[1] |
中国科学院中国植物志委员会. 中国植物志: 第48卷第2分册[M]. 北京: 科学出版社, 2004: 122. |
Editorial Committee of Flora of China, Chinese Academy of Science. Flora of China: Vol 48, Issue 2 [M]. Beijing: Science Press, 2004: 122. |
[2] |
JI Tao, JI Weiwei, WANG Juan, et al. A comprehensive review on traditional uses, chemical compositions, pharmacology properties and toxicology of Tetrastigma hemsleyanum [J/OL]. Journal of Ethnopharmacology, 2020, 264: 113247[2023-05-30]. doi: 10.1016/j.jep.2020.113247. |
[3] |
HU Wangying, ZHENG Yujie, XIA Pengguo, et al. The research progresses and future prospects of Tetrastigma hemsleyanum Diels et Gilg: a valuable Chinese herbal medicine [J/OL]. Journal of Ethnopharmacology, 2021, 271: 113836[2023-05-30]. doi: 10.1016/j.jep.2021.113836. |
[4] |
徐硕, 金鹏飞, 徐文峰, 等. 民间中药三叶青的研究进展[J]. 中南药学, 2016, 14(12): 1336 − 1341. |
XU Shuo, JIN Pengfei, XU Wenfeng, et al. Research advances in Chinese herbal medicine Tetrastigmae hemsleyanum [J]. Central South Pharmacy, 2016, 14(12): 1336 − 1341. |
[5] |
LAI Chengchun, PAN Hong, ZHANG Jing, et al. Light quality modulates growth, triggers differential accumulation of phenolic compounds, and changes the total antioxidant capacity in the red callus of Vitis davidii [J]. Journal of Agricultural and Food Chemistry, 2022, 70(41): 13264 − 13278. |
[6] |
GARCÍA-LAFUENTE A, GUILLAMÓN E, VILLARES A, et al. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease [J]. Inflammation Research, 2009, 58(9): 537 − 552. |
[7] |
LI Yongli, FENG Xinyu, ZHANG Yiru, et al. Dietary flavone from the Tetrastigma hemsleyanum vine triggers human lung adenocarcinoma apoptosis via autophagy [J]. Food &Function, 2020, 11(11): 9776 − 9788. |
[8] |
范适, 胡春梅, 李有清, 等. 三叶青的研究进展[J]. 湖南生态科学学报, 2018, 5(2): 46 − 51. |
FAN Shi, HU Chunmei, LI Youqing, et al. Advances in Tetrastigma hemsleyanum [J]. Journal of Hunan Ecological Science, 2018, 5(2): 46 − 51. |
[9] |
PAOLETTI E. UV-B and Mediterranean forest species: direct effects and ecological consequences [J]. Environmental Pollution, 2005, 137(3): 372 − 379. |
[10] |
FROHNMEYER H. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection [J]. Plant Physiology, 2003, 133(4): 1420 − 1428. |
[11] |
HOLLÓSY F. Effects of ultraviolet radiation on plant cells [J]. Micron, 2002, 33(2): 179 − 197. |
[12] |
SONG Yan, MA Bin, GUO Qingxun, et al. UV-B induces the expression of flavonoid biosynthetic pathways in blueberry (Vaccinium corymbosum) calli [J/OL]. Frontiers in Plant Science, 2022, 13: 1079087[2023-05-30]. doi: 10.3389/fpls.2022.1079087. |
[13] |
HAO Juan, LOU Panpan, HAN Yidie, et al. Ultraviolet-B irradiation increases antioxidant capacity of pakchoi (Brassica rapa L. ) by inducing flavonoid biosynthesis [J/OL]. Plants, 2022, 11(6): 766[2023-05-30]. doi: 10.3390/plants11060766. |
[14] |
LIU Yang, LIU Jia, ABOZEID A, et al. UV-B radiation largely promoted the transformation of primary metabolites to phenols in Astragalus mongholicus seedlings [J/OL]. Biomolecules, 2020, 10(4): 504[2023-05-30]. doi: 10.3390/biom10040504. |
[15] |
