-
土壤水分是连接地表水与地下水的纽带,在水资源的形成、转化及消化过程中有重要作用。近年来,由全球变暖引起的土壤含水量减少,预计将影响全球的植物群落[1]。许多土壤和水的保护措施已经实施,以减少水土流失,防止土地退化。土壤和水的养护不仅可以减少土壤和水的亏损,也改变了这部分土地表面,影响生态系统的结构和职能[2]。所以,如何提高林分的水源涵养功能,防止水土流失,保护生态环境已成为人们非常关注的问题。土壤含水率的测量是很困难且费时的一个过程[3]。一些研究者已经在广泛的空间范围和时间尺度上观察土壤含水率的稳定性[4]。每场降雨中,都有部分水沿着土壤内的空隙渗入到土壤内部形成土壤水,然后形成壤中流[5]。壤中流是坡地径流的重要组成部分,对流域径流产生、养分流失,水土流失等有重要影响[6]。壤中流对重力侵蚀起到了促发作用,与以往研究表明的长江流域坡面以面蚀为主的结论有所不同,甚至有壤中流促发的侵蚀量要远远高于片蚀、沟蚀等坡面侵蚀形式。壤中流受地形、土层厚度、土地利用等多种因素的影响,已对壤中流的产生机制[7]、优先路径[8-9]、临界性和非线性[10],以及壤中流的影响因子[11]进行了广泛的研究。土壤含水率的时间动态变化和深度变化受降雨过程的严重影响[12],降雨后土壤表层水分发生剧烈变化,表层水分含量迅速增加,在蒸散和下渗作用下表层土壤含水率缓慢减小[13],继而影响深层土壤含水率,随着深度的加深,土壤含水率对降雨的响应程度也减小。降雨时浅层次有优势流现象出现, 受到土壤结构影响和降雨量大小控制[14]。目前,林地土壤水文特征研究以蓄满稳渗特征为主,缺乏林地野外土壤水分变异规律以及对降雨响应实际特征研究。很多研究是在饱和供水坡度为零条件下总结出的规律,与野外坡面自然降水条件差异巨大。林地坡面与以上研究模拟条件相比更加复杂。因此,开展林地坡面自然降雨状态下的土壤水分响应变异过程,对于揭示森林水源涵养功能与机制,具有实际的理论指导意义。
-
以时刻为横坐标,以降雨强度(mm·h-1)和土壤瞬时体积含水率(%)为纵坐标,得到5,15,30,40,60,100 cm等6个不同土壤层次土壤含水率对小雨(24 h内降雨量不超过10 mm)、中雨(24 h内降雨量为10~25 mm)、大雨(24 h内降雨量为25~60 mm)的响应变化曲线。
-
以2012年10月26日为例(图 1),在降雨之前,初始含水率最大和最小的土壤层次分别是30 cm(11.53%)和60 cm(6.67%)。累计降雨量6.8 mm时,5 cm,15 cm,30 cm等3个层次的土壤含水率曲线发生了明显的变化,40 cm,60 cm,100 cm等3个层次的土壤含水率无响应,15 cm和30 cm土壤层次含水率曲线同时达到最高峰,而5 cm土壤层次含水率曲线达到最高峰的时间滞后2 h。有响应的土壤层次中,土壤含水率变化量最大和最小的层次分别是30 cm(2.90%)和5 cm(1.48%);土壤含水率上升速率最大和最小的分别是30 cm(1.45%·h-1)和5 cm(0.37%·h-1)。降雨结束,15 cm和30 cm层次土壤含水率曲线有明显的下降过程,而5 cm层次的土壤含水率曲线无响应。降雨开始,0~30 cm层次土壤含水率表现出随深度增加变化梯度增大趋势,响应曲线表现出土壤水在垂直表面非饱和入渗,侧渗壤中流集中于15~30 cm土壤层次,40~100 cm无响应特征。
-
以2012年8月29号为例(图 2),在降雨之前,初始含水率最大和最小的土壤层次分别是15 cm(17.57%),60 cm(8.50%)。在累计降雨量在11.8 mm时,5,15,30,40,60 cm等5个土壤层次土壤含水率都有明显的变化特征。5 cm,15 cm,30 cm等3个土壤层次土壤含水率同时达到最高峰,40 cm层次土壤达到最高峰滞后2 h,60 cm层次土壤含水率缓慢上升。有响应的土壤层次中,土壤含水率变化量最大和最小的层次分别是15 cm(5.72%)和60 cm(1.037%);土壤含水率上升速率最大和最小的分别是15 cm(5.72%·h-1)和60cm(0.52%·h-1)。在达到最高峰之后,5 cm和15 cm层次土壤含水率有显著下降趋势,30 cm和40 cm层次土壤含水率则趋于稳定,60 cm和100 cm层次土壤含水率有很缓慢的上升趋势。中雨开始时,0~15 cm层次的土壤含水率表现出高速增长趋势,曲线显示垂直表面非饱和入渗和测渗集中于0~30 cm土壤层次垂直面上。
-
以2012年8月21日为例(图 3),在降雨之前,初始含水率最大和最小的分别是15 cm(15.65%),60 cm(7.24%)。第1次降雨,曲线达到最高峰累计降雨量36.8 mm,各层次土壤含水率曲线出现明显上升,降雨3.0 h时5,15,30,100 cm等4个层次土壤含水率达到最大值,降雨3.5 h时60 cm层次土壤含水率达到最大值,降雨4.5 h时40 cm层次土壤含水率达到最大值,峰值最大和最小的是15 cm(23.4%)和60 cm(9.87%),土壤含水率变化量最大和最小的分别是100 cm(9.79%)和60 cm(2.63%);土壤含水率上升速率最大和最小的分别是100 cm(4.39%·h-1)和60 cm(0.87%·h-1)。
图 3 2012年8月21日大雨条件下6个土壤层次土壤含水率对降雨的响应
