Turn off MathJax
Article Contents

NONG Zhengguo, XIONG Zhongping, XU Zhenghui, WANG Xubo, LIU Xia. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240244
Citation: NONG Zhengguo, XIONG Zhongping, XU Zhenghui, WANG Xubo, LIU Xia. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240244

OnlineFirst articles are published online before they appear in a regular issue of the journal. Please find and download the full texts via CNKI.

Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang

doi: 10.11833/j.issn.2095-0756.20240244
  • Received Date: 2024-03-19
  • Accepted Date: 2024-09-10
  • Rev Recd Date: 2024-09-06
  •   Objective  In order to reveal the diversity of ant species in different vertical zones in Tianshan Mountains, the ant community structure, relationship between species diversity and altitude and vegetation in the middle-western section of Tianshan Mountains were studied.   Method  Ant communities in four vertical zones were surveyed by plot sampling and searching methods. The sampling adequacy was tested by Estimate S 9.1.0, and the diversity indexes in different zones were calculated. The correlations between diversity indexes and altitude and vegetation characteristics were analyzed by SPSS 24.0, if the correlation between species diversity and elevation was significant, both linear and binomial models were used for fitting, the fitting was evaluated based on R2 value while the significance was tested.   Result  A total of 136 247 ants were collected, and 29 species belonging to 12 genera and 2 subfamilies were recognized. Tetramorium caespitum, Lasius niger and Formica fusca were the dominant species of the middle-western section of Tianshan Mountains in Xinjiang. Sampling adequacy analysis showed that the most of ant species were collected. The richness of ant species of the four vertical zones as follows: Dushanzi vertical zone (18 species) > Narathi vertical zone (14 species)> Kuqa vertical zone (13 species) > Ulastai vertical zone (10 species). Diversity analysis showed that the ant species diversity of the middle-western section of Tianshan Mountains generally decreased with the altitude increasing. The species number and diversity index of the four vertical zones were significantly negatively correlated with the altitude change. On the four vertical zones, the correlation significance between evenness index and altitude was not the same, the change trends of binomial and linear models also lacked regularity. There was no significant correlation between dominance index and elevation change, but the binomial model analysis of each vertical zone showed a trend of increasing firstly and then decreasing with the elevation increasing. Community similarity analysis found that the similarity coefficient of ant community was between 0.166 7 to 0.600 0 (average 0.289 0), which was at the medium dissimilarity level, and indicating significant differentiation among ant communities. Correlation analysis showed that the species number was significantly positively correlated with tree canopy density, while the correlation between other diversity indexes and vegetation characteristics was not significant.   Conclusion  Altitude significantly affected ant species diversity in this region, while slope, humidity and vegetation also play an important role. In the Tianshan area of Xinjiang,under the influence of multiple factors such as vegetation types mainly being grassland and shrubland, hot and dry climate, high altitude and large temperature difference, and the ecosystem in this region is relatively fragile, so the protection of biodiversity in this region should be strengthened. [Ch, 5 fig. 5 tab. 37 ref.]
  • [1] ZHAO Pengwu, GUAN Lijuan, ZHOU Mei, SHU Yang, WU Yiheng, CHEN Jiajia.  Undergrowth plant diversity in the northern part of secondary forest in Hanshan Mountain, Inner Mongolia . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20230204
    [2] LI Biao, XIONG Zhongping, XU Zhenghui, ZHAI Jiang, ZHOU Xueying, XU Guolian.  Distribution patterns of ant species from Upper Yarlung Zangbo Valley and southwest slope of Qinghai-Tibet Plateau . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20210407
    [3] HAN Zemin, LI Yuan, WANG Xiong, JIAN Yongfeng, ZHOU Jingjing, DIAN Yuanyong, HUANG Guangti.  Effects of biodiversity on biomass of Pinus massoniana plantation under different succession degrees . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20200334
    [4] WANG Lei, CUI Ming, ZHOU Mengling, ZHAO Xiaodong, YAN Weipeng, WU Jianhong, LIU Yuguo.  Plant community characteristics of natural secondary forest with different restoration years in karst area of Xichuan County, Henan Province . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20190498
    [5] CHENG Zhangfeng, GUO Rui, WANG Yiping, WENG Dongming, JIANG Chaoyang, LIU Wei, WENG Huajun.  Evaluation of a forest soil environment based on collembolan diversity in Qingliangfeng of Zhejiang . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2015.01.015
    [6] JIANG Yunjiao, HAN Yiqun, LI Mingyang, WANG Yixiao.  Remote sensing based estimation and spatial distribution of tree species diversity for Zijin Mountain . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2015.04.003
    [7] CAI Yicun, NING Zeqian, LIU Meihua, YU Fei, HU Yanfei, ZHONG Zhuqiong.  Alternanthera philoxeroides community in the eastern Tiaoxi River . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2014.04.014
    [8] WU Xiaonan, MIAO Jinli, ZHENG Ying, PAN Feixiang, LIU Tingxia, Yilita, XIA Guohua, WEN Guosheng.  Forest floor fed chickens and biodiversity . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2013.05.009
    [9] WU Hai-wei, LUO You-qing, SHI Juan, CHEN Wei-ping, YAN Xiao-su, JIANG Ping.  Composition and structure of canopy arthropods in Pinus thunbergii . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2010.04.004
    [10] FAN Fan-rong.  Study of inter-specific correlation of Phoebe bournei communities by grey systems . Journal of Zhejiang A&F University,
    [11] LI Kun, LI Qiao,  CHEN You-qing,  ZHOU Xing-yin,  CHEN Yan-lin,  ZHAO Pei-xian.  Influence of grazing on diversity of Dodonaea viscosa-Heteropogonetea contortus herb-shrub community . Journal of Zhejiang A&F University,
    [12] ZHANG Zong, LIANG Nan-nan, GUO Yu-dong, ZHAO Jun.  Diversity of landscape architecture approach in city birds protection . Journal of Zhejiang A&F University,
    [13] BAI Hong-xia, YUAN Xiu-ying.  Survey on the diversity of endophytes in Populus for Inner Mongolia . Journal of Zhejiang A&F University,
    [14] HU Shao-qing, ZHANG Hou-yong.  The rules of city biodiversity conservation planning . Journal of Zhejiang A&F University,
    [15] GUAN Kang-lin.  Review over a century of some topics in biology . Journal of Zhejiang A&F University,
    [16] WANG Fu-sheng.  Biodiversity of monopodial bamboos and related utilization . Journal of Zhejiang A&F University,
    [17] Xu Yaoliang, Zhang Ruohui, Zhou Cheng.  Study on Communities of Calycanthus chinensis. . Journal of Zhejiang A&F University,
    [18] Wu Hong, Chen Deliang, Yu Jiuhua..  Studies on the Insect Community Ecology of Baishanzu Nature Reserve . Journal of Zhejiang A&F University,
