全国生态环境统计公报[R/OL]. (2020-12-14)[2023-05-06]. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf. | Ministry of Ecology and Environmental of People’s Republic of China. National Ecological Environment Statistical Bulletin from 2016−2019 [R/OL]. (2020-12-14)[2023-05-06]. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf. |
[11] | ZHENG Bo, TONG Dan, LI Meng, et al. Trends in China’ s anthropogenic emissions since 2010 as the consequence of clean air actions [J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095 − 14111. | |
[12] | 谢丹妮, 仰东星, 段雷. 森林生态系统对大气氮沉降降低的响应[J]. 环境科学, 2023, 44(5): 2681 − 2693. | XIE Danni, YANG Dongxing, DUAN Lei. Response of forest ecosystems to decreasing atmospheric nitrogen deposition [J]. Environmental Science, 2023, 44(5): 2681 − 2693. |
[13] | DU E Z, FENN M E, de VRIES W, et al. Atmospheric nitrogen deposition to global forests: status, impacts and management options [J]. Environmental Pollution, 2019, 250: 1044 − 1048. | |
[14] | SCHWEDE D B, SIMPSON D, TAN J, et al. Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale [J]. Environmental Pollution, 2018, 243: 1287 − 1301. | |
[15] | BOXMAN A W, VEN P J M, ROELOFS J G M. Ecosystem recovery after a decrease in nitrogen input to a Scots pine stand at Ysselsteyen, the Netherlands [J]. Forest Ecology and Management, 1998, 101(1/3): 155 − 163. | |
[16] | BOXMAN A W, ROELOFS J G M. Effects of liming, sod-cutting and fertilization at ambient and decreased nitrogen deposition on the soil solution chemistry in a Scots pine forest in the Netherlands [J]. Forest Ecology and Management, 2006, 237(1/3): 237 − 245. | |
[17] | BOXMAN A W, PETERS R, ROELOFS J G M. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands [J]. Environmental Pollution, 2008, 156(3): 1252 − 1259. | |
[18] | WALLACE Z P, LOVETT G M, HART J E, et al. Effects of nitrogen saturation on tree growth and death in a mixed-oak forest [J]. Forest Ecology Management, 2007, 243(2/3): 210 − 218. | |
[19] | 陆晨东, 张六一, 夏利林, 等. 大气活性氮沉降临界负荷研究进展[J]. 地球与环境, 2021, 49(6): 750 − 756. | LU Chendong, ZHANG Liuyi, XIA Lilin, et al. Research progress on critical load of nitrogen deposition [J]. Earth and Environment, 2021, 49(6): 750 − 756. |
[20] | WANG Jianqing, SHI Xiuzhen, ZHENG Chengyang, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest [J/OL]. Science of the Total Environment, 2021, 755(1): 142449[2023-06-20]. doi: 10.1016/j.scitotenv.2020.142449. | |
[21] | 余倩, 段雷, 郝吉明. 中国酸沉降: 来源、影响与控制[J]. 环境科学学报, 2021, 41(3): 731 − 746. | YU Qian, DUAN Lei, HAO Jiming. Acid deposition in China: sources, effects and control [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 731 − 746. |
[22] | LU Xiankai, VITOUSEK P M, MAO Qinggong, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 155(20): 5187 − 5192. | |
[23] | XIE Danni, DUAN Lei, GAO Yueshi, et al. Long-term 15N balance after single-dose input of 15N-lableed |
|
[24] | BRAUN S, THOMAS V F D, QUIRING R, et al. Does nitrogen deposition increase forest production? The role of phosphorus [J]. Environmental Pollution, 2010, 158(6): 2043 − 2052. | |
[25] | LU Xiankai, MAO Qinggong, GILLIAM F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems [J]. Global Change Biology, 2014, 20(12): 3790 − 3801. | |
[26] | TIAN Dashuan, NIU Shuli. A global analysis of soil acidification caused by nitrogen addition [J/OL]. Environmental Research Letters, 2015, 10(2): 024019[2023-06-20]. doi: 10.1088/1748-9326/10/2/024019. | |
[27] | 鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5): 500 − 522. | LU Xiankai, MO Jiangming, ZHANG Wei, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview [J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500 − 522. |
[28] | 付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展和展望[J]. 植物生态学报, 2020, 44(5): 475 − 493. | FU Wei, WU Hui, ZHAO Aihua, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects [J]. Chinese Journal of Plant Ecology, 2020, 44(5): 475 − 493. |
[29] | GUNDALE M J. The impact of anthropogenic nitrogen deposition on global forests: negative impacts far exceed the carbon benefits [J]. Global Change Biology, 2022, 28(3): 690 − 692. | |