Figure 3. Rsponse of VSWC at 6 depths to rainfall intensity on the day 21st, Aug., 2012 for storm rainfall event
第1次降雨缓慢结束,5 cm,15 cm,100 cm等3个层次土壤含水率曲线有明显的下降过程,30 cm,40 cm,60 cm等3个层次土壤含水率曲线趋于稳定。第2次降雨,曲线达到最高峰累计雨量18.0 mm,5,15,30,40 cm等4个层次土壤含水率曲线同时达到最高峰,第2次降雨结束后,5,15,30,40 cm曲线呈下降趋势,而60和100 cm层次土壤含水率曲线呈上升趋势,60,100 cm层次土壤含水率曲线达到最高峰,相对滞后1.0~2.0 h,峰值最大和最小的分别是15 cm(26.24%)和60 cm(9.87%);土壤含水率变化量最大和最小的分别是15 cm(10.59%)和60 cm(5.39%);退水速率最大和最小的分别是5 cm(3.78%·h-1)和40 cm(0.63%·h-1)。
表 1为各个层次最大体积含水率。由图 3降雨过程中在各上层土壤远未达到最大体积含水率时,下层土壤含水率有明显的变化特征,表明是土壤水是非饱和下渗,在上层土壤没有达到土壤饱和含水率,存在土壤水下渗过程。
表 1 麻栎林各层次土壤的最大体积含水率
Table 1. Measurd max VSWC at 10 depths under oak forest
麻栎林土壤层次深度/cm 理论最大体积含水率/% 麻栎林土壤层次深度/cm 降雨过程实际最大体积含率/% 0~10 45.9 50~60 35.8 10~20 41.2 60~70 32.7 20~30 40.6 70~80 30.4 30~40 38.9 80~90 27.5 40~50 37.5 90~100 25.3 -
以时刻为横坐标,雨量(mm)为纵坐标,得到5,15,30,40,60,100 cm等6个层次土壤含水率变化理论所需雨量、实际观测点降雨量随时间的变化曲线,理论所需雨量减去实际观测降雨量等于侧向流,按照1.4节公式Iin=ΔW-P计算得到图 4~6不同级别降雨不同层次土壤侧向流响应过程。
图 4 2012年10月26日小雨情况下6个层次侧向流随时间的变化曲线
Figure 4. Response of lateral flow at 6 depths to rainfall intensity on the day 26th, oct., 2012 for small rainfall event
图 5 2012年8月29日中雨情况下6个层次侧向流随时间的变化曲线
Figure 5. Response of lateral flow at 6 depths to rainfall intensity on the day 29th, Aug., 2012 for middle rainfall event
图 6 2012年8月21日大雨情况下6个层次侧向流随时间的变化曲线
Figure 6. Response of lateral flow at 6 depths to rainfall intensity on the day 21st, Aug., 2012 for storm rainfall event
对土壤入渗有一定影响的因素很多,如降雨强度的大小[15],在图 4降雨量极小时,60~100 cm层次的土壤含水率变化微小,看不到明显的曲线特征,而5~40 cm的土壤含水率变化与降雨过程有良好的同步性,此层次显著地出现了侧向流。图 5~6中,中雨和大雨时,0~100 cm层次的土壤含水率变化与降雨过程有一个很明显的响应曲线特征,侧向流对降雨的响应很显著。
由图 4~6显示:麻栎林土壤5,15,30,40,60,100 cm等6个层次土壤含水变化量变化随降雨量增大而变化显著,而在小雨和中雨时侧向流较小,但在大雨情况下侧向流呈高速增长特征。反映了土壤垂直方向上有侧向流的侵入使土壤含水率变化的加剧,小雨过程中产生最大侧向流2.1 mm,中雨过程中产生最大侧向流2.4 mm,大雨过程中产生最大侧向流28.7 mm。
Lateral water flow and volumetric water content with rainfall for soils in a suburban Quercus acutissima forest in Nanjing
-