TAO Minglei, ZHU Wei, HAN Haote, et al. Mitochondrial proteomic analysis reveals the regulation of energy metabolism and reactive oxygen species production in Clematis terniflora DC. leaves under high-level UV-B radiation followed by dark treatment [J/OL]. Journal of Proteomics, 2022, 254: 104410[2023-05-30]. doi: 10.1016/j.jprot.2021.104410. |
[16] |
PANDEY N, PANDEY-RAI S. Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L. [J]. Plant Cell,Tissue and Organ Culture, 2014, 116(3): 371 − 385. |
[17] |
温泉, 张楠, 曹瑞霞, 等. 增强UV-B对黄连代谢及小檗碱含量的影响[J]. 中国中药杂志, 2011, 36(22): 3063 − 3069. |
WEN Quan, ZHANG Nan, CAO Ruixia, et al. Effect of enhanced UV-B radiation on metabolism and berberine content of Coptis chinensis [J]. China Journal of Chinese Mataria Medica, 2011, 36(22): 3063 − 3069. |
[18] |
NEUGART S, BUMKE-VOGT C. Flavonoid glycosides in Brassica species respond to UV-B depending on exposure time and adaptation time [J/OL]. Molecules, 2021, 26(2): 494[2023-05-30]. doi: 10.3390/molecules26020494. |
[19] |
BAI Yan, GU Yiwen, LIU Shouzan, et al. Flavonoids metabolism and physiological response to ultraviolet treatments in Tetrastigma hemsleyanum Diels et Gilg [J/OL]. Frontiers in Plant Science, 2022, 13: 926197[2023-05-30]. doi: 10.3389/fpls.2022.926197. |
[20] |
GAO Limei, LIU Ying, WANG Xiaofei, et al. Lower levels of UV-B light trigger the adaptive responses by inducing plant antioxidant metabolism and flavonoid biosynthesis in Medicago sativa seedlings [J]. Functional Plant Biology, 2019, 46(10): 896 − 906. |
[21] |
LÜ Min, SU Hongyan, LI Meiling, et al. Effect of UV-B radiation on growth, flavonoid and podophyllotoxin accumulation, and related gene expression in Sinopodophyllum hexandrum [J]. Plant Biology, 2021, 23: 202 − 209. |
[22] |
CHEN Yiyong, FU Xiumin, MEI Xin, et al. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves [J]. Journal of Proteomics, 2017, 157: 10 − 17. |
[23] |
LI Ke, TIAN Huiyue, MAO Jiangping, et al. Effect of darkness treatment on the morphology, hormone status and gene expression of developing adventitious root in apple rootstock [J]. Plant Cell,Tissue and Organ Culture, 2021, 148(2): 331 − 346. |
[24] |
韩敏琪. 短波长光质对三叶青生理生化及黄酮含量的影响[D]. 杭州: 浙江农林大学, 2019. |
HAN Minqi. Effects of Short-wavelength Light Quality on Physiology, Biochemistry and Flavonoid Content Tetrastigmatis hemsleyani Diels et Gilg [D]. Hangzhou: Zhejiang A&F Uiversity, 2019. |
[25] |
AL-KHAYRI J M, UPADHYA V, PAI S R, et al. Comparative quantification of the phenolic compounds, piperine content, and total polyphenols along with the antioxidant activities in the Piper trichostachyon and P. nigrum [J/OL]. Molecules, 2022, 27(18): 5965[2023-05-30]. doi: 10.3390/molecules27185965. |
[26] |
刘希达, 韩娜, 刘志惠, 等. 覆盆子抗氧化和α-葡萄糖苷酶抑制活性成分研究[J]. 中草药, 2021, 52(17): 5226 − 5232. |
LIU Xida, HAN Na, LIU Zhihui, et al. Active components of antioxidation and α-glucosidase inhibitory from Rubi Fructus [J]. Chinese Traditional and Herbal Drugs, 2021, 52(17): 5226 − 5232. |
[27] |
李世玉, 程登虎, 闫星, 等. 外源SNP对盐胁迫下甜瓜幼苗生长及抗氧化酶活性的影响[J]. 西北植物学报, 2022, 42(6): 994 − 1002. |
LI Shiyu, CHENG Denghu, YAN Xing, et al. Effect of exogenous SNP on the growth and antioxidant enzyme activities in melon seedlings under salt stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(6): 994 − 1002. |