[30] | ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems-hypotheses revisited [J]. BioScience, 1998, 48(11): 921 − 934. | |
[31] | HOGBERG M, YARWOOD S, MYROLD D. Fungal but not bacterial soil communities recover after termination of decadal nitrogen additions to boreal forest [J]. Soil Biology and Biochemistry, 2014, 72: 35 − 43. | |
[32] | HOGBERG M N, BLASKO R, BACH L H, et al. The return of an experimentally saturated boreal forest to an N-limited state: observations on the soil microbial community structure, biotic N retention capacity and gross N mineralization [J]. Plant and Soil, 2014, 381(1/2): 45 − 60. | |
[33] | SCHMITZ A, SANDERS T, BOLTE A, et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition [J]. Environmental Pollution, 2019, 244: 980 − 994. | |
[34] | GILLIAM F S. Response of temperate forest ecosystems under decreased nitrogen deposition: research challenges and opportunities [J/OL]. Forests, 2021, 12: 509[2023-06-20].doi: 10.3390/f12040509. | |
[35] | POWER S A, GREEN E, BARKER C G, et al. Ecosystem recovery: heathland response to a reduction in nitrogen deposition [J]. Global Change Biology, 2006, 12(7): 1241 − 1252. | |
[36] | STEVENS C J. How long do ecosystems take to recover from atmospheric nitrogen deposition? [J]. Biological Conservation, 2016, 200: 160 − 167. | |
[37] | XIE Danni, ZHANG Ting, YU Qian, et al. A sharp decline in nitrogen input in a N-saturated subtropical forest causes an instantaneous reduction in nitrogen leaching [J]. Journal of Geophysical Research Biogeosciences, 2018, 123(10): 3320 − 3330. | |
[38] | HOGBERG P, FAN Houbao, QUIST M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest [J]. Global Change Biology, 2006, 12(3): 489 − 499. | |
[39] | VERSTRETEN A, NEIRYNCK J, GENOUW G, et al. Impact of declining atmospheric deposition on forest soil solution chemistry in Flanders, Belgium [J]. Atmospheric Environment, 2017, 170: 334 − 335. | |
[40] | BEIER C, BLANK K, BREDEMEIER M, et al. Field-scale ‘clean rain’ treatments to two Norway spruce stands within the EXMAN project-effects on soil solution chemistry, foliar nutrition and tree growth [J]. Forest Ecology and Management, 1998, 101(1/3): 111 − 123. | |
[41] | LAMERSDORF N P, BORKEN W. Clean rain promotes fine root growth and soil respiration in a Norway spruce forest [J]. Global Change Biology, 2004, 10(8): 1351 − 1362. | |
[42] | ENOWASHU E, POLL C, LAMERSDORF N, et al. Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil [J]. Applied Soil Ecology, 2009, 43(1): 11 − 21. | |
[43] | EMMETT B A, BOXMAN D, BREDEMEIER M, et al. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments [J]. Ecosystems, 1998, 1(4): 352 − 360. | |
[44] | ARMITAGE H F, BRITTON A J, WOODIN S J, et al. Assessing the recovery potential of alpine moss-sedge heath: reciprocal transplants along a nitrogen deposition gradient [J]. Environmental Pollution, 2011, 159(1): 140 − 147. | |
[45] | MITCHELL R J, SUTTON M A, TRUSCOTT M A, et al. Growth and tissue nitrogen of epiphytic Atlantic bryophytes: effects of increased and decreased atmospheric N deposition [J]. Functional Ecology, 2004, 18(3): 322 − 329. | |
[46] | BRAUN S, SCHINDLER C, RIHM B. Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate [J]. Science of the Total Environment, 2017, 599: 637 − 646. | |
[47] | FANG Yunting, GUNDERSEN P, MO Jiangming, et al. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China [J]. Forest Ecology and Management, 2009, 257(1): 332 − 342. | |
[48] | JONARD M, LEGOUT A, NICOLAS M, et al. Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective [J]. Global Change Biology, 2012, 18(2): 711 − 725. | |
[49] | DRISCOLL C, DRISCOLL K, MITCHELL M, et al. Effects of acidic deposition on forest and aquatic ecosystems in New York State [J]. Environmental Pollution, 2003, 123(3): 327 − 336. | |
[50] | HUANG Juan, ZHANG Wei, LI Yuelin, et al. Long-term nitrogen deposition does not exacerbate soil acidification in tropical broadleaf plantations [J/OL]. Environmental Research Letters, 2021, 16(11): 114042[2023-06-20]. doi:10.1088/1748-9326/ac30bd. | |
[51] | WAMELINK G W W, van DOBBEN H F, MOL-DIJKSTRA J P, et al. Effect of nitrogen deposition reduction on biodiversity and carbon sequestration [J]. Forest Ecology and Management, 2009, 258(8): 1774 − 1779. | |