    [19] Yu Shuquan, Zhou Guomo, Wei Xinliang, Cheng Hongbao, Fang Decai.  Biological Diversity Protection and Sustainable Development of Forests. . Journal of Zhejiang A&F University,
    [20] Fang Yanming, Zhang Zhongzheng, Wang Wenjun.  On the Liriodendron chinense Communities in Mt.Longwang and Mt.Jiulong of Zhejiang. . Journal of Zhejiang A&F University,
  • [1]
    XU Zhenghui. Study on Biodiversity of Formicidae in Xishuangbanna Nature Reserve[M]. Kunming: Yunnan Science and Technology Press, 2002.
    [2]
    ZHANG Xuehui, XIN Yuan, ZHANG Zhongsheng, et al. Effects of ant colonies on molecular characteristics of dissolved organic matter in peatland soils, Northeast China [J/OL]. Applied Soil Ecology, 2022, 171 : 104298[2024-03-01]. doi: 10.1016/j.apsoil.2021.104298.
    [3]
    HOFFMANN B D. Using ants for rangeland monitoring: global patterns in the responses of ant communities to grazing [J]. Ecological Indicators, 2010, 10(2): 105 − 111.
    [4]
    LI Qiao, LU Zhixing, ZHANG Wei, et al. Ground-dwelling ants as bioindicators during 30-year vegetation restoration in a Savanna area, Yunnan [J]. Acta Ecologica Sinica, 2015, 35(18): 6199 − 6207.
    [5]
    BOLTON B. An Online Catalog of the Ants of the World [EB/OL]. (2024-02-10)[2023-11-28]. https://antcat.org.
    [6]
    HOLLDOBIER B, WILSON E O. The Ants [M]. Cambridge: Belknap Press of Harvard University Press, 1990.
    [7]
    LIU Chun, XIE Gu’ai, XIONG Caiyun, et al. Research about diversity of arboreal ants in different plantations in Lüchun County [J]. Biological Disaster Science, 2018, 41(3): 225 − 229.
    [8]
    HUANG Zhao, XU Zhenghui, LIU Xia, et al. Ant species diversity of northeastern Yunnan [J]. Chinese Journal of Ecology, 2019, 38(12): 3697 − 3705.
    [9]
    HE Yucheng, XU Zhenghui, ZHANG Xinmin, et al. Ant species diversity of western Daliangshan in Sichuan Province [J]. Journal of Southwest Forestry University (Natural Science Edition), 2020, 40(3): 104 − 115.
    [10]
    WU Jian, WANG Changlu. Ants of China[M]. Beijing: China Forestry Press, 1995.
    [11]
    XIA Yongjuan, ZHENG Zhemin. A survey of Formicidae from Xinjiang [J]. Journal of Shaanxi Normal University (Natural Science Edition), 1997, 25(2): 64 − 66.
    [12]
    XIA Yongjuan, ZHENG Zhemin. Description of a new species of Formica from Xinjiang (Hymenoptera: Formicidae) [J]. Journal of Hubei University (Natural Science Edition), 1997, 19(4): 391 − 392.
    [13]
    COLLINGWOOD C, HEATWOLE H. Ants from northwestern China (Hymenoptera, Formicidae) [J]. Psyche, 2000, 103(1/2): 1 − 24.
    [14]
    HUANG Renxin, OUYANG Tong, WU Wei, et al. Forty two new record species of family Formicidae (Hymenoptera: Formicoidea) from Xinjiang, China [J]. Entomotaxonomia, 2004, 26(2): 156 − 160.
    [15]
    ZHAI Jiang, LI Biao, XU Zhenghui, et al. Ant species and distribution pattern in eastern Tianshan Mountain and adjacent area of Xinjiang [J]. Journal of Forest and Environment, 2021, 41(4): 431 − 438.
    [16]
    YANG Lin, XIONG Zhongping, LIU Xia, et al. Species diversity of ants in the middle of Tianshan Mountain, Xinjiang [J]. Scientia Silvae Sinicae, 2023, 59(6): 102 − 111.
    [17]
    LI Qiao. Species accumulation curves and its application [J]. Chinese Journal of Applied Entomology, 2011, 48(6): 1882 − 1888.
    [18]
    COLWELL R K, ELSENSOHN J E. EstimateS turns 20: statistical estimation of species richness and shared species from samples, with non-parametric extrapolation [J]. Ecography, 2014, 37(6): 609 − 613.
    [19]
    WANG Zongying, LU Youcheng, WANG Huifu. The ecological distribution of soil mites in Jiuhua Mountains [J]. Acta Ecologica Sinica, 1996, 16(1): 58 − 64.
    [20]
    BUCZKC W G, RICHMOND D S. The effect of urbanization on ant abundance and diversity: a temporal examination of factors affecting biodiversity [J/OL]. PLoS One, 2021, 7 (8): e41729[2024-03-01]. doi: 10.1371/journal.pone.0041729.
    [21]
    XIONG Zhongping, HE Qiuju, XU Zhenghui, et al. Ant species diversity of Qinghai part, Qilian Mountain National Park [J]. Journal of Environmental Entomology, 2021, 43(1): 93 − 103.
    [22]
    MARYAM H, SABER S, ZOHREH E B. Ant diversity and species assemblages along an elevational gradient in the arid area of Central Iran [J]. Journal of Insect Biodiversity and Systematics., 2024, 10(1): 143 − 159.
    [23]
    SZEWCZYK T, MCCAIN C M. A systematic review of global drivers of ant elevational diversity [J/OL]. PLoS One, 2016, 11 (5): e0155404[2024-03-01]. doi: 10.1371/journal.pone.0155404.
    [24]
    KWON T S, KIM S S, CHUN J H. Pattern of ant diversity in Korea: an empirical test of Rapoport altitudinal rule [J]. Journal of Asia Pacific Entomology, 2014, 17(2): 161 − 167.
    [25]
    SANDERS N J. Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule [J]. Ecography, 2002, 25(1): 25 − 32.
    [26]
    HALIAN M, SADEGHI S, BARZOKI Z E, et al. Ant diversity and species assemblages along an elevational gradient in the arid area of central Iran [J]. Journal of Insect Biodiversity and Systematics, 2024, 10(1): 143 − 159.
    [27]
    COLWELL R K, BREHM G, CARDELÚ C L, et al. Global warming, elevational rang shifts, and lowland biotic attrition in the wet tropics [J]. Science, 2008, 5899(322): 258 − 261.
    [28]
    BHARTI H, SHARMA Y P. Diversity and abundance of ants along an elevational gradient in Jammu-Kashmir Himalaya [J]. Halteres, 2009, 1(1): 10 − 24.
    [29]
    MO Fuyan, XU Zhenghui, SONG Yang, et al. Ant communities in Yadong section of Mt. Himalaya [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(3): 85 − 90.
    [30]
    MCCOY E D. The distribution of insects along elevational gradients [J]. Oikos, 1990, 58: 313 − 332.
    [31]
    BHARTI H, SHARMA Y P, BHARTI M, et al. Ant species richness, endemicity and functional groups, along an elevational gradient in the Himalayas [J]. Asian Myrmecology, 2013, 5(1): 79 − 101.
    [32]
    RAHBEK C. The elevational gradient of species richness: a uniform pattern [J]. Ecography, 1995, 18(2): 200 − 205.
    [33]
    SKARBEK C J, NOACK M, BRUELHEIDE H, et al. A tale of scale: plot but not neighbourhood tree diversity increases leaf litter ant diversity [J]. The Journal of Animal Ecology, 2020, 89(2): 299 − 308.
    [34]
    MANN H R, ROWE E, SELFRIDGE J, et al. Leaf litter and arboreal ants (Hymenoptera: Formicidae) in a mid-Atlantic forest [J]. Northeastern Naturalist, 2018, 25(2): 341 − 354.
    [35]
    LUO Chenglong, XU Zhenghui, XIONG Zhongping, et al. Distribution pattern of ant species in Wanglang Nature Reserve and adjacent areas of Sichuan Province [J]. Journal of Zhejiang A&F University, 2019, 36(4): 638 − 645.
    [36]
    LI Biao, XIONG Zhongping, XU Zhenghui, et al. Distribution pattern of ant species in Upper Yarlung Zangbo Valley and southwest slope of Tibetan Plateau [J]. Journal of Zhejiang A&F University, 2022, 39(3): 590 − 597.
    [37]
    QIAN Yishun, XIONG Zhongping, XU Zhenghui, et al. Ant species diversity in the northwest slope of the Tibetan Plateau and its adjacent areas [J]. Chinese Journal of Ecology, 2023, 42(7): 1721 − 1730.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(5)

