Volume 41 Issue 4
Jul.  2024
Turn off MathJax
Article Contents

HUANG Zhongji, ZHU Rongyi, JING Fengge, YU Qian, ZHAO Guangwu. Correlation research between rice quality traits and seed vigor in different types of rice cultivars[J]. Journal of Zhejiang A&F University, 2024, 41(4): 679-687. doi: 10.11833/j.issn.2095-0756.20240214
Citation: HUANG Zhongji, ZHU Rongyi, JING Fengge, YU Qian, ZHAO Guangwu. Correlation research between rice quality traits and seed vigor in different types of rice cultivars[J]. Journal of Zhejiang A&F University, 2024, 41(4): 679-687. doi: 10.11833/j.issn.2095-0756.20240214

Correlation research between rice quality traits and seed vigor in different types of rice cultivars

doi: 10.11833/j.issn.2095-0756.20240214
  • Received Date: 2024-03-05
  • Accepted Date: 2024-05-11
  • Rev Recd Date: 2024-05-07
  • Available Online: 2024-06-03
  • Publish Date: 2024-07-12
  •   Objective  The level of seed vigor is closely related to crop emergence performance, population quality, yield and quality potential. By studying the correlation between rice quality traits and seed vigor in different types of Oryza sativa cultivars, this research aims to preliminarily reveal the effect of seed vigor on rice quality, and screen out high-quality rice cultivars to provide guidance for agricultural production.   Method  12 conventional japonica rice and 12 hybrid indica rice cultivars were used as test materials to determine seed vigor and quality indexes such as brown rice rate, whole semolina rate, chalky whiteness, transparency, gel consistency, straight-chain starch quality fraction and protein quality fraction under different germination conditions, and analyze their differences and correlations to investigate the relationship between seed vigor and quality traits.   Result  There were significant differences in seed vigor and rice quality among different rice types and cultivars, and cultivars with excellent quality had significant advantages in brown rice rate, whole semolina rate, chalky whiteness, transparency and gel consistency. Among them, ‘Shennong 702’ ‘Shennong 9816’ ‘Liangyou 0367’ ‘Y-liangyou 900’ ‘Jingliangyou Huazhan’ had germination indexes of 23.8 − 27.2, vigor indexes of 2.8 − 3.7, brown rice rates of 79.0% − 82.7%, and whole semolina rates of 54.4%−66.0%, which had higher seed vigor and better quality compared with other rice cultivars. There was a significant positive correlation between rice quality and vigor index, in which the correlation between the whole refined rice rate and vigor index reached a significant level in both conventional japonica and hybrid indica rice.   Conclusion  Rice cultivars with high seed vigor have better rice quality. Considering all the indexes, ‘Shennong 9816’ ‘Shennong 702’ ‘Liangyou 0367’ ‘Jingliangyou Huazhan’ ‘Y-liangyou 900’ can be promoted for cultivation and application. [Ch, 4 tab. 32 ref.]
  • [1] YANG Zhangyu, CHEN Xiaoyang, LI Yan, LI Xinze, BAI Kangjie, LUO Yao, ZHAO Guangwu, SHI Junsheng, HAN Qinghui.  Correlation analysis of test weight and other quality traits and candidate gene mining in 517 maize germplasms . Journal of Zhejiang A&F University, 2024, 41(4): 669-678. doi: 10.11833/j.issn.2095-0756.20240145
    [2] YANG Yiqi, WANG Haiyang, LIANG Huang, WU Shengchun, LIANG Peng, ZHANG Chan.  Effect of biochar with different particle sizes on the enrichment of methylmercury in rice . Journal of Zhejiang A&F University, 2024, 41(4): 744-751. doi: 10.11833/j.issn.2095-0756.20230588
    [3] DING Yunqian, ZHU Qingxiang, TANG Zhenghao, JIN Peng, LI Xinze, WANG Xiaomin, ZHAO Guangwu.  Screening and physiological characteristics of storable Oryza sativa germplasm resources . Journal of Zhejiang A&F University, 2023, 40(2): 244-253. doi: 10.11833/j.issn.2095-0756.20220594
    [4] ZHOU Yang, ZHOU Wenbin, MA Jiawei, RUAN Zhongqiang, YE Zhengqian, LIU Dan.  Soil environmental quality investigation and ecological risk assessment of a reclamation land in Jinyun County . Journal of Zhejiang A&F University, 2022, 39(2): 388-395. doi: 10.11833/j.issn.2095-0756.20210289
    [5] JIA Junwei, CHEN Zhenhua, LIAO Shiyan, LUO Wenxuan, XU Weijie, ZHONG Bin, MA Jiawei, YE Zhengqian, LIU Dan.  Transfer coefficient and distribution characteristics of Cd in low absorption rice cultivars under Cd stress . Journal of Zhejiang A&F University, 2022, 39(5): 1059-1066. doi: 10.11833/j.issn.2095-0756.20210402
    [6] GAO Lu, LI Xiangge, QI Hengnian, ZANG Ying, JIA Liangquan, ZHAO Guangwu, TANG Qizhe, ZHENG Wen.  Advances in seed respiration detection and its application . Journal of Zhejiang A&F University, 2022, 39(5): 1133-1143. doi: 10.11833/j.issn.2095-0756.20210748
    [7] WANG Ruihong, PAN Gang, ZHANG Xinjun, LI Jiangrong, ZHANG Xinjian.  Natural regeneration factors of Abies georgei var. smithii seedlings in Sejila Mountain . Journal of Zhejiang A&F University, 2021, 38(3): 652-658. doi: 10.11833/j.issn.2095-0756.20200302
    [8] YAN Liangliang, YUE Kun, SONG Lihua.  Correlation between fruit quality and soil fertility and leaf nutrients of Zizyphus jujuba ‘Lingwuchangzao’ . Journal of Zhejiang A&F University, 2020, 37(4): 631-638. doi: 10.11833/j.issn.2095-0756.20190462
    [9] YU Lu, HUANG Yanxia, LIU Jingjian, DUAN Lian.  Extraction of polarization characteristics of Oryza sativa growth under the rainfall fluctuation . Journal of Zhejiang A&F University, 2020, 37(5): 992-998. doi: 10.11833/j.issn.2095-0756.20190605
    [10] QU Zhijie, JIA Liangquan, QI Hengnian, WANG Ruiqin, ZHAO Guangwu.  Research advances in non-destructive detection methods of seed vigor . Journal of Zhejiang A&F University, 2020, 37(2): 382-390. doi: 10.11833/j.issn.2095-0756.2020.02.025
    [11] XU Zhenfei, GUO Shengpeng, QIAN Wang, BAO Miaoqing, LIN Erpei, HUANG Huahong, TONG Zaikang.  A comparative study of three determination methods for seed vigor of Cunninghamia lanceolata . Journal of Zhejiang A&F University, 2020, 37(6): 1230-1234. doi: 10.11833/j.issn.2095-0756.20190615
    [12] YU Minyi, YU Kaikai, FEI Cong, KE Weiyu, WU Yefei, ZHANG Zhenzi, BAO Zehang, LIN Haichen, LI Feifei, CHEN Guolin, LÜ Zunfu.  Characteristics and diagnosis of nitrogen nutrition for rice canopy leaf SPAD value changes . Journal of Zhejiang A&F University, 2019, 36(5): 950-956. doi: 10.11833/j.issn.2095-0756.2019.05.014
    [13] PENG Yanghe, PAN Weiguang, LI Lin.  Large rice farmer households'decisions on mechanic service outsourcing in rice production . Journal of Zhejiang A&F University, 2019, 36(5): 1006-1011. doi: 10.11833/j.issn.2095-0756.2019.05.021
    [14] CHEN Zhichao, HUANG Tingting, WANG Yang, WU Hongkai, CHEN Zhangqi, TAO Ruofu.  Dormancy characteristics and seed storage tolerance in rice . Journal of Zhejiang A&F University, 2018, 35(3): 490-496. doi: 10.11833/j.issn.2095-0756.2018.03.013
    [15] SHEN Yafei, CHENG Ruimei, XIAO Wenfa, WANG Na, LIU Zebin, WANG Xiaorong.  Content of seven soil metals on abandoned farmland in the hydro-fluctuation belt of the Three Gorges Reservoir . Journal of Zhejiang A&F University, 2017, 34(4): 662-669. doi: 10.11833/j.issn.2095-0756.2017.04.012
    [16] ZHENG Xiuwen, CUI Peng, SHI Jiawei, YANG Jingjing, CHEN Minmin, ZHENG Yao, XU Ling, LIU Hongbo.  Screening and identification of a protein for controlling lateral root development in Oryza sativa . Journal of Zhejiang A&F University, 2017, 34(6): 1024-1028. doi: 10.11833/j.issn.2095-0756.2017.06.008
