-
兴安落叶松Larix gmelinii是中国东北地区三大针叶树种之一[1],20世纪70年代成为该地区主要造林树种,但由此也带来了林分结构简单、群落物种多样性降低与森林地力衰退等一系列问题[2]。森林土壤养分含量的增加依赖于地表凋落物[3]和地下有机物的输入,以及微生物进行的分解利用[4],因此,森林生态系统的物质生产能力和树种组成则是调控落叶松林土壤质量与养分利用状态的关键生物因子[5]。研究清楚土壤养分含量及决定其周转的微生物胞外酶的活性随群落中兴安落叶松所占比例的变化动态,对全面衡量东北地区针阔混交林在气候变化情景下的演替趋势具有重要的生态学意义。土壤酶是生化反应的催化剂[6],土壤中生化反应的进行需要酶的参与[7]。土壤酶不仅是检验土壤质量变化的指标[8],也是影响土壤碳(C)、氮(N)、磷(P)循环的主要限制因子[9]。土壤酶化学计量比反映土壤微生物对养分需求的差别,可以在一定程度上反映土壤养分的有效性[10]。与土壤C、N、P循环相关的酶主要有β-1,4-葡萄糖苷酶[β-1,4-glucosidase(BG)]、β-1,4-N-乙酰氨基葡萄糖苷酶[β-1,4-N-acetylglucos-aminidase(NAG)]、亮氨酸氨基肽酶[leucine aminopeptidase(LAP)]、酸性磷酸酶[acid or alkaline phosphatase(AP)]、α-纤维素酶[α-cellulases (CBH)],其中BG、CBH与纤维素降解有关,NAG与蛋白质水解有关。有效性氮的升高会导致NAG和LAP活性的降低,提高对其他养分元素分解酶的投入[11],LAP与几丁质和肽聚糖降解有关。AP与有机磷矿化有关。在土壤酶活性的基础上,SINSABAUGH等[12]采用ln(xBG+xCBH)∶ln(xNAG+xLAP)∶ln(xAP) (x为酶活性)表示土壤酶化学计量比对土壤C∶N∶P化学计量比和土壤C、N、P循环的影响。土壤C∶N∶P化学计量比与土壤C、N、P循环有关[13],土壤化学计量比可以反映土壤元素调节机制[14],进而对植物生长和生理机能进行调控。前人研究大多集中在不同林龄、不同林型对土壤理化性质、土壤化学计量比等方面,例如:随林龄的增加,土壤C∶P、N∶P增大,P成为限制因子[15]。土壤微生物通过分泌胞外酶从土壤中获取需要的养分[16],土壤微生物数量随林龄增大而降低[17]。华北落叶松Larix principis-rupprechtii-白桦Betula platyphylla混交林土壤有机质、全氮、全钾、全磷含量高于华北落叶松纯林[18],但对华北落叶松所占不同比例的针阔混交林的土壤酶化学计量比的研究较少。土壤中C、N、P等养分的有效性主要取决于与其矿化相关的水解酶的强弱。有研究表明:微生物胞外酶活性[8]及其化学计量比[12]是衡量土壤微生物和森林生态系统功能的重要生化指标。在森林生态系统中,土壤理化性质[19]、土壤酶活性[20]、土壤微生物群落结构及其功能[21]和土壤养分有效性[22]又受到树种组成的影响。尽管大兴安岭地区森林群落结构相对简单,但其优势树种兴安落叶松和白桦在物质生产能力、凋落物性状等方面存在较大的差异,随着群落中兴安落叶松所占比例的变化,量化不同群落的土壤养分状况、土壤酶活性及其生态计量比,并以此为基础探讨兴安落叶松所占比例与土壤生化性状间的内在驱动机理,为客观了解东北地区寒温带针阔混交林的演替趋势提供理论依据。
-
0~5 cm土层各梯度间AP、NAG、BG、CBH活性均无显著差异,兴安落叶松比例为95%的群落LAP活性比兴安落叶松比例为75%和85%的群落显著提高57.44%和59.40%。5~20 cm土层各梯度间AP、NAG、BG、CBH、LAP活性均无显著差异。5种酶活性中AP酶活性最高,0~5与5~20 cm土层均值分别为463.74和312.91 nmol·g−1·h−1(图1)。
0~5 cm土层土壤酶化学计量比C∶N、土壤酶化学计量比C∶P、土壤酶化学计量比N∶P均无显著变化。5~20 cm土层土壤酶化学计量比C∶P无显著差异,土壤酶化学计量比C∶N随兴安落叶松所占比例的增加先增加后降低,且兴安落叶松比例为95%的群落显著低于兴安落叶松比例为80%和85%的群落(P95%-80%=0.030, P95%-85%=0.030)。土壤酶化学计量比N∶P随兴安落叶松所占比例的增加先降低后增加,且兴安落叶松比例为70%和95%的群落显著高于兴安落叶松比例为80%、85%的群落(P70%-80%=0.020, P70%-85%=0.020, P95%-80%=0.020, P95%-85%=0.020) (图2)。