Article views(78) PDF downloads(0) Cited by()

Related
Proportional views

Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang

doi: 10.11833/j.issn.2095-0756.20240244

Abstract:   Objective  In order to reveal the diversity of ant species in different vertical zones in Tianshan Mountains, the ant community structure, relationship between species diversity and altitude and vegetation in the middle-western section of Tianshan Mountains were studied.   Method  Ant communities in four vertical zones were surveyed by plot sampling and searching methods. The sampling adequacy was tested by Estimate S 9.1.0, and the diversity indexes in different zones were calculated. The correlations between diversity indexes and altitude and vegetation characteristics were analyzed by SPSS 24.0, if the correlation between species diversity and elevation was significant, both linear and binomial models were used for fitting, the fitting was evaluated based on R2 value while the significance was tested.   Result  A total of 136 247 ants were collected, and 29 species belonging to 12 genera and 2 subfamilies were recognized. Tetramorium caespitum, Lasius niger and Formica fusca were the dominant species of the middle-western section of Tianshan Mountains in Xinjiang. Sampling adequacy analysis showed that the most of ant species were collected. The richness of ant species of the four vertical zones as follows: Dushanzi vertical zone (18 species) > Narathi vertical zone (14 species)> Kuqa vertical zone (13 species) > Ulastai vertical zone (10 species). Diversity analysis showed that the ant species diversity of the middle-western section of Tianshan Mountains generally decreased with the altitude increasing. The species number and diversity index of the four vertical zones were significantly negatively correlated with the altitude change. On the four vertical zones, the correlation significance between evenness index and altitude was not the same, the change trends of binomial and linear models also lacked regularity. There was no significant correlation between dominance index and elevation change, but the binomial model analysis of each vertical zone showed a trend of increasing firstly and then decreasing with the elevation increasing. Community similarity analysis found that the similarity coefficient of ant community was between 0.166 7 to 0.600 0 (average 0.289 0), which was at the medium dissimilarity level, and indicating significant differentiation among ant communities. Correlation analysis showed that the species number was significantly positively correlated with tree canopy density, while the correlation between other diversity indexes and vegetation characteristics was not significant.   Conclusion  Altitude significantly affected ant species diversity in this region, while slope, humidity and vegetation also play an important role. In the Tianshan area of Xinjiang,under the influence of multiple factors such as vegetation types mainly being grassland and shrubland, hot and dry climate, high altitude and large temperature difference, and the ecosystem in this region is relatively fragile, so the protection of biodiversity in this region should be strengthened. [Ch, 5 fig. 5 tab. 37 ref.]