    [17] QIN Min, YIN Guangtian, YANG Jinchang, LI Rongsheng, ZOU Wentao.  Phenotypic trait variation for different provenances of Mytilaria laosensis . Journal of Zhejiang A&F University, 2017, 34(1): 112-119. doi: 10.11833/j.issn.2095-0756.2017.01.016
    [18] ZHANG Liqing, CHEN Xia, HU Haichao, ZHANG Junting, GUAN Huiqian, LIU Qingpo.  miR3979-mediated arsenite tolerance in rice . Journal of Zhejiang A&F University, 2016, 33(4): 571-580. doi: 10.11833/j.issn.2095-0756.2016.04.004
    [19] FUShun-hua, DONG Ru-xiang, WULong-gao, FENG Jian-min, LIUWei-hong, HUA Chao-hui, SUNHong-you.  Correlations in progeny trials of Cunninghamia lanceolata . Journal of Zhejiang A&F University, 2007, 24(3): 272-278.
    [20] LI Tie-hua, ZHU Xiang-yun.  Study of the methods of seed vigor test of Phoebe bournei . Journal of Zhejiang A&F University, 2003, 20(3): 321-324.
  • [1]
    ZHU Dawei, ZHANG Linping, CHEN Mingxue, et al. Characteristics of high-quality rice varieties and taste sensory evaluation values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271 − 1283.
    [2]
    KOUTROUBAS S D, MAZZINI F, PONS B, et al. Grain quality variation and relationships with morpho-physiological traits in rice (Oryza sativa L. ) genetic resources in Europe [J]. Field Crops Research, 2004, 86(2): 115 − 130.
    [3]
    GU Junfei, CHEN Jing, CHEN Lu, et al. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s [J]. The Crop Journal, 2015, 3(4): 285 − 297.
    [4]
    SHAO Yafang, ZHEN Xin, ZHU Dawei, et al. Spatio-temporal distribution and development status of indica rice quality in China from 2002 to 2022 [J/OL]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024-01-24[2024-02-20].https://link.cnki.net/urlid/33.1247.S.20240124.0847.004.
    [5]
    JING Ruiyong, WEI Jiaqi, WANG Liyan, et al. Comprehensive quality evaluation of different rice varieeties based on principal component analysis [J]. Food Science, 2020, 41(24): 179 − 184.
    [6]
    XU Haoyang, FU Yafei, CHEN Lingmei, et al. Effect analysis and comprehensive evaluation on the rice qualities by genetic improvement [J]. Seed, 2023, 42(11): 76 − 83.
    [7]
    ZHAO Jia, HE Yongqi, WANG Zhoufei. Current advances on the molecular mechanism of seed vigor [J]. Journal of South China Agricultural University, 2023, 44(5): 659 − 669.
    [8]
    SUN Qun, WANG Jianhua, SUN Baoqi. Advances on seed vigor physiological and genetic mechanisms [J]. Scientia Agricultura Sinica, 2007, 40(1): 48 − 53.
    [9]
    CUI Ting, WANG Xiaomin, QIN Jianquan, et al. Effects of specific gravity-based seed grading on seed germination, seedling emergence and grain yield of hybrid rice [J]. Hybrid Rice, 2015, 30(2): 80 − 83.
    [10]
    GLORIA B C, CONSUELO M P, BIENVENIDO O J. A gel consistency test for eating quality of rice [J]. Journal of the Science of Food &Agriculture, 1973, 24(12): 1589 − 1594.
    [11]
    ZHAO Guangwu. Guidelines for Modern Seed and Seedling Experiments [M]. Beijing: China Agriculture Press, 2015.
    [12]
    ZHANG Ying, TENG Bin, WU Jingde, et al. Research on artificial accelerated aging test method for rice seeds under high temperature and humidity conditions [J]. Journal of the Chinese Cereals and Oils Association, 2010, 25(10): 8 − 12.
    [13]
    ZHANG Xiao. A Preliminary Study on the Effects of Seed Starch, Protein, Fat Content on Seed Vigor of Hybrid Rice [D]. Hangzhou: Zhejiang A&F University, 2014.
    [14]
    WANG Tiegu, ZHANG Huaisheng, MA Juan, et al. Correlation analysis between seed vigor and maize yield [J]. Journal of Anhui Agricultural Sciences, 2012, 40(10): 5848 − 5849.
    [15]
    ZHANG Yixuan, TAN Jing, GUAN Junjiao, et al. Effect of two rice seed treatment suspensions on the growth of rice in dry land cultivation [J]. Chinese Journal of Pesticide Science, 2023, 25(2): 395 − 405.
    [16]
    RAJJOU L, DUVAL M, GALLARDO K, et al. Seed germination and vigor [J]. Annual Review of Plant Biology, 2012, 63: 507 − 533.
    [17]
    LI Bin, YING Jiankai, ZHAO Guangwu, et al. Seed vigor determination of three-line indica hybrid rice and their relationship with field emergence percentage [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(11): 1615 − 1622.
    [18]
    FINCH-SAVAGE W E, BASSEL G W. Seed vigour and crop establishment: extending performance beyond adaptation [J]. Journal of Experimental Botany, 2016, 67(3): 567 − 591.
    [19]
    ZHOU Feng, HUA Chun, BEN Ailing, et al. Seed vigor and crop yield [J]. Seed, 2017, 36(3): 50 − 53.
    [20]
    LI Zhenhua, WANG Jianhua. Advances in research of physiological and molecular mechanism in seed vigor and germination [J]. Scientia Agricultura Sinica, 2015, 48(4): 646 − 660.
    [21]
    SHANG Zhenxi, BIAN Jiabing, CHEN Shuaijun, et al. Relationship between rice root system and rice quality under different fertilization treatments [J]. Journal of Tianjin Agricultural University, 2020, 27(4): 1 − 6.
    [22]
    ZHONG Xuhua, HUANG Nongrong. Preliminary study on the relationship between rice grain chalkiness and root activity at grain-filling stage [J]. Chinese Journal of Rice Science, 2005, 19(5): 471 − 474.
    [23]
    ZHENG Yingjie, SUN Bin, XIA Ming, et al. Relationship between the plant types and taste characters on japonica hybrid rice in the northern China [J]. North Rice, 2014, 44(1): 10 − 13.
    [24]
    ZHAO Quanzhi, LI Mengqin, LIU Huichao, et al. Relationship between grain quality and plant type of japonica rice [J]. Journal of Henan Agricultural University, 2003, 37(1): 13 − 17.
    [25]
    ZHANG Zijun, FENG Yongxiang, JING Yanhui, et al. A study on the relationship between rice plant type and quality [J]. Jiangsu Agricultural Sciences, 2009(1): 62 − 65.
    [26]
    XU Hai, GONG Yanlong, XIA Yuanye, et al. Relation of plant type traits with yield and quality in the ril population derived from cross between chinese rice variety and japanese rice variety [J]. Chinese Journal of Rice Science, 2016, 30(3): 283 − 290.
    [27]
    HAO Xianbin, MA Xiufang, HU Peisong, et al. Relationship between plant type and rice quality of japonica hybrid rice in northern China [J]. Chinese Journal of Rice science, 2009, 23(4): 398 − 404.
    [28]
    CHEN Zhichao, HUANG Tingting, WANG Yang, et al. Dormancy characteristics and seed storage tolerance in rice [J]. Journal of Zhejiang A&F University, 2018, 35(3): 490 − 496.
    [29]
    DING Yunqian, ZHU Qingxiang, TANG Zhenghao, et al. Screening and physiological characteristics of storable Oryza sativa germplasm resources [J]. Journal of Zhejiang A&F University, 2023, 40(2): 244 − 253.
    [30]
    CHEN Chen, HE Bingshu, LIU Xingxun, et al. Pyrophosphate-fructose 6-hosphate 1-hosphotransferase (PFP1) regulates starch biosynthesis and seed development viaheterotetramer formation in rice (Oryza sativa L. ) [J]. Plant Biotechnology Journal, 2019, 18(1): 83 − 95.
    [31]
    HUANG Xiaolong, LU Zhanhua, WANG Xin, et al. Imprinted gene OsFIE1 modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3 [J]. The Plant Journal, 2016, 87(3): 305 − 317.
    [32]
    WANG Xin, ZHOU Wei, LU Zhanhua, et al. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice [J]. Plant Science, 2015, 239: 200 − 208.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article views(369) PDF downloads(40) Cited by()