-
0~5 cm土层各梯度之间土壤微生物量碳(MBC)无显著差异,兴安落叶松比例为80%的群落MBC质量分数最低,最低值为525.10 mg·kg−1;兴安落叶松比例为95%的群落MBC质量分数最高,最大值为1 035.80 mg·kg−1。5~20 cm土层兴安落叶松比例为95%的群落MBC质量分数显著高于兴安落叶松比例为80%的群落(P95%-80%=0.040)。0~5 cm土层各梯度之间微生物量氮(MBN)无显著差异,兴安落叶松比例为80%的群落MBN质量分数最低,最低值为68.73 mg·kg−1;兴安落叶松比例为90%的群落MBN质量分数最高,最大值为140.72 mg·kg−1。5~20 cm土层兴安落叶松比例为95%的群落MBN显著高于兴安落叶松比例为80%和85% 的群落(P95%-80%=0.002, P95%-85%=0.040) (图3)。总体上看,土壤微生物量随兴安落叶松所占比例的增加呈现先增加后降低再增加的趋势。
-
表1和表2显示:0~5与5~20 cm土层各梯度之间土壤pH无显著差异。5~20 cm 土层,兴安落叶松比例为95%的群落土壤有机碳(SOC)质量分数显著高于兴安落叶松比例为85%的群落(P95%-85%=0.030)。5~20 cm土层兴安落叶松比例为95%的群落全氮(TN)质量分数显著高于其他兴安落叶松群落(P95%-70%=0.001, P95%-75%=0.007, P95%-80%=9×10−4, P95%-85%=0.001, P95%-90%=0.001)。0~5 cm土层兴安落叶松比例为95%的群落土壤全磷(TP)质量分数显著高于兴安落叶松比例为70%、80%、85%、90%的群落(P95%-70%=0.050, P95%-80%=0.001, P95%-85%=0.030, P95%-90%=0.040),兴安落叶松比例为75%的群落土壤TP质量分数显著高于兴安落叶松比例为80%的群落(P75%-80%=0.050)。5~20 cm土层兴安落叶松比例为95%的群落TP质量分数显著低于兴安落叶松比例为80%的群落(P95%-80%=0.010)。5~20 cm土层兴安落叶松比例为95%的群落易氧化碳(EOOC)质量分数显著高于兴安落叶松比例为70%的群落(P95%-70%=0.010)。0~5与5~20 cm土层各梯度之间碱解氮(AHN)和土壤C∶N均无显著差异。0~5 cm土壤N∶P随兴安落叶松所占比例的变化呈现先降低后增加再降低的趋势,兴安落叶松比例为80%的群落显著高于兴安落叶松比例为95%、75%的群落(P80%-95%=0.010, P80%-75%=0.030),5~20 cm土层土壤N∶P与5~20 cm土层 TP变化规律相反,兴安落叶松比例为95%的群落土壤N∶P显著高于兴安落叶松比例为70%、80%、85%的群落(P95%-70%=0.020, P95%-80%=0.003, P95%-85%=0.003)。5~20 cm土壤C∶P呈现先增加后降低再增加的趋势,兴安落叶松比例为95%的群落显著高于兴安落叶松比例为70%、80%、85%的群落(P95%-70%=0.030, P95%-80%=0.006, P95%-85%=0.005)。
表 1 不同比例兴安落叶松林地土壤(0~5 cm)化学性质
Table 1. Soil chemical properties in the depth of 0−5 cm of in different L. gmelinii stands
兴安落叶松比例/% pH SOC/(g·kg−1) TN/(g·kg−1) TP/(g·kg−1) EOOC/(g·kg−1) AHN/(g·kg−1) C∶N N∶P C∶P 70 4.69 a 107.96 a 3.66 a 0.65 bcd 49.65 a 0.21 a 29.18 a 5.55 ab 163.20 a 75 4.95 a 109.71 a 3.85 a 0.90 ac 33.27 a 0.26 a 28.68 a 4.23 b 119.92 a 80 5.15 a 85.06 a 3.43 a 0.52 d 33.16 a 0.29 a 24.98 a 6.75 a 174.83 a 85 5.08 a 91.11 a 3.68 a 0.72 bcd 42.26 a 0.66 a 25.43 a 5.10 ab 127.20 a 90 4.80 a 87.56 a 3.53 a 0.69 bcd 32.70 a 0.32 a 23.67 a 5.23 ab 122.32 a 95 4.70 a 126.63 a 4.32 a 1.09 a 42.34 a 0.32 a 29.82 a 3.98 b 115.48 a 说明:不同小写字母表示差异显著(P<0.05) 表 2 不同比例兴安落叶松林地土壤(5~20 cm)化学性质