NONG Zhengguo, XIONG Zhongping, XU Zhenghui, WANG Xubo, LIU Xia. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240244
Citation: NONG Zhengguo, XIONG Zhongping, XU Zhenghui, WANG Xubo, LIU Xia. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240244
  • 蚂蚁作为膜翅目Hymenoptera蚁科Formicidae昆虫,在自然界中具有不可忽视的作用,具备改良土壤、分解有机质、促进土壤碳氮循环、维持微生态平衡等重要作用[12],常被用作各类环境生物多样性的指示物种[34]。全世界已记载的蚂蚁共有16亚科342属14 187种[5],蚂蚁是地球上分布最广、种类及数量最多的社会性昆虫[6]

    当前,中国的蚂蚁群落研究集中在西南地区[79],而对西北地区蚂蚁群落研究报道较少。在新疆地区蚂蚁研究方面,吴坚等[10]记录了新疆地区2亚科、5属、14种;夏永娟等[1112]记录了新疆地区3亚科、16属、43种,其中1新种;COLLINGWOOD等[13]报道准葛尔盆地及其邻近山区的蚂蚁46种,其中27种为中国新纪录种;黄人鑫等[14]报道了新疆蚂蚁42种新记录种。通过上述研究共记载了新疆蚂蚁3亚科20属118种,其中分布于天山的种类仅46种。可见,对新疆蚂蚁的研究,尤其是天山地区的研究还十分有限,且仅限于区系和分类,缺乏蚂蚁物种多样性的研究。近期,翟奖等[15]研究了新疆天山东部与邻近地区蚂蚁分布规律,共报道2亚科、14属、29种,发现蚂蚁物种主要集中在土壤温润、树木高大的人工林内;杨林等[16]对新疆天山中部的蚂蚁物种多样性进行了分析,共报道蚂蚁2亚科27种,北坡的蚂蚁物种多样性显著高于南坡,且中海拔区域的物种多样性最高。这些研究丰富了天山地区蚂蚁分布和物种多样性的研究,也使分布于天山的物种增加至50种。

    天山中-西段主要位于克拉玛依的奎屯至阿克苏地区的库车一线区域,由北坡、山间谷地和南坡组成,于2022年7—8月对新疆天山中-西段的蚂蚁多样性进行调查,探讨蚂蚁群落结构、物种多样性与海拔和植被的关系等问题,并与天山中部的蚂蚁多样性进行比较,以全面揭示干旱区蚂蚁物种多样性随着海拔和植被的变化如何变化,以期为该地区的生物多样性保护提供基础资料。

    • 新疆天山中-西段海拔为781~3 235 m,依地形划分为北坡独山子垂直带、山间起伏盆地的乌拉斯台和那拉提2个垂直带及南坡的库车垂直带,共4个垂直带。海拔每上升250 m,选取植被典型的1块50 m×50 m样地进行调查,共设置33块样地,其中垂直带中海拔最低的1块样地位于奎屯市独山子区天景颐园,海拔为781 m。各垂直带调查样地的位置及自然概况见表1。受野外自然条件限制,选定样地的海拔会有一定误差,控制在±50 m内。