摘要: 为了研究森林涵养水源机制, 选择南京城郊麻栎Quercus acutissima林, 采用ECH2O土壤含水率检测系统在坡面0~100 cm深土壤5, 15, 30, 40, 60, 100 cm等6个深度层次进行土壤水分定位监测, 分析了小雨、中雨、大雨条件下南京城郊麻栎林地各层次土壤水分变异过程, 分析各土壤层次体积含水率的变化过程对降雨强度响应曲线, 得到5 cm和15 cm层次土壤水分变化与降雨量变化有良好的同步性, 在降雨量6.8 mm, 11.8 mm和36.8 mm时5 cm和15 cm层次的土壤体积含水量变化量分别是1.48%和2.10%, 5.21%和5.72%, 7.55%和7.85%;随着土壤层次的加深土壤含水率变化趋势与降雨量同步性逐渐下降, 在中雨和大雨中土壤含水量的峰值会延迟1~2小时, 在小雨下无变化。在降雨强度0~4.0 mm·hm-1, 土壤含水率自表层到30 cm变异幅度增大, 5 cm, 15 cm和30 cm层次土壤体积含水量变化量分别是1.48%, 2.10%和2.90%;降雨强度12~30 mm·hm-1, 土壤含水率自表层到60 cm层次变异幅度降低特征, 5, 15, 30, 40和60 cm的土壤体积含水量变化量分别是8.01%, 7.85%, 6.39%, 5.96%和2.63%, 而100 cm层次土壤含水率却变异幅度显著土壤体积含水量变化量达到8.97%。在2011-2012年中研究的3场降雨量为6.8 mm, 16.2 mm和36 mm中, 在降雨强度0~60.0 mm·hm-1区间, 0~60 cm层次土壤水含水率的增加量显著高于降雨量, 无地表径流发生, 最大侧向流分别为2.1 mm·hm-1, 2.4 mm·hm-1和28.7 mm·hm-1, 呈非饱和下渗现象。研究了在小、中、大降雨强度下, 0~1.00 m深度土壤垂直坡面上各层次侧向流对降雨强度响应的变化曲线, 揭示了林地侧向流对各层土壤含水率变化的影响规律。Abstract: Infiltration in forest which is not well understand till now may be quite different from that on the bare land. In order to study water conservation mechanisms and soil water infiltration law for a forest, an ECH2O soil moisture content detection system was used to measure the volumetric soil water content (VSWC) at six soil depths:5, 15, 30, 40, 60, and 100 cm, for a Quercus acutissima forest in the suburbs of Nanjing, China. VSWC with light, moderate, and heavy rainfall conditions was analyzed along with the VSWC curves of different soil depths. Also, the response of the VSWC increasing rate and its peak value as well as the peak value time to rainfall were analyzed. The response curve of lateral flow to precipitation intensity at each soil depth level between 0-100 cm was studied and the affect for the law of lateral flow on variation of VSWC at each soil depth was determined. Results showed that the VSWC at 5 cm and 15 cm levels changed synchronously with rainfall, at rainfall of 6.8 mm, 11.8 mm, 36.8 mm whose variation of VSWC are 1.48% and 2.10%, 5.21% and 5.72%, 7.55% and 7.85% respectively. And as the soil level deepened, the changing synchronicity between the VSWC and rainfall declined gradually because peak VSWC was 1-2 h lateral at middle rainfall to storm while showing no change at small rainfall. At a rainfall intensity of 0-4.0 mm·hm-1 the varying amplitude for VSWC increased from the surface to 30 cm soil depth, with the variation of VSWC at 5 cm, 10 cm, 30 cm soil depth being 1.48%, 2.10%, 2.90% respectively; at 12.0-30.0 mm·hm-1 varying amplitude for VSWC decreased from the surface to 60 cm soil depth, whose variation of VSWC are 8.01%, 7.85%, 6.39%, 5.96%, 