Related
Proportional views

Correlation research between rice quality traits and seed vigor in different types of rice cultivars

doi: 10.11833/j.issn.2095-0756.20240214

Abstract:   Objective  The level of seed vigor is closely related to crop emergence performance, population quality, yield and quality potential. By studying the correlation between rice quality traits and seed vigor in different types of Oryza sativa cultivars, this research aims to preliminarily reveal the effect of seed vigor on rice quality, and screen out high-quality rice cultivars to provide guidance for agricultural production.   Method  12 conventional japonica rice and 12 hybrid indica rice cultivars were used as test materials to determine seed vigor and quality indexes such as brown rice rate, whole semolina rate, chalky whiteness, transparency, gel consistency, straight-chain starch quality fraction and protein quality fraction under different germination conditions, and analyze their differences and correlations to investigate the relationship between seed vigor and quality traits.   Result  There were significant differences in seed vigor and rice quality among different rice types and cultivars, and cultivars with excellent quality had significant advantages in brown rice rate, whole semolina rate, chalky whiteness, transparency and gel consistency. Among them, ‘Shennong 702’ ‘Shennong 9816’ ‘Liangyou 0367’ ‘Y-liangyou 900’ ‘Jingliangyou Huazhan’ had germination indexes of 23.8 − 27.2, vigor indexes of 2.8 − 3.7, brown rice rates of 79.0% − 82.7%, and whole semolina rates of 54.4%−66.0%, which had higher seed vigor and better quality compared with other rice cultivars. There was a significant positive correlation between rice quality and vigor index, in which the correlation between the whole refined rice rate and vigor index reached a significant level in both conventional japonica and hybrid indica rice.   Conclusion  Rice cultivars with high seed vigor have better rice quality. Considering all the indexes, ‘Shennong 9816’ ‘Shennong 702’ ‘Liangyou 0367’ ‘Jingliangyou Huazhan’ ‘Y-liangyou 900’ can be promoted for cultivation and application. [Ch, 4 tab. 32 ref.]