      垂直带 样地
      编号
      海拔/m 纬度(N) 经度(E) 土壤类型 土壤湿度 植被类型 乔木郁闭度 盖度/% 地被物厚度/cm
      灌木 草本 地被物
      独山子 1 781 44°19′01.12″ 84°52′42.12″ 黄壤 潮湿 落叶阔叶林 0.5 0 70 70 1.0~2.0
      2 1 050 44°12′39.95″ 84°50′46.69″ 黄壤 干燥 落叶阔叶林 0.3 5 75 75 0.5~1.0
      3 1 278 44°09′56.52″ 84°49′39.46″ 黄沙土 干燥 灌丛 0 30 80 80 0.5~1.0
      4 1 540 44°07′11.10″ 84°49′31.52″ 黄沙土 干燥 灌丛 0 30 70 70 0.5~1.0
      5 1 726 44°06′08.44″ 84°48′15.93″ 黄沙土 潮湿 灌丛 0 40 60 60 1.0~2.0
      6 2 029 43°53′15.47″ 84°29′59.35″ 黄壤 湿润 草丛 0 0 95 95 0.5~1.0
      7 2 285 43°50′12.22″ 84°28′14.13″ 棕黄壤 湿润 灌丛 0 30 80 80 2.0~3.0
      8 2 549 43°47′27.07″ 84°27′51.96″ 棕壤 湿润 草丛 0 0 95 95 1.0~2.0
      9 2 773 43°46′43.76″ 84°27′21.36″ 灰黄壤 湿润 锦鸡儿灌丛 0 30 95 95 1.0~2.0
      10 3 023 43°45′14.16″ 84°26′13.54″ 黄沙土 湿 草甸 0 0 95 95 1.0~2.0
      11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0
      乌拉斯台 11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0
      12 3 024 43°42′27.20″ 84°26′51.60″ 棕壤 湿 草丛 0 0 80 80 1.0~2.0
      13 2 760 43°41′15.80″ 84°23′57.55″ 棕壤 湿 柏木灌丛 0 50 90 90 1.0~2.0
      14 2 533 43°40′02.69″ 84°24′24.03″ 棕壤 湿润 灌丛 0 30 90 95 0.5~1.0
      15 2 295 43°37′57.52″ 84°18′48.52″ 棕壤 湿润 云杉林 0.6 20 70 100 2.0~3.0
      16 2 000 43°21′36.52″ 84°22′00.32″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0
      17 1 798 43°20′12.98″ 84°21′30.23″ 棕壤 湿润 针阔混交林 0.4 0 95 95 1.0~2.0
      那拉提 18 1 802 43°13′43.85″ 84°19′15.64″ 棕壤 湿润 针阔混交林 0.5 30 95 95 2.0~3.0
      19 2 020 43°13′31.38″ 84°19′24.66″ 棕壤 湿润 针阔混交林 0.5 70 50 100 1.0~2.0
      20 2 288 43°11′26.28″ 84°19′42.82″ 棕壤 湿润 草丛 0 0 100 100 1.0~2.0
      21 2 548 43°10′06.98″ 84°21′04.21″ 棕壤 湿润 高山柳灌丛 0 90 100 100 2.0~3.0
      22 2 547 42°41′24.77″ 83°41′18.64″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0
      23 2 785 42°34′51.52″ 83°36′53.84″ 棕壤 湿润 草丛 0 10 95 95 1.0~2.0
      24 3 055 42°30′50.27″ 83°28′54.46″ 棕壤 湿 草丛 0 0 70 70 1.0~2.0
      库车 25 3 058 42°28′36.91″ 83°26′04.32″ 棕壤 湿 草丛 0 0 95 95 1.0~2.0
      26 2 759 42°27′50.54″ 83°24′29.82″ 黄壤 湿润 灌丛 0 50 95 95 1.0~2.0
      27 2 508 42°27′38.24″ 83°23′21.49″ 暗棕壤 湿润 云杉林 0.5 20 95 100 2.0~3.0
      28 2 233 42°26′31.70″ 83°15′21.55″ 黄壤 湿润 草丛 0 0 90 90 1.0~2.0
      29 2 052 42°25′05.20″ 83°16′01.70″ 黄壤 湿润 草丛 0 10 98 98 1.0~2.0
      30 1 773 42°13′34.37″ 83°13′57.53″ 黄沙土 湿润 灌丛 0 40 50 50 0.5~1.0
      31 1 539 42°07′16.52″ 83°09′02.09″ 红壤 干燥 灌丛 0 30 10 30 0.5
      32 1 269 41°51′24.16″ 82°49′08.19″ 黄沙土 干燥 疏灌丛 0 10 10 10 0.5
      33 1 009 41°44′01.62″ 82°55′43.37″ 黄沙土 干燥 落叶阔叶林 0.2 30 30 30 0.5
        说明:乌拉斯台垂直带在该海拔梯度内可选择的典型植被类型样地较少,为更直观地揭示蚂蚁物种数量变化,选择独山子垂直带海拔为3 235 m的样地(编号11)为乌拉斯台垂直带起始点。灌丛指多种灌木组成的灌丛,高于1.0 m,区别于单树种灌丛;疏灌丛指盖度小于10%的灌丛。锦鸡儿Caragana sinica;柏木Cupressus funebris;云杉Picea asperata;高山柳Salix cupularis。土壤湿度以含水量<12%为干燥,12%~15%为湿润,15%~20%为潮湿,>20%为湿。

      Table 1.  Survey sites of ant communities in the middle-western section of Tianshan Mountains in Xinjiang

    • 参考文献[1],在新疆天山中-西段不同海拔采用样地调查法和搜索法进行蚂蚁群落调查,在选定样地内沿对角线选取5个1 m×1 m的样方,每个样方间隔10 m,在采集地表蚂蚁前,先测量每个样方内地被物的厚度。分别采集样地地表样、土壤样和树冠样的蚂蚁,并将蚂蚁保存至装有无水乙醇的离心管,贴上标签。样方调查结束后,5人同时对样地内样方外周围地表、石下、树冠和朽木等微生境进行搜索调查,时间为1 h。将采集到的蚂蚁装入离心管并作标签和记录。依据同种同巢、同种形态相同原则对采集的标本进行归类、编号、登记,将每号标本制作成不超过9头的三角纸干制标本,多余的个体用无水乙醇浸渍保存,依据相关分类学文献[1, 10]鉴定蚂蚁标本,尽可能鉴定到种。

    • 按照黄钊等[8]的方法,以各类蚂蚁物种个体数占群落物种总数的比例(β)来揭示群落结构特征,采用常规划分标准分为5个类型,即类型 A 为 β≥10.0% ,优势种;类型B为 5.0%≤β<10.0% ,常见种;类型C为 1.0%≤β<5.0% ,较常见种;类型D为 0.1%≤β<1.0% ,较稀有种;类型E为 β<0.1%,稀有种。

    • 利用Estimate S 9.1.0 对数据进行处理[1718],采用5项主要指标测定物种多样性:物种数目、Shannon-Wiener 多样性指数、Pielou 均匀度指数、Simpson 优势度指数、Jaccard 相似性系数[1, 19],利用SPSS软件中的one-way ANOVA对各垂直带蚂蚁多样性的各个指数进行方差分析并进行多重比较;采用Pearson相关分析方法[20]分析蚂蚁群落多样性各个指数与海拔的相关性,若存在显著相关性,则使用线性和二项式模型进行拟合,基于拟合系数(R2)评价拟合度,并进行显著性t检验,同时分析蚂蚁群落多样性指标与植被特征的相关性。