[28] |
王晓宇, 张艳娥, 张林生. 4种非生物胁迫下小麦幼苗表型及可溶性蛋白含量的变化[J]. 干旱地区农业研究, 2018, 36(2): 113 − 117. |
WANG Xiaoyu, ZHANG Yan’e, ZHANG Linsheng. Changes of phenotype and soluble protein content in wheat seedlings under four kinds of abiotic stress [J]. Agricultural Research in the Arid Areas, 2018, 36(2): 113 − 117. |
[29] |
朱智慧, 温东, 张栋, 等. 紫外光促进苦荞中黄酮类化合物积累的分子机制探究[J]. 中草药, 2021, 52(5): 1448 − 1453. |
ZHU Zhihui, WEN Dong, ZHANG Dong, et al. Molecular mechanisms of UVB-induced flavonoid accumulation in Fagopyrum tataricum [J]. Chinese Traditional and Herbal Drugs, 2021, 52(5): 1448 − 1453. |
[30] |
QIAN Minjie, ROSENQVIST E, PRINSEN E, et al. Downsizing in plants-UV light induces pronounced morphological changes in the absence of stress [J]. Plant Physiology, 2021, 187(1): 378 − 395. |
[31] |
ÇETINBAŞ-GENÇ A, TOKSÖZ O, PICCINI C, et al. Effects of UV-B radiation on the performance, antioxidant response and protective compounds of hazelnut pollen [J/OL]. Plants, 2022, 11(19): 2574[2023-05-30]. doi: 10.3390/plants11192574. |
[32] |
DU Zhaokui, LIN Weida, YU Binbin, et al. Integrated metabolomic and transcriptomic analysis of the flavonoid accumulation in the leaves of Cyclocarya paliurus at different altitudes [J/OL]. Frontiers in Plant Science, 2021, 12: 794137[2023-05-30]. doi: 10.3389/fpls.2021.794137. |
[33] |
JULKUNEN-TIITTO R, HÄGGMAN H, APHALO P, et al. Growth and defense in deciduous trees and shrubs under UV-B [J]. Environmental Pollution, 2005, 137(3): 404 − 414. |
[34] |
SURJADINATA B B, JACOBO-VELÁZQUEZ D A, CISNEROS-ZEVALLOS L. UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding [J/OL]. Molecules, 2017, 22(4): 668[2023-05-30]. doi: 10.3390/molecules22040668. |
[35] |
ÁLVAREZ-GÓMEZ F, KORBEE N, FIGUEROA F. Effects of UV radiation on photosynthesis, antioxidant capacity and the accumulation of bioactive compounds in Gracilariopsis longissima, Hydropuntia cornea and Halopithys incurva (Rhodophyta) [J]. Journal of Phycology, 2019, 55(6): 1258 − 1273. |
[36] |
YANG Bingxian, GUAN Qijie, TIAN Jingkui, et al. Transcriptomic and proteomic analyses of leaves from Clematis terniflora DC. under high level of ultraviolet-B irradiation followed by dark treatment [J]. Journal of Proteomics, 2017, 150: 323 − 340. |
[37] |
LI Yaohan, LIU Shengzhi, SHAWKY E, et al. SWATH-based quantitative proteomic analysis of Morus alba L. leaves after exposure to ultraviolet-B radiation and incubation in the dark [J/OL]. Journal of Photochemistry and Photobiology, B: Biology, 2022, 230: 112443[2023-05-30]. doi: 10.1016/j.jphotobiol.2022.112443. |
[38] |
ZHU Wei, YANG Bingxian, KOMATSU S, et al. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus [J/OL]. Frontiers in Plant Science, 2015, 6: 582[2023-05-30]. doi: 10.3389/fpls.2015.00582. |
[39] |
TAKEUCHI T, NEWTON L, BURKHARDT A, et al. Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles [J]. Journal of Experimental Botany, 2014, 65(20): 6003 − 6012. |
[40] |
WU Xiaojie, CHEN Bicong, XIAO Jiping, et al. Different doses of UV-B radiation affect pigmented potatoes’ growth and quality during the whole growth period [J/OL]. Frontiers in Plant Science, 2023, 14: 1101172[2023-05-30]. doi: 10.3389/fpls.2023.1101172. |