HUANG Zhongji, ZHU Rongyi, JING Fengge, YU Qian, ZHAO Guangwu. Correlation research between rice quality traits and seed vigor in different types of rice cultivars[J]. Journal of Zhejiang A&F University, 2024, 41(4): 679-687. doi: 10.11833/j.issn.2095-0756.20240214
Citation: HUANG Zhongji, ZHU Rongyi, JING Fengge, YU Qian, ZHAO Guangwu. Correlation research between rice quality traits and seed vigor in different types of rice cultivars[J]. Journal of Zhejiang A&F University, 2024, 41(4): 679-687. doi: 10.11833/j.issn.2095-0756.20240214
  • 水稻Oryza sativa是全球重要的粮食作物,中国60%以上的人口以大米为主食。随着生活水平的提高,人们对水稻品质提出了更高的要求,水稻育种不仅要高产、稳产,生产的稻米还需具有较高的品质[1]。稻米品质是一个综合性状,NY/T 593—2013《食用稻品种品质》和GB/T 17891—2017《优质稻谷》中对稻米品质的评价包括蒸煮与食用品质(胶稠度、直链淀粉、碱消值等),碾米品质(整精米率、糙米率等),外观品质(粒长、粒形、垩白度、透明度等)等9项食用特性和理化指标[23]。中国稻米品质育种研究起步晚,但发展快,优质水稻品种数量和质量不断提高。邵雅芳等[4]通过对稻米品质的分析发现:中国籼稻品种近21 a来提升明显,其品质向着长粒、外观品质优和食味佳的方向发展。荆瑞勇等[5]评价了18个水稻品种品质,其中‘龙粳39’‘牡丹江32’‘空育131’的稻米品质较优。徐浩扬等[6]对40个新育成水稻品系的综合品质进行比较,发现品种改良在表观直链淀粉含量与胶稠度等指标上效果显著,且籼稻的改良效果优于粳稻。

    种子活力指在广泛田间条件下,种子本身具有的决定其快速、整齐发芽及发育成正常苗的潜力,是种子重要的数量性状,也是种用价值的重要表征。在农业生产中,高活力的种子田间表现好,对不良环境的抵抗力强,具有明显的生长优势和生产潜力;低活力的种子在适宜条件下发芽缓慢,生长速率低,在不良环境条件下出苗不整齐,甚至不出苗[78]。崔婷等[9]对杂交水稻种子进行比重分级,发现高活力种子能够充分发挥增产潜力。田间表现好的种子产量高,且稻米品质潜力大,但有关水稻种子活力与稻米品质间关系的研究鲜见报道。探究水稻种子活力与稻米品质性状间的关系,能为筛选出优质水稻品种提供指导。因此,本研究以12个常规粳稻和12个杂交籼稻品种为材料,测定标准发芽、低温胁迫发芽和加速老化发芽试验下的种子活力,进一步分析糙米率、整精米率、垩白度、透明度、胶稠度、直链淀粉质量分数、蛋白质质量分数等指标间的关系,以期为培育种子质量高、稻米品质优的水稻新品种提供理论依据。

    • 选取2015年生产的12种常规粳稻种子,包括‘沈农702’‘沈农9816’‘武运粳23’‘扬粳4227’‘沈农265’‘南粳9108’‘常农粳7号’‘秀水134’‘浙粳88’‘07-17粳稻’‘宁81’‘扬粳糯1号’。选取2016年生产的12种杂交籼稻种子,包括‘两优0367’‘丰两优9号’‘浙Y两优689’‘Y两优900’‘晶两优华占’‘两优688’‘广两优4号’‘两优3905’‘准两优608’‘江Y两优689’‘Y两优1128’‘C两优华占’。将这些样品干燥至13.0%的含水量,分别装入网袋中,储存于4 ℃的冰箱中备用。

    • 参考NY/T 593—2013《食用稻品种品质》和GB/T 17891—2017《优质稻谷》的方法,在种子收获当年,于中国水稻研究所农业农村部稻米及制品质量检验测试中心测定稻米品质并分级。

    • 参考GLORIA等[10]的方法。称取(88.0±0.2) mg样品于试管内,添加0.2 mL百里酚蓝和2.0 mL氢氧化钾溶液(0.2 mol·L−1),振荡混匀后插入水浴锅中加热。8 min后取出试管,室温冷却5 min,冰水浴20 min。在室温(25±2) ℃下放置1 h后读数。稻米淀粉热糊化后形成米胶,米胶在试管中延伸的长度即为胶稠度,以mm表示。

    • 采用GB 5009.5—2016《食品安全国家标准 食品中蛋白质的测定》的方法。称取0.2 g样品于消化管中,以蔗糖作为空白对照。分别加入1.0 g混合催化剂(硫酸铜与硫酸钾质量比为1∶15)和5.0 mL浓硫酸并摇匀,在消化炉中420 ℃消化30 min,取出消化液冷却至室温,用凯氏定氮仪测定蛋白质质量分数。

    • 参考NY/T 2639—2014《稻米直链淀粉的测定 分光光度法》。吸取2.5 mL试样于50.0 mL容量瓶中,加入25.0 mL蒸馏水,再加0.5 mL乙酸和1.0 mL碘液,定容至50.0 mL,静置10 min,在波长620 nm处测定溶液的吸光度,通过直链淀粉标准曲线回归方程求出直链淀粉质量分数。