    • 在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,经鉴定共29种,隶属于2亚科12属。其中优势种3种,分别为草地铺道蚁Tetramorium caespitum、黑毛蚁Lasius niger和丝光蚁Formica fusca;常见种3种,分别是黄毛蚁L. flavus、光亮黑蚁F. candida和工匠收获蚁 Messor structor;角结红蚁 Myrmica angulinodis、红林蚁F. sinae等10种为较常见种;凹唇蚁F. sanguinea、喜马毛蚁L. himalayanus 和纹头原蚁Proformica striaticeps 3种为较稀有种;诺斯铺道蚁T. nursei、堆土细胸蚁Leptothorax acervorum等10种为稀有种(表2),较常见种和稀有种种类较多。

      编号 物种名称 N/头 β/% 物种类型 编号 物种名称 N/头 β/% 物种类型
      1 草地铺道蚁Tetramorium caespitum 31 856 23.38 优势种 16 弯角红蚁Myrmica lobicornis 1 411 1.04 较常见种
      2 黑毛蚁Lasius niger 22 629 16.61 优势种 17 凹唇蚁Formica sanguinea 1 002 0.74 较稀有种
      3 丝光蚁Formica fusca 17 991 13.20 优势种 18 喜马毛蚁Lasius himalayanus 736 0.54 较稀有种
      4 黄毛蚁Lasius flavus 12 247 8.99 常见种 19 纹头原蚁Proformica striaticeps 139 0.10 较稀有种
      5 光亮黑蚁Formica candida 10 500 7.71 常见种 20 诺斯铺道蚁Tetramorium nursei 129 0.09 稀有种
      6 工匠收获蚁Messor structor 9 688 7.11 常见种 21 堆土细胸蚁Leptothorax acervorum 128 0.09 稀有种
      7 角结红蚁Myrmica angulinodis 4 406 3.23 较常见种 22 蒙古原蚁Proformica mongolica 116 0.08 稀有种
      8 红林蚁Formica sinae 4 023 2.95 较常见种 23 长柄心结蚁Cardiocondyla elegans 12 0.01 稀有种
      9 阿富汗红蚁Myrmica afghanica 3 903 2.86 较常见种 24 广布弓背蚁Camponotus herculeanus 5 0 稀有种
      10 艾箭蚁Cataglyphis aenescens 3 695 2.71 较常见种 25 吉市红蚁Myrmica jessensis 4 0 稀有种
      11 满斜结蚁Plagiolepis manczshurica 3 030 2.22 较常见种 26 婀娜收获蚁Messor aralocaspius 3 0 稀有种
      12 草地蚁Formica pratensis 3 009 2.21 较常见种 27 蒙古切胸蚁Temnothorax mongolicus 3 0 稀有种
      13 类干蚁Formica approximans 2 043 1.50 较常见种 28 针毛收获蚁Messor aciculatus 1 0 稀有种
      14 掘穴蚁Formica cunicularia 1 933 1.42 较常见种 29 条纹切胸蚁Temnothorax striatus 1 0 稀有种
      15 中亚凹头蚁Formica mesasiatica 1 604 1.18 较常见种 合计 136 247 100
        说明:N为个体数,β为各类蚂蚁物种个体数占群落物种总数的比例。

      Table 2.  Ant community structure of the middle-western section of Tianshan Mountains in Xinjiang

    • 随着调查样地的增加,实际观察物种数(S)、基于多度(个体数量)的预测值(ACE)、Chao 1和Chao 2值均先急剧上升,后缓慢上升,最后趋于稳定(图1)。蚂蚁物种S为29,与丰富度估计值(ACE值为30.03,Chao1值为30,Chao 2值为29.97)相接近,实际采集到的物种数约为预测值的96.57%~96.76%,可见抽样充分。

      Figure 1.  Cumulative curve of measured and predicted ant species in the middle-western section of Tianshan Mountains in Xinjiang

    • 从物种的实测值来看,新疆天山中-西段4个垂直带的蚂蚁物种数都接近或等于ACE估计值(表3),其中独山子垂直带海拔2 773 m锦鸡儿灌丛、3 023 m草甸、3 235 m草甸,乌拉斯台垂直带海拔3 024 m草丛,那拉提垂直带海拔2 548 m高山柳灌丛、3055 m草丛及库车垂直带3 058 m草丛样地均未发现蚂蚁。4个垂直带蚂蚁物种数顺序为:独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种)。如图2所示:各垂直带的蚂蚁物种数与海拔存在显著(P<0.05)相关性。总体来看,各垂直带的蚂蚁物种数随海拔升高基本呈下降趋势。独山子、乌拉斯台和那拉提垂直带蚂蚁物种数与海拔的二项式变化趋势与线性变化趋势基本一致,线性模型显示乌拉斯台和那拉提垂直带的蚂蚁物种数与海拔分别呈显著(R2=0.770,P=0.022)和极显著(R2=0.739,P=0.013)负相关关系,二项式变化同线性分析趋势一致,但无显著相关性(P>0.05);而库车垂直带物种数与海拔的二项式模型呈现随海拔升高先升高后下降的单峰曲线。