2.63% respectively, but greatly increased at 100 cm soil depth, that is 8.97%. For selected 3 precipitation events of 6.8 mm, 16.2 mm, 36.0 mm, from 2011 to 2012, when rainfall intensity was less than 60 mm·hm-1, the precipitation needed to increase soil water content during precipitation was much higher than actual rainfall without any happening of surface runoff, of which the biggest lateral water flow was 2.1 mm·hm-1, 2.4 mm·hm-1 and 28.7 mm·hm-1 respectively. Thus, a phenomena of non-saturated water infiltration in forest soil occurred.
-
Key words:
- forest hydrology /
- Quercus acutissima forest /
- VSWC /
- rainfall intensity /
- lateral flow
-
表 1 麻栎林各层次土壤的最大体积含水率
Table 1. Measurd max VSWC at 10 depths under oak forest
麻栎林土壤层次深度/cm 理论最大体积含水率/% 麻栎林土壤层次深度/cm 降雨过程实际最大体积含率/% 0~10 45.9 50~60 35.8 10~20 41.2 60~70 32.7 20~30 40.6 70~80 30.4 30~40 38.9 80~90 27.5 40~50 37.5 90~100 25.3 -
[1] WUA G L, RENAL G H, WANG D, et al. Above-and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. J Hydrol, 2013, 476(4):120-127. [2] XIE Hongxia, YANG Qinke, LI Ri, et al. Influence on ecosystem service caused by soil and water conservation in Yanhe River Basin of the Loess Plateau, China[J]. Int J Food Agric Environ, 2013, 11(1):993-998. [3] NAVEED M, MOLDRUP P, TULLER M, et al. Prediction of the soil water characteristic from soil particle volume fractions[J]. Soil Sci Soc Amer J, 2012, 76(6):1946-1956. [4] VANDERLINDEN K, VEREECKEN H, HARDELAUF H, et al. Temporal stability of soil water contents:a review of data and analyses[J]. Vadose Zone J, 2012, 11(4):1539-1663. [5] 裴铁, 王番, 李金中.壤中流模型研究的现状及存在问题[J].应用生态学报, 1998, 9(5):543-548. PEI Tie, WANG Fan, LI Jinzhong. Current situation and existing problems in research of interflow models[J]. Chin J Appl Ecol, 1998, 9(5):543-548. [6] ANDERSON M G. Encyclopedia of Hydrological Sciences[M]. Hoboken:John Wiley & Sons, Ltd, 2005:136-143. [7] CHANG M. Forest Hydrology:An Introduction to Water and Forests[M]. 3ed. Boca Rat:CRC Press, 2013:145-153. [8] 张红江, 程金花, 史玉虎, 等.三峡库区花岗岩林地坡面优先流对降雨的响应[J].