[52] | van DIJK H F G, BOXMAN A W, ROELOFS J G M. Effects of a decrease in atmospheric deposition of nitrogen and sulphur on the mineral balance and vitality of a Scots pine stand in the Netherlands [J]. Forest Ecology and Management, 1992, 51(1): 207 − 215. | |
[53] | KOOPMANS C J, LUBRECHT W C, TIETEMA A. Nitrogen transformations in two nitrogen saturated forest ecosystems subjected to an experimental decrease in nitrogen deposition [J]. Pant Soil, 1995, 175(2): 205 − 218. | |
[54] | STRENGBOM J, NORDIN A, NASHOLM T, et al. Slow recovery of boreal forest ecosystem following decreased nitrogen input [J]. Functional Ecology, 2001, 15(4): 451 − 457. | |
[55] | VERSTRAETEN A, NEIRYNCKA J, COOLSA N, et al. Multiple nitrogen saturation indicators yield contradicting conclusions on improving nitrogen status of temperate forests [J]. Ecological Indicators, 2017, 82: 451 − 462. | |
[56] | BOXMAN A W, van DAM D, van DIJK H F G, et al. Ecosystem responses to reduced nitrogen and sulphur inputs into two coniferous forest stands in the Netherlands [J]. Forest Ecology and Management, 1995, 71(1/2): 7 − 29. | |
[57] | CLARK C M, MOREFIELD P, GILLIAM F S, et al. Estimated losses of plant biodiversity across the U. S. from historical N deposition from 1985−2010 [J]. Ecology, 2013, 94(7): 1441 − 1448. | |
[58] | BOBBINK R, HICKS W K. Factors affecting nitrogen deposition impacts on biodiversity: an overview [M]. SUTTON M A, MASON K E, SHEPPARD L J, et al. Nitrogen Deposition, Critical Loads and Biodiversity: Dordrecht: Springer. 2014, 127 − 138. | |
[59] | BERENDSE F, GEERTS R H E M, ELBERSE W T, et al. A matter of time: Recovery of plant species diversity in wild plant communities at declining nitrogen deposition [J]. Diversity and Disturbutions, 2021, 27(7): 1180 − 1193. | |
[60] | DEVARAJU N, PRUDHOMME R, LUNGARSKA A, et al. Quantifying the benefits of reducing synthetic nitrogen application policy on ecosystem carbon sequestration and biodiversity [J/OL]. Scientific Reports, 2022, 12: 20715[2023-06-20]. doi:10.1038/s41598-022-24794-2. | |
[61] | LU Xiankai, VITOUSEK P M, MAO Qinggong , et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests [J/OL]. Proceedings of the National Academy of Sciences, 2021, 118(16): e2020790118[2023-06-20]. doi:10.1073/pnas.2020790118. | |
[62] | PERRING M P, DIEKMANN M, MIDOLO G, et al. Understanding context dependency in the response of forest understory plant communities to nitrogen deposition [J]. Environmental Pollution, 2018, 242: 1787 − 1799. | |
[63] | PAYNE R J, DISE N B, FIELD C, et al. Nitrogen deposition and plant biodiversity: past, present, and future [J]. Frontiers in Ecology and the Environment, 2017, 15(8): 431 − 436. | |
[64] | CARFRAE J A, SHEPPARD L J, RAVEN J A, et al. Early effects of atmospheric ammonia deposition on Calluna vulgaris (L.) Hull growing on an ombrotrophic peat bog [J]. Water,Air, |
|
[65] | CLARK C M, SIMKIN S M, ALLEN E B, et al. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States [J]. Nature Plants, 2019, 5(7): 697 − 705. | |
[66] | STEVENS C J, DUPRE C, DORLAND E, et al. Nitrogen deposition threatens species richness of grasslands across Europe [J]. Environmental Pollution, 2010, 158(9): 2940 − 2945. | |
[67] | QUIST M E, NASHOLM T, LINDEBERG J, et al. Response of a nitrogen-saturated forest to a sharp decrease in nitrogen input [J]. Journal of Environmental Quality, 1999, 28(6): 1970 − 1977. | |
[68] | ROWE E C, JONES L, DISE N B, et al. Metrics for evaluating the ecological benefits of decreased nitrogen deposition [J]. Biological Conservation, 2017, 212: 454 − 463. | |
[69] | KAMMER P M, RIHM B, SCHOB C. Decreasing nitrogen deposition rate: good news for oligotrophic grassland species? [J]. Basic and Applied Ecology, 2022, 63: 125 − 138. | |
[70] | ZHANG Tianan, CHEN H Y H, RUAN Honghua. Global negative effects of nitrogen deposition on soil microbes [J]. The ISME Journal, 2018, 12(7): 1817 − 1825. | |
[71] | LIU Lingli, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment [J]. Ecology Letters, 2010, 13(7): 819 − 828. | |