      垂直带 物种数/种 ACE估计值 Shannon-Wiener多样性指数 Pielou均匀度指数 Simpson优势度指数
      独山子 18 20.10±0.00 0.515 2±0.153 9 a 0.313 8±0.095 8 a 0.446 3±0.107 8 a
      乌拉斯台 10 10.00±0.00 0.539 9±0.221 6 a 0.348 9±0.121 5 a 0.403 7±0.135 8 a
      那拉提 14 16.54±1.49 0.596 7±0.265 9 a 0.329 9±0.139 0 a 0.316 8±0.132 5 a
      库车 13 13.60±0.00 0.505 8±0.119 1 a 0.408 6±0.103 2 a 0.611 0±0.096 0 a
        说明:同列相同字母表示差异不显著(P>0.05)。数值为平均值±标准误。

      Table 3.  Diversity indexes of ant communities in different vertical zones

      Figure 2.  Relationship between species number and altitude

    • 新疆天山中-西段4个垂直带蚂蚁群落多样性指数顺序为:那拉提垂直带(0.596 7)>乌拉斯台垂直带(0.539 9)>独山子垂直带(0.515 2)>库车垂直带(0.505 8),但4个垂直带的蚂蚁多样性指数差异不显著(表3)。如图3所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁多样性指数与海拔存在显著(P<0.05)或极显著(P<0.01)相关性,而那拉提和库车垂直带的蚂蚁多样性指数与海拔的相关性不显著(P>0.05)。总体来看,各垂直带的蚂蚁多样性指数随海拔升高而呈现降低的趋势,二项式变化趋势与线性变化趋势基本一致。其中线性模型显示乌拉斯台垂直带蚂蚁多样性指数与海拔呈显著负相关(P<0.05),二项式变化趋势与线性分析一致,但无相关性。

      Figure 3.  Relationship between diversity index and altitude

    • 新疆天山中-西段4个垂直带的蚂蚁群落均匀度指数变化顺序为:库车垂直带(0.408 6)>乌拉斯台垂直带(0.348 9)>那拉提垂直带(0.329 9)>独山子垂直带(0.313 8),但4个垂直带的蚂蚁均匀度指数差异不显著(表3)。如图4所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁均匀度指数与海拔存在显著相关性(P<0.05),而那拉提和库车垂直带的蚂蚁均匀度指数与海拔关系不显著(P>0.05)。其中在独山子垂直带,均匀度指数与海拔的线性模型显著负相关(P<0.05),二项式模型呈现极显著负相关(P<0.01),二项式和线性模型变化趋势不一致;线性模型显示乌拉斯台垂直带蚂蚁群落均匀度指数与海拔化显著负相关(R2=0.697,P<0.05),二项式和线性模型变化趋势不一致,且相关性不显著(P>0.05);线性和二项式模型显示,那拉提和库车垂直带的蚂蚁群落均匀度指数与海拔变化相关性均不显著(P>0.05),但二项式和线性模型变化趋势基本一致。

      Figure 4.  Relationship between Pielou index and altitude

    • 新疆天山中-西段4个垂直带蚂蚁群落优势度指数变化顺序为:库车垂直带(0.611 0)>独山子垂直带(0.446 3)>乌拉斯台垂直带(0.403 7)>那拉提垂直带(0.316 8),与多样性指数的变化趋势正相反,但4个垂直带的蚂蚁群落优势度指数差异不显著(表3)。相关分析发现:各垂直带的蚂蚁群落优势度指数与海拔的相关性不显著(P>0.05);4个垂直带的线性模型和二项式模型的变化趋势不一致,二项式模型分析均呈先升高后降低的变化趋势(图5),仅独山子垂直带的二项式模型呈显著性(R2=0.846,P<0.01)。

      Figure 5.  Relationship between diversity index and altitude

    • 新疆天山中-西段各垂直带蚂蚁群落间相似性系数为0.166 7~0.600 0(表4),处于极不相似至中等相似水平;平均值0.289 0,显示中等不相似水平。其中同处于山间盆地的那拉提与乌拉斯台垂直带的蚂蚁群落间相似性最大(0.600 0),乌拉斯台与独山子垂直带的蚂蚁群落间相似性最小(0.166 7),库车与那拉提垂直带之间相似性较低,处于中等不相似水平,其余垂直带间相似性低,处于极不相似水平。总体来说,新疆天山中-西段蚂蚁群落之间相似性较低,群落结构差异较大。

      垂直带 垂直带q
      乌拉斯台 那拉提 库车
      独山子 0.166 7 0.230 8 0.240 0
      乌拉斯台 0.600 0 0.210 5
      那拉提 0.285 7
      平均值 0.289 0
        说明:q为相似性系数, 1≥q≥0.75,极相似; 0.75 >q≥0.50,中等相似; 0.50 >q≥0.25,中等不相似; 0.25>q≥0,极不相似。

      Table 4.  Similarity coefficients of ant communities in the middle-western section of Tianshan Mountains in Xinjiang

    • 表5所示:新疆天山中-西段蚂蚁物种数与乔木郁闭度显著正相关(P<0.05),但与灌木盖度、草木盖度、地被物盖度和地被物厚度相关性不显著;多样性指数、均匀度指数和优势度指数与植被特征的相关性均不显著。

      植被特征 物种数 多样性
      指数
      均匀度
      指数
      优势度
      指数
      乔木郁闭度 0.424* 0.296 0.285 0.095
      灌木盖度 0.049 0.099 0.114 −0.015
      草本盖度 −0.226 −0.234 −0.234 −0.072
      地被物盖度 −0.161 −0.143 −0.137 −0.075
      地被物厚度 −0.148 −0.240 −0.256 −0.071
        说明:数值为Pearson相关系数,*表示在0.05水平上显著相关。