[41] |
SZTATELMAN O, GRZYB J, GABRYŚ H, et al. The effect of UV-B on Arabidopsis leaves depends on light conditions after treatment [J/OL]. BMC Plant Biology, 2015, 15: 281[2023-05-30]. doi: 10.1186/s12870-015-0667-2. |
[42] |
SHI Jing, ZHANG Xue, ZHANG Yuanyuan, et al. Integrated metabolomic and transcriptomic strategies to understand the effects of dark stress on tea callus flavonoid biosynthesis [J]. Plant Physiology and Biochemistry, 2020, 155: 549 − 559. |
[43] |
孟凡来, 白磊, 郭华春, 等. 紫甘薯叶片响应UV-B辐射增强的转录组分析[J]. 华北农学报, 2021, 36(5): 135 − 142. |
MENG Fanlai, BAI Lei, GUO Huachun, et al. Transcriptome analysis of purple sweet potato leaf in response to enhanced UV-B radiation [J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 135 − 142. |
[44] |
MARIZ-PONTE N, MENDES R, SARIO S, et al. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: a contribution to the use of UV-A/B in horticulture [J]. Journal of Plant Physiology, 2018, 221: 32 − 42. |
[45] |
WANG Hui, KANG Yunyan, YANG Ni, et al. Inhibition of UV-B stress in lettuce through enzyme-like Scutellaria baicalensis carbon dots [J/OL]. Ecotoxicology and Environmental Safety, 2022, 246: 114177[2023-05-30]. doi: 10.1016/j.ecoenv.2022.114177. |
[46] |
吴业飞, 吴鲁阳, 张振文. 紫外线-B辐射增强对葡萄叶片抗氧化系统的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(12): 161 − 166. |
WU Yefei, WU Luyang, ZHANG Zhenwen. Effect of enhanced ultraviolet-B radiation on antioxidant systems in grapevine seedling leaves [J]. Journal of Northwest A&F University (Nature Science Edtion), 2008, 36(12): 161 − 166. |
[47] |
FAIZE M, BURGOS L, FAIZE L, et al. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress [J]. Journal of Experimental Botany, 2011, 62(8): 2599 − 2613. |
[48] |
POÓR P, TAKÁCS Z, BELA K, et al. Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato [J]. Journal of Plant Physiology, 2017, 213: 216 − 226. |
[49] |
褚润, 陈年来, 韩国君, 等. 三种UV-B辐射强度下香蒲的生长和抗氧化状况[J]. 湿地科学, 2020, 18(1): 32 − 39. |
CHU Run, CHEN Nianlai, HAN Guojun, et al. Growth and antioxidant status of Typha orientalis under 3 kinds of UV-B radiation intensities [J]. Wetland Science, 2020, 18(1): 32 − 39. |
[50] |
AYALA A, MUÑOZ M, ARGÜELLES S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal [J/OL]. Oxidative Medicine and Cellular Longevity, 2014, 2014: 360438[2023-05-30]. doi: 10.1155/2014/360438. |
[51] |
梁晨, 安美玲, 杨锡洪, 等. 紫外辐射(UVB)胁迫下南极硅藻Phaeodactylum tricornutum ICE-H的生理生化与抗氧化活性响应[J]. 海洋科学进展, 2023, 41(2): 283 − 294. |
LIANG Chen, AN Meiling, YANG Xihong, et al. Physiological, biochemical and antioxidant activity response of Antarctic diatom Phaeodactylum tricornutum ICE-H under ultraviolet radiation (UVB) stress [J]. Advances in Marine Science, 2023, 41(2): 283 − 294. |
[52] |
GONCHARUK E, ZUBOVA M, NECHAEVA T, et al. Effects of hydrogen peroxide on In vitro cultures of tea (Camellia sinensis L.) grown in the dark and in the light: morphology, content of malondialdehyde, and accumulation of various polyphenols [J/OL]. Molecules, 2022, 27(19): 6674[2023-05-30]. doi: 10.3390/molecules27196674. |