    • 取适量样品均匀平铺于扫描仪上,在扫描图中选取100粒完整的精米,使用大米外观品质分析软件自动生成垩白度数据和透明度等级。

    • 在种子收获当年测定其活力。用于活力测定的种子需在质量分数为2%的三氯异氰尿酸中浸种24 h后进行发芽试验。每组试验以100粒种子为1次重复,共3次重复。

    • 将种子摆放在灭菌发芽纸上,于光照培养箱中培养,条件设置为30 ℃光照下8 h、20 ℃黑暗下16 h。从第2天起,每天测量记录种子的发芽数直到第14天。第10天时,将部分幼苗取出,在80 ℃下烘24 h,测定幼苗干质量。参考赵光武[11]的方法计算种子发芽率、发芽势、发芽指数、活力指数、简易活力指数和平均发芽时间。

    • 将种子摆放在灭菌发芽纸上并置于发芽盒内。将发芽盒置于光照培养箱中,15 ℃黑暗培养14 d,统计发芽率。

    • 参考张瑛等[12]的方法。将种子均匀摊在老化盒网架上,向底部加入少量蒸馏水。老化箱温度设置为45 ℃、湿度设置为100%,种子老化处理72 h后进行标准发芽测定。

    • 利用SPSS 19.0的ANOVA和S-N-K程序,对稻米品质和活力指标进行方差分析和相关性分析。通过t检验分析优质米和普通米在稻米品质和种子活力间的差异。

    • 表1可知:不同品种的稻米品质存在显著差异(P<0.05)。不同常规粳稻的糙米率为80.3%~84.3%,其中,‘武运粳23’‘扬粳4227’‘南粳9108’的糙米率均超过83.0%,‘宁81’的糙米率最低,为80.3%。‘武运粳23’的整精米率最高,为66.9%,‘扬粳糯1号’的整精米率最低,为40.2%,整精米率超过65.0%的品种为‘沈农702’‘武运粳23’‘南粳9108’。不同常规粳稻的垩白度存在显著差异(P<0.05)。其中,‘07-17粳稻’的垩白度最高,为6.2%,‘秀水134’的垩白度最低,为0.6%,垩白度低于1.0%的品种为‘沈农702’‘秀水134’‘常农粳7号’。除‘南粳9108’的透明度为3级外,其余的品种透明度的等级均为1~2级。不同常规粳稻的胶稠度为69.5~90.5 mm,胶稠度超过80.0 mm的品种为‘武运粳23’‘扬粳4227’‘扬粳糯1号’‘宁81’‘南粳9108’。除‘扬粳糯1号’和‘南粳9108’的直链淀粉质量分数低于100.0 g·kg−1外,其余品种的直链淀粉质量分数为146.6~164.1 g·kg−1。将‘沈农702’归为2级大米,‘秀水134’‘武运粳23’‘扬粳4227’‘沈农9816’归为3级大米,‘扬粳糯1号’‘浙粳88’‘宁81’‘07-17粳稻’‘沈农265’‘常农粳7号’‘南粳9108’归为普通大米。

      品种类型品种名称糙米率/
      %
      整精米
      率/%
      垩白度/
      %
      透明度胶稠度/
      mm
      直链淀粉质量
      分数/(g·kg−1)
      蛋白质质量
      分数/(g·kg−1)
      评级
      常规粳稻‘沈农702’82.6±3.4 abcd66.0±4.0 a0.9±0.1 kl172.5±2.5 efg159.3±9.5 bcde83.6±8.8 cde2
      ‘秀水134’80.7±1.7 abcd64.2±2.3 a0.6±0.1 l175.5±6.9 cdef156.7±8.2 cde86.3±6.1 cde3
      ‘武运粳23’83.2±2.6 abc66.9±2.3 a3.5±0.3 d180.5±2.6 bcde164.1±10.7 bcd79.7±5.7 de3
      ‘扬粳4227’84.0±3.4 ab63.7±3.3 ab3.5±0.3 d182.0±3.2 bcde154.8±13.6 cdef82.2±2.2 de3
      ‘沈农9816’81.3±3.1 abcd63.0±2.8 abc3.4±0.3 d275.0±0.9 defg153.8±12.5 cdefg88.1±4.1 cd3
      ‘扬粳糯1号’81.8±2.7 abcd40.2±2.4 g90.5±2.2 a31.0±3.5 k80.8±2.2 de普通
      ‘浙粳88’82.1±3.1 abcd62.9±2.8 abc2.8±0.3 efg278.5±2.2 cde159.0±10.6 bcde81.0±8.1 de普通
      ‘宁81’80.3±1.8 abcd59.5±2.5 bcd2.5±0.3 fg181.0±3.5 bcde157.7±10.1 bcde81.0±11.2 de普通
      ‘07-17粳稻’81.0±1.9 abcd58.7±2.3 cd6.2±0.5 b176.5±1.2 cdef149.5±9.0 cdefg92.0±6.4 bcd普通
      ‘沈农265’82.2±1.6 abcd58.7±2.1 cd1.9±0.2 hi277.5±4.3 cdef146.6±9.4 defgh84.8±5.5 cde普通
      ‘常农粳7号’81.0±1.2 abcd58.0±2.1 cd0.9±0.1 kl169.5±1.8 fgh164.1±13.6 bcd86.3±6.0 cde普通
      ‘南粳9108’84.3±1.5 a66.1±2.9 a3.2±0.3 de383.5±2.2 abcd72.1±7.2 j83.4±6.0 de普通
      杂交籼稻‘广两优4号’82.3±2.7 abcd55.4±2.7 de1.3±0.1 jk288.5±3.8 ab172.2±11.1 bc81.9±6.1 de2
      ‘两优0367’82.7±2.0 abcd58.9±1.9 de2.3±0.2 gh181.0±1.5 bcde181.0±10.1 b72.8±5.8 e2
      ‘丰两优9号’82.3±1.9 abcd58.7±2.4 cd1.8±0.2 hij175.5±6.6 def139.2±8.5 efghi92.6±6.0 bcd2
      ‘浙Y两优689’81.3±2.8 abcd54.5±2.7 cd1.0±0.1 kl164.5±2.7 hi151.9±7.9 cdefg109.7±6.4 a3
      ‘Y两优900’79.0±1.7 cd54.4±2.4 de5.0±0.4 c278.5±7.2 cde131.4±9.1 fghi98.1±5.7 abc3
      ‘晶两优华占’81.8±1.8 abcd65.0±4.0 de5.0±0.4 c285.0±7.6 abc129.5±7.7 ghi86.0±4.5 cd3
      ‘两优688’78.2±1.2 d44.0±3.0 gh3.5±0.3 d174.5±6.7 efg138.1±8.3 efghi100.3±4.9 abc普通
      ‘两优3905’81.4±2.2 abcd43.0±2.9 gh1.7±0.1 ij176.5±6.5 efg141.9±7.7 defgh92.1±5.8 cd普通
      ‘准两优608’80.1±1.8 abcd47.5±2.7 f3.3±0.3 de180.5±4.1 bcde252.8±15.2 a91.0±5.1 cd普通
      ‘江Y两优689’80.3±2.8 abcd52.6±2.6 e5.3±0.4 c267.5±2.0 ghi146.2±6.4 degfh100.0±3.6 abc普通
      ‘Y两优1128’78.9±1.9 cd46.9±2.8 fg3.1±0.2 def262.0±3.5 i117.0±3.8 i98.9±2.9 abc普通
      ‘C两优华占’79.6±1.6 bcd23.3±2.0 i8.2±0.7 a361.0±3.5 i125.7±4.9 hi107.0±3.8 ab普通
        说明:不同小写字母表示同一指标不同品种间差异显著(P<0.05),−表示未测得数据。