[72] | HÖGBERG P, JOHANNISSON C, YARWOOD S, et al. Recovery of ectomycorrhiza after ‘nitrogen saturation’ of a conifer forest [J]. New Phytologist, 2011, 189(2): 515 − 525. | |
[73] | FREY S D, OLLINGER S, NADELHOFFER K, et al. Chronicnitrogen additions suppress decomposition and sequester soil carbon in a temperate forest [J]. Biogeochemistry, 2014, 121: 305 − 316. | |
[74] | FREY S D, KNORR M, PARRENT J, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in a forest ecosystem [J]. Forest Ecology and Management, 2004, 196(1): 159 − 171. | |
[75] | CLINE L C, HUGGINS J A, HOBBIE S E, et al. Organic nitrogen addition suppresses fungal richness and alters community composition in temperate forest soils [J]. Soil Biology and Biochemistry, 2018, 125: 222 − 230. | |
[76] | QIU Lingjun, LI Yunjie, ZHONG Qi, et al. Adaptation mechanisms of the soil microbial community under stoichiometric imbalances and nutrient-limiting conditions in a subtropical nitrogen-saturated forest [J/OL]. Plant Soil, 2023, 489(1/2): 239−258. | |
[77] | SMITHWICK E A, EISSENSTAT D M, LOVETT G M, et al. Root stress and nitrogen deposition: consequences and research priorities [J]. New Phytologist, 2013, 197(3): 712 − 719. | |
[78] | LILLESKOV E A, KUYPER T W, BIDARTONDO M I, et al. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review [J]. Environmental Pollution, 2019, 246: 148 − 162. | |
[79] | IPCC. The carbon cycle and atmospheric carbon dioxide[C]//HOUGHTON JT, DING Y, GRIGGS D J, et al. Climate Change 2001: The Scientific Basis. Cambridge University Press, 2001. | |
[80] | REICH P B, HOBBIE S E, LEE T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2 [J]. Nature, 2006, 440(7086): 922 − 925. | |
[81] | FAN Houbao, WU Jianping, LIU Wenfei, et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest [J]. Plant Soil, 2014, 379: 361 − 371. | |
[82] | SHEN Fangfang, LIU Wenfei, DUAN Honglang, et al. High N storage but low N recovery after long-term N-fertilization in a subtropical Cunninghamia lanceolata plantation ecosystem: a 14-year case study [J/OL]. Frontiers in Plant Science, 2022, 13: 91416[2023-06-20]. doi:10.21203/rs.3.rs-705377/v1. | |
[83] | THOMAS R Q, CANHAM C D, WEATHERS K C, et al. Increased tree carbon storage in response to nitrogen deposition in the US [J]. Nature Geoscience, 2010, 3(1): 13 − 17. | |
[84] | PREGITZER K S, BURTON A J, ZAK D R, et al. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests [J]. Global Change Biology, 2008, 14(1): 142 − 153. | |
[85] | NGABA M J Y, UWIRAGIYE Y, BOL R, et al. Low-level nitrogen and short-term addition increase soil carbon sequestration in Chinese forest ecosystems [J/OL]. Catena, 2022, 215: 106333[2023-06-20]. doi: 10.1016/j.catena.2022.106333. | |
[86] | JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nature Geosicence, 2010, 3(5): 315 − 322. | |
[87] | ZAK D R, FREEDMAN Z B, UPCHURCH R A, et al. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition [J]. Global Change Biology, 2017, 23(2): 933 − 944. | |
[88] | DENG Lei, HUANG Chunbo, KIM D G, et al. Soil GHG fluxes are altered by N deposition: new data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools [J]. Global Change Biology, 2020, 26(4): 2613 − 2629. | |
[89] | EASTMAN B A, ADAMS M B, BRZOSTEK E R, et al. Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions [J]. New Phytologist, 2021, 230(4): 1435 − 1448. | |
[90] | van MIEGROET H, JANDL R. Are nitrogen-fertilized forest soils sinks or sources of carbon? [J]. Environmental Monitoring and Assessment, 2007, 128: 121 − 131. | |
[91] | LU Meng, ZHOU Xuhui, LUO Yiqi, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis [J]. Agriculture,Ecosystems &Environment, 2011, 140(1/2): 234 − 244. | |
[92] | SUTTON M A, SIMPSON D, LEVY P, et al. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration [J]. Global Change Biology, 2008, 14(9): 2057 − 2063. | |
[93] | de VRIES W, POSCH M. Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900−2050 [J]. Environment Pollution, 2011, 159(10): 2289 − 2299. | |
[94] | VRIES W D, SOLBERG S, DOBBERTIN M, et al. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands [J]. Forest Ecology and Management, 2009, 258(8): 1814 − 1823. |