北京林业大学学报, 2004, 26(5):6-9. ZHANG Hongjiang, CHENG Jinhua, SHI Yuhu, et al. Response of prefer-ential flow to rainfall on the forestland slope in the granite area of Three Gorges[J]. J Beijing For Univ, 2004, 26(5):6-9. [9] UCHIDA T, TROMP-van MEERVELD H J, McDONNELL J J. The role of lateral pipe flow in hillslope runoff response:an intercomparison of nonlinear hillslope response[J]. J Hydrol, 2005, 311(1/4):117-133. [10] TROMP-van MEERVELD H J, McDONNELL J J. Threshold relations in subsurface stormflow:l. A 147-stom analysis of the Panola Hillslope[J]. Water Resrour Res, 2006, 42(2):1-11. [11] KIENZLER P M, NAEF F. Temporal variability of subsurface stomflow formation[J]. Hydrol Earth Sys Sci, 2008, 12(1):257-265. [12] 丁文峰, 张平仓, 王一峰.紫色土坡面壤中流形成与坡面侵蚀产沙关系试验研究[J].长江科学院院报, 2008, 25(3):15-17. DING Wenfeng, ZHANG Pingcang, WANG Yifeng. Experimental study on runoff and sediment yield characteristison purple soil slope[J]. J Yangtze River Sci Res Inst, 2008, 25(3):15-17. [13] 高红贝, 邵明安.干旱区降雨过程对土壤水分与温度变化影响研究[J].灌溉排水学报, 2011, 30(1):40-45. GAO Hongbei, SHAO Mingan. Effect of rainfall on soil water and soil temperature in arid region[J]. J Irrigation Dra, 2011, 30(1):40-45. [14] 刘冰, 赵文智, 常学向, 等.黑河流域荒漠区土壤水分对降水脉动响应[J].中国沙漠, 2011, 31(3):716-712. LIU Bing, ZHAO Wenzhi, CHANG Xuexiang, et al. Response of soil moisture to rainfall pulse in desert region of the Heihe River Basin[J]. J Des Res, 2011, 31(3):716-712. [15] 刘宏伟, 余钟波, 崔广柏.湿润地区土壤水分对降雨的响应模式研究[J].水利学报, 2009, 40(7):822-829. LIU Hongwei, YU Zhongbo, CUI Guangbo. Pattern of soil moisture rendingspo to precipitation in humid area[J]. J Hydr Engi, 2009, 40(7):822-829. [16] 吕刚, 吴祥云.土壤入渗特性影响因素研究综述[J].农业工程学报, 2008, 24(7):494-499. LÜ Gang, WU Xiangyun. Review on influential factors of soil infiltration characteristics[J]. Trans Chin Soc Agric Eng, 2008, 24(7):494-499. [17] PARCHAMI-ARAGHI F, MIRLATIFI S M, DASHTAKI S G, et al. Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils[J]. J Hydrol, 2013, 481(1):35-47. [18] 鲍彪, 毕华兴, 云雷, 等.晋西黄土区刺槐林地土壤水分对降雨的响应[J].北京林业大学学报, 2012, 34(2):84-89. BAO Biao, BI Huaxing, YUN Lei, et al. Response of soil moisture to precipitation in Robinia pseudoscacia forestland in loess region of western Shanxi Province, northern China[J]. J Beijing For Univ, 2012, 34(2):84-89. [19] BODMAN G B, COLMAN E A. Moisture and energy conditions during downward entry of water into soils[J]. Soil Sci Soc Am Proc, 1943, 8:116-122. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.05.004