      Table 1.  Conventional japonica rice and hybrid indica rice quality measurement results

      不同杂交籼稻的糙米率为78.2%~82.7%,其中,‘广两优4号’‘两优0367’‘丰两优9号’的糙米率均超过82.0%,‘两优688’的糙米率最低。‘C两优华占’的整精米率最低,为23.3%,‘晶两优华占’的整精米率最高,为65.0%,整精米率超过55.0%的品种为‘广两优4号’‘两优0367’‘丰两优9号’‘晶两优华占’。在不同杂交籼稻中,垩白度的差异显著(P<0.05)。其中,‘C两优华占’的垩白度最高,为8.2%,‘浙Y两优689’的垩白度最低,为1.0%。‘C两优华占’的透明度为3级,其余的品种透明度的等级均为1~2级。不同杂交籼稻的胶稠度为61.0~88.5 mm,胶稠度超过80.0 mm的品种为‘广两优4号’‘两优0367’‘晶两优华占’‘准两优608’。杂交籼稻的直链淀粉质量分数为117.0~252.8 g·kg−1。将‘广两优4号’‘两优0367’‘丰两优9号’归为2级大米,‘浙Y两优689’‘Y两优900’‘晶两优华占’归为3级大米,其余品种归为普通大米。

    • 将稻米评级为2、3级的品种归为优质米,其余品种为普通米(表1)。由表2可知:不同常规粳稻品种间种子活力差异显著(P<0.05)。基于发芽率和发芽势的结果分析,优质米之间差异不显著,普通米之间差异显著,且优质米发芽率总体高于普通米。发芽率超过90.0%的品种为‘沈农702’‘武运粳23’‘扬粳4227’‘沈农9816’‘沈农265’‘南粳9108’,发芽势超过85.0%的品种为‘沈农702’‘武运粳23’‘沈农9816’‘沈农265’‘南粳9108’。从发芽指数上看,优质米品种间发芽指数分布较普通米更均匀。不同常规粳稻品种的发芽指数为15.6~24.8,其中发芽指数超过20的品种为‘沈农702’‘扬粳4227’‘沈农9816’‘沈农265’‘南粳9108’。基于活力指数和简易活力指数的结果分析,优质米活力指数显著高于普通米(P<0.05)。其中,‘沈农702’‘扬粳4227’‘沈农9816’‘沈农265’的活力指数和简易活力指数均显著高于其他品种(P<0.05)。从平均发芽时间上看,优质米的平均发芽时间低于普通米。除‘沈农265’的平均发芽时间低于4 d外,其他品种的平均发芽时间为4.0~4.9 d。从低温发芽试验和加速老化试验的结果来看,优质米发芽率高于普通米。