      Table 5.  Correlation analysis between ant diversity and vegetation feature      

    • 在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,隶属于2亚科12属29种,物种数略高于新疆天山中段[16](2亚科15属27种),与天山东段[15](2亚科14属29种)相等,但明显高于临近的祁连山国家公园青海片区[21](2亚科6属13种),可能是因为天山中部和祁连山国家公园海拔较高,海拔落差较大,其物种丰富度较低,而新疆天山中-西段和东段由于平均海拔较低,蚂蚁物种丰富度较高,相对海拔高度对蚂蚁物种丰富度也有着重要影响。与同为干旱区的伊朗中部相比,新疆天山中-西段的蚂蚁物种数明显低于伊朗中部[22](8亚科12属34种),可能是伊朗中部纬度和海拔均低于新疆天山,表明耐热性较低的物种更喜欢聚集在中部高海波区域[22],而伊朗中部因适合蚂蚁生存的海拔跨度较大造成物种多样性较高,新疆天山中-西段由于低海拔炎热干燥,高海拔温度过低,适合蚂蚁生存的海拔跨度较小而使多样性较低。

      目前,全球蚂蚁物种多样性沿海拔梯度变化主要呈现5种模式[23]:①随海拔升高蚂蚁多样性呈递减的趋势(物种多样性最高出现在低海拔区域)[24];②低高原模式(300 m以下最低海拔的高多样性);③单峰模式,即在中海拔区域物种多样性最高,可用“中域效应”来解释(海拔高于300 m)[25];④随海拔升高蚂蚁多样性呈现升高的趋势[26];⑤无规律模式。研究表明:在沿海拔梯度的5种模式中,最常见的是单峰模式和递减模式[2729]。中海拔地区的物种丰富度较高是由于高海拔或低海拔地区的气候严酷和高海拔地区资源的可利用性有限[3031];物种丰富度随海拔升高而下降,原因是海拔升高,温度和生产力下降[32]。通过对新疆天山中-西段4个垂直带的物种数和多样性指数分析发现:蚂蚁物种多样性沿海拔梯度变化总体呈现随海拔升高而降低的趋势,主要原因是随着海拔的升高气温会逐渐降低而影响蚂蚁的生存;4个垂直带的物种数和多样性指数与海拔变化显著相关,均匀度指数和优势度指数与海拔的相关显著性不尽相同,这与天山中部南北坡的蚂蚁多样性变化规律一致[16]。除了气温以外,还可能受到湿度的制约。与藏东南、四川西部大凉山和云南地区自然保护区不同,新疆天山位居中国内陆,印度洋季风因受到喜马拉雅山脉的阻挡而无法到达,太平洋季风虽可以到达,但距离较远,因此新疆天山常年较干旱,雨水较少,湿度较低,植被类型多以草地及灌木为主,蚂蚁物种丰富度也较低;从4个垂直带来看,蚂蚁物种数独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种),独山子垂直带位于天山北坡,库车垂直带位于天山南坡,可见天山的北坡蚂蚁物种数比南坡要多,可能是因为新疆天山位于北半球,南坡为阳坡,北坡为阴坡,南坡日照时间长,水分蒸发量大,土壤湿度低,蚂蚁物种较少,这与天山中部南北坡的蚂蚁物种分布一致[16]。因此湿度也成为制约蚂蚁物种多样性的因素之一。同时温度和湿度也影响着植被类型、土壤结构和微生境等,故蚂蚁物种多样性受到多种因素的影响。

      从群落相似性来看,那拉提与乌拉斯台垂直带的蚂蚁群落间相似性较高,其原因可能是这2个垂直带地理位置相邻,海拔高度和植被类型相似,相同的生境提供了相同的栖息场所和食物资源,从而孕育了较多相同的蚂蚁种类;而其余各垂直带间的群落相似性较低,处于极不相似至中等不相似水平,蚂蚁群落组成差异明显。相关性分析表明:天山中-西段蚂蚁群落的物种数与多样性指数与海拔变化呈显著负相关,海拔梯度显著影响该区域的蚂蚁物种多样性。有研究表明:凋落物覆盖率增高可增加蚂蚁的物种丰富度[33],但蚂蚁物种丰富度与凋落物的数量间无显著相关性,本研究中各垂直带蚂蚁物种数与草本盖度、地被物的盖度和厚度负相关,但相关性不显著,与前人研究结果一致[34];物种数与乔木郁闭度呈显著正相关,在四川王朗自然保护区[ 35]、青藏高原西南坡[36]和西北坡[37]等地区的研究也存在这种相关关系,可能是高大的乔木给蚂蚁提供了较理想的栖息场所、食物来源,蚂蚁群落得以发展。从栖息生境来看,天山中-西段的植被多为草丛和灌丛,仅在海拔相对较低的地方分布有阔叶林、针阔混交林,生态系统脆弱,保护和利用好区域内的昆虫生物多样性,对维持和改善生态系统具有重要意义。

    • 在新疆天山中-西段4个垂直带共记录到蚂蚁2亚科12属29种,优势种为草地铺道蚁、黑毛蚁和丝光蚁。新疆天山中-西段的蚂蚁物种多样性明显高于祁连山国家公园青海片区,与天山东段和中段接近,低于同为干旱区的伊朗中部。整体而言,天山中-西段4个垂直带蚂蚁群落多样性指数随海拔升高而呈现降低趋势。物种数和多样性指数与海拔显著负相关,且物种数与乔木郁闭度显著正相关,海拔显著影响该地区的蚂蚁物种多样性,同时坡向、湿度、植被等也起到重要作用。各垂直带间的蚂蚁群落相似性总体较低,表明蚂蚁群落分化明显。

    • 感谢西南林业大学图书馆房华老师和研究生杨蕊、韩秀、杨林、钱怡顺在标本采集和样地调查,本科生杨润娇、何丽华、杨洋和潘宇航在标本整理与制作中的帮助。

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return