      品种类型品种名称发芽率/
      %
      发芽势/
      %
      发芽指数活力指数简易活力
      指数
      平均发芽
      时间/d
      低温发
      芽率/%
      老化发芽
      率/%
      常规粳稻‘沈农702’98.0±0.0 a88.0±4.0 ab24.3±0.2 a2.8±0.1 ab11.4±0.3 ab4.1±0.0 f96.0±2.0 a90.0±5.3 a
      ‘秀水134’88.0±5.3 abc62.7±20.1 cd19.8±1.5 bc1.9±0.4 cd8.5±1.7 bc4.5±0.2 bcd82.0±5.3 bc75.3±7.6 b
      ‘武运粳23’90.7±5.0 ab89.3±4.2 a19.7±1.7 bc1.8±0.4 cd8.4±1.6 bc4.7±0.1 ab83.3±5.8 abc88.7±4.2 a
      ‘扬粳4227’96.7±1.2 a64.0±10.6 bcd22.6±0.8 ab2.7±0.4 ab11.7±1.4 a4.3±0.1 cde92.0±2.0 ab87.3±3.1 a
      ‘沈农9816’97.3±1.2 a90.7±2.3 a24.2±0.2 a2.9±0.2 a11.7±0.6 a4.0±0.0 f96.0±2.0 a94.0±2.0 a
      ‘扬粳糯1号’
      ‘浙粳88’75.3±8.1 cd69.3±11.0 abcd15.6±1.7 d1.2±0.1 d5.7±0.6 cd4.9±0.1 a59.3±6.4 e55.3±3.1 c
      ‘宁81’72.7±16.3 d38.7±6.1 e16.2±3.5 cd1.5±0.6 cd6.6±2.5 cd4.6±0.0 bc62.7±9.5 de68.7±3.1 b
      ‘07-17粳稻’78.0±0.0 bcd68.7±16.2 abcd17.4±0.6 cd1.8±0.2 cd7.8±0.7 cd4.6±0.1 bc73.3±1.2 cd56.7±9.5 c
      ‘沈农265’98.0±2.0 a90.0±8.7 a24.8±2.5 a2.8±0.2 ab11.2±0.2 ab3.8±0.2 g94.0±6.0 ab92.7±1.2 a
      ‘常农粳7号’75.3±6.1 cd60.0±7.2 de17.9±1.6 cd1.2±0.4 d5.2±1.7 d4.3±0.0 def59.3±7.0 e14.0±5.3 d
      ‘南粳9108’98.7±1.2 a86.0±3.5 abc24.2±0.4 a2.1±0.1 bc8.6±0.4 bc4.1±0.0 ef95.3±3.1 a92.7±3.1 a
      杂交籼稻‘广两优4号’75.3±5.0 d52.7±14.7 c17.7±1.4 ef1.7±0.3 ef7.1±1.0 ef4.3±0.3 ab65.3±4.2 e79.3±4.2 b
      ‘两优0367’94.0±4.0 ab89.3±8.3 a23.8±1.4 ab3.5±0.4 ab13.7±1.4 ab4.0±0.1 b82.0±2.0 ab88.7±5.8 ab
      ‘丰两优9号’88.7±1.2 abc80.0±4.0 ab24.2±1.0 ab3.0±0.1 abc11.0±0.6 cd3.8±0.1 b81.3±4.6 abc86.7±6.1 ab
      ‘浙Y两优689’88.0±2.0 abc73.3±3.1 abc21.6±0.5 bcd2.2±0.3 de8.9±1.1 def4.1±0.0 b81.3±1.2 abc86.0±5.3 ab
      ‘Y两优900’94.7±1.2 ab70.0±22.7 abc27.2±0.9 a3.4±0.1 ab11.8±0.6 bc3.7±0.2 b90.0±2.0 a94.7±1.2 a
      ‘晶两优华占’98.7±1.2 a92.7±2.3 a24.5±0.2 ab3.7±0.1 a14.8±0.6 a4.0±0.0 b69.3±6.4 de94.0±4.0 a
      ‘两优688’93.3±3.1 ab86.0±6.0 a23.5±0.7 bc2.7±0.4 bcd10.9±1.4 cd4.0±0.1 b87.3±3.1 a92.0±2.0 ab
      ‘两优3905’82.7±5.0 bcd70.7±3.1 abc20.2±1.0 cde2.3±0.3 cde9.4±1.4 cde4.2±0.1 b76.0±5.3 bcd83.3±8.1 ab
      ‘准两优608’80.0±6.9 cd59.3±4.2 bc18.8±1.3 def1.8±0.2 ef7.8±1.1 ef4.4±0.1 ab72.7±3.1 cde78.0±10.0 b
      ‘江Y两优689’84.0±2.0 bcd56.0±17.4 bc19.3±1.5 def1.8±0.3 ef8.0±1.3 ef4.5±0.5 ab73.3±3.1 bcde87.3±3.1 ab
      ‘Y两优1128’78.0±3.5 cd54.0±6.0 bc16.2±2.7 f1.4±0.5 f6.6±1.3 f5.0±0.9 a56.7±2.3 f78.0±4.0 b
      ‘C两优华占’38.7±11.0 e28.7±7.6 d9.1±2.5 g0.6±0.1 g2.3±0.6 g4.3±0.1 ab25.3±1.2 g50.7±7.0 c
        说明:不同小写字母表示同一指标不同品种间差异显著(P<0.05),−表示未测得数据。

      Table 2.  Comparison of the results of seed viability determination between conventional japonica rice and hybrid indica rice

      不同杂交籼稻品种间的活力差异显著(P<0.05)。从发芽率来看,优质米的发芽率普遍高于普通米。发芽率超过90.0%的品种为‘晶两优华占’‘Y两优900’‘两优0367’‘两优688’。在发芽势方面,虽然优质米和普通米品种间的分布较为散乱,但整体上优质米的发芽势仍然高于普通米。不同杂交籼稻品种的发芽指数为9.1~27.2。发芽指数超过20的品种为‘两优0367’‘丰两优9号’‘浙Y两优689’‘Y两优900’‘晶两优华占’‘两优688’‘两优3905’,说明这些品种具有较强的发芽能力。在活力指数和简易活力指数方面,优质米的活力指数普遍高于普通米。‘晶两优华占’‘两优0367’‘Y两优900’‘丰两优9号’的活力指数和简易活力指数均显著高于其他品种(P<0.05)。从平均发芽时间来看,优质米的平均发芽时间相对较短,体现了优质米在发芽速度上的优势。除了‘丰两优9号’和‘Y两优900’的平均发芽时间低于4 d外,其他品种的平均发芽时间均为4.0~5.0 d。基于低温发芽试验和加速老化试验的结果分析,优质米在逆境条件下的发芽率也普遍高于普通米,说明优质米对不良环境具有较好的适应性。综上所述,不同品种粳稻与杂交籼稻间种子活力存在显著差异(P<0.05),优质米在发芽率、发芽势、发芽指数及逆境发芽率等方面的表现均优于普通米。

    • 对常规粳稻与杂交籼稻种子活力指标t检验(表3)表明:在常规粳稻中,优质米和普通米的活力指数(P=0.044)和简易活力指数(P=0.031)差异显著。杂交籼稻中优质米和普通米的活力指数(P=0.032)和平均发芽时间(P=0.046)差异显著,其他指标的差异不显著。

      水稻类型P
      发芽率发芽势发芽指数活力指数简易活力指数平均发芽时间低温发芽率老化发芽率
      常规粳稻0.1210.1690.1340.044*0.031*0.8560.0710.051
      杂交籼稻0.1350.1090.0510.032*0.0520.046*0.2090.148
        说明:*表示差异显著(P<0.05)。

      Table 3.  Comparison of the significant differences in various indexes between quality and common rice of conventional japonica rice and hybrid indica rice

    • 表4可知:常规粳稻整精米率与各项活力指标显著相关(P<0.05),胶稠度与发芽率、发芽指数显著相关(P<0.05),直链淀粉质量分数与发芽率、发芽指数显著相关(P<0.05)。杂交籼稻整精米率与各项活力指标显著相关(P<0.05),垩白度与低温发芽率显著相关(P<0.05),透明度与发芽率、发芽势、发芽指数、低温发芽率显著相关(P<0.05),胶稠度与活力指数、简易活力指数显著相关(P<0.05)。

      品种类型指标发芽率发芽势发芽指数活力指数简易活力指数低温发芽率老化发芽率
      常规粳稻糙米率0.2910.3660.3100.3130.3090.3430.414
      整精米率0.927*0.843*0.865*0.712*0.768*0.886*0.803*
      垩白度−0.1040.064−0.176−0.0370.022−0.0040.098
      透明度0.3770.4760.4070.1690.1070.3270.336
      胶稠度−0.584*−0.561−0.579*−0.455−0.460−0.508−0.178
      直链淀粉0.667*0.5440.587*0.5100.5750.5710.407
      蛋白质0.2560.2900.2930.3040.2860.2840.026
      杂交籼稻糙米率0.1960.3200.1910.3140.3460.1240.145
      整精米率0.841*0. 719*0.779*0.757*0.792*0.678*0.819*
      垩白度−0.495−0.439−0.390−0.260−0.303−0.577*−0.441
      透明度−0.631*−0.671*−0.576*−0.474−0.505−0.758*−0.554
      胶稠度0.4910.4870.5190.583*0.592*0.4400.481
      直链淀粉0.057−0.0020.001−0.042−0.0080.179−0.022
      蛋白质−0.368−0.419−0.323−0.478−0.525−0.245−0.314
        说明:*表示差异显著(P<0.05)。

      Table 4.  Results of correlation analysis of seed vigor and quality indexes of conventional japonica rice and hybrid indica rice

    • 稻米品质受品种特性、生态环境及栽培措施的影响[13]。稻米品质关系到稻米的市场竞争力,与种稻效益密切相关。本研究表明:种子活力高的品种具有更好的稻米品质。种子活力不仅决定了种子在发芽和生长初期的表现,还与其田间表现密切相关。高活力种子具有更强的生命力和环境适应性,在田间具有更快的出苗速度、更整齐的苗情以及更强的生长态势[14]。张艺璇等[15]利用包衣技术提高种子活力,发现处理后的种子田间表现良好,秧苗抗逆性增加,最终产量提升。在不同的气候环境下,高活力种子往往能整齐地出苗[16],从而提升农作物的整体产量。李彬等[17]对湖南和四川制种区的52份三系杂交籼稻种子进行田间试验,发现高活力种子在田间种植时出苗率更高。在湖南制种区,标准发芽率、发芽势和低温胁迫发芽率与田间出苗率呈显著正相关;而在四川制种区,低温胁迫发芽率与田间出苗率呈显著正相关。FINCH-SAVAGE等[18]研究指出:种子活力的降低主要表现为对出苗的负面影响,出苗不足最终导致收获的产量减少。高活力种子田间表现好,在个体和群体质量、产量和质量性状等方面具有显著优势[19]。因此,在农业生产中,选择高活力的种子品种,对于提升作物产量和品质具有重要意义。

      在水稻生产过程中,高质量的水稻个体和群体有利于稻米品质潜力的发挥。田间表现好的水稻植株,其稻米品质潜力大。水稻茎秆茎壁厚,茎壁面积占茎横切面面积比例大,输导组织活性强,维管束系统发达,光合产物流通顺畅,有利于水稻籽粒的灌浆充实,提高穗粒质量和稻米品质[20]。尚振西等[21]研究表明:在分蘖期,稻米的食味品质随根尖数的增加而提升;在灌浆期,稻米的食味品质随根系总体积的增加而提升。钟旭华等[22]的研究表明:在水稻结实期,籽粒的垩白度会随着根系氧化力的提高而显著降低。剑叶形态、穗颈粗度、茎节长短等与稻米品质密切相关。北方杂交粳稻优质育种过程中,应选择株高中等、穗颈较细、叶片较窄、穗数较多、株型较紧凑且剑叶叶片角度较小的材料,有利于食味品质的提高[23]。赵全志等[24]研究发现:稻米碾磨品质与水稻倒3节间长存在显著负相关,同时也会影响到稻米的外观品质。张子军等[25]的研究表明:稻米品质与植株的倒1节间长和倒3节间粗存在显著正相关。徐海等[26]研究发现:稻米的食味品质与植株倒3叶的宽度呈显著负相关。郝宪彬等[27]研究表明:水稻剑叶长度与直链淀粉含量呈正相关关系,优质杂交粳稻应具有较宽的剑叶和倒2叶、较窄的倒3叶、较小的倒3叶基角。

      种子活力是一个综合性状,在种子发育、储藏、萌发的过程中受到遗传因素和环境条件的共同调控。高活力的种子耐储性好[28],而随着储藏时间的延长,种子活力不断下降[29]。遗传因素会导致种子内部储藏物质发生变化,进而对种子活力与品质性状产生影响。CHEN等[30]研究表明:水稻OsPFP1基因突变会显著降低籽粒淀粉含量,但增加蛋白质和脂质含量,最终会显著降低种子活力。HUANG等[31]研究表明:水稻OsFIE1-PcG复合物通过调控胚和胚乳发育,影响籽粒储藏蛋白和氨基酸积累,最终影响种子萌发过程。WANG等[32]研究表明:抑制水稻脂质转运蛋白编码基因OsLTPL36的表达,会降低籽粒结实率和千粒重,提高胚乳垩白度,减少脂肪酸含量,进而影响种子萌发。因此,加快种子活力形成与保持机制的解析,结合传统育种与分子育种技术,将会促进水稻品质育种历程。

    • 本研究表明:不同水稻类型和品种间的种子活力和稻米品质存在显著差异。稻米品质与活力指标呈显著正相关关系,其中整精米率与活力指数相关度在杂交稻和常规稻中均达到显著水平。表明水稻种子活力高的品种具有更好的稻米品质,综合各指标,推荐‘沈农9816’‘沈农702’‘两优0367’‘晶两优华占’‘Y两优900’等品种进行大面积推广种植与应用。

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return