Table 2. Soil chemical properties in the depth of 0−5 cm of in different L. gmelinii stands
兴安落叶松比例/% pH SOC/(g·kg−1) TN/(g·kg−1) TP/(g·kg−1) EOOC/(g·kg−1) AHN/(g·kg−1) C∶N N∶P C∶P 70 5.15 a 47.21 ab 1.41 b 0.50 ab 9.16 a 0.14 a 33.45 a 2.80 b 94.38 b 75 5.06 a 45.44 ab 1.70 b 0.26 ab 15.40 ab 0.13 a 26.76 a 15.07 ab 369.03 ab 80 5.45 a 35.33 ab 1.57 b 0.47 b 14.33 ab 0.16 a 22.36 a 3.42 b 76.97 b 85 5.21 a 29.40 b 1.59 b 0.57 ab 14.15 ab 0.21 a 18.86 a 2.82 b 51.29 b 90 4.88 a 38.16 ab 1.58 b 0.14 ab 13.97 ab 0.16 a 24.73 a 26.18 ab 294.67 ab 95 4.93 a 55.37 a 2.74 a 0.08 a 25.23 b 0.21 a 20.18 a 39.06 a 779.56 a 说明:不同小写字母表示差异显著(P<0.05) -
RDA排序图结果(图4)显示:0~5 cm土层第1轴和第2轴的解释变量分别为30.03%和12.86%(图4A),土壤pH(F=2.7,P=0.040)是土壤酶活性和酶化学计量比的显著影响因子。5~20 cm土层第1轴和第2轴的解释变量分别为42.86%和17.17%(图4B),土壤TN(F=8.9,P=0.002)和AHN(F=10.1,P=0.034)是土壤酶活性和酶化学计量比的显著影响因子。表3和表4中土壤微生物量和酶活性与土壤理化性质之间相关性分析表明:在0~5 cm土层,土壤BG、CBH与AP,土壤NAG、LAP与AP呈显著正相关(PBG-AP=0.001, PCBH-AP=3×10−4, PNAG-AP=8×10−4, PLAP-AP=1×10−5) (表3)。5~20 cm土层土壤MBC、MBN与SOC、TN、EOOC、CBH、NAG、AP、LAP显著正相关(PMBC-SOC=0.020, PMBC-TN=2×10−4, PMBC-EOOC=2×10−4, PMBC-CBH=0.050, PMBC-NAG=0.020, PMBC-AP=0.050, PMBC-LAP=0.010, PMBN-SOC=0.010, PMBN-TN=4×10−7, PMBN-EOOC=3×10−6, PMBN-CBH=0.020, PMBN-NAG=3×10−4, PMBN-AP=0.003, PMBN-LAP=0.030) (表4)。0~5 cm土层BG、NAG与pH呈显著负相关(PpH-BG=−0.010, PpH-NAG=−0.030)。5~20 cm土层 LAP、NAG与TN呈显著正相关(PLAP-TN=0.020, PNAG-TN=2×10−4)。AP与TP呈显著负相关(PAP-TP=−0.020)。5~20 cm土层土壤酶化学计量比C∶N与土壤N∶P、C∶P呈显著负相关(PSES(C∶N)-N∶P=−2×10−4, PSES(C∶N)-C∶P=−4×10−4),土壤酶化学计量比N∶P与土壤N∶P、土壤C∶P呈显著正相关(PSES(N∶P)-N∶P=0.007, PSES(N∶P)-C∶P=0.005)。
表 3 不同比例兴安落叶松林地土壤(0~5 cm)酶活性与土壤化学性质间Pearson相关系数
Table 3. Peaeson correlation between soil enzymes, ecoenzymate stoichiometry and physicochemical properties in the depth of 0−5 cm of in different L. gmelinii stands
指标 MBC∶MBN C∶P N∶P C∶N SES(N∶P) SES(C∶P) SES(C∶N) AHN EOOC LAP SOC 0.11 0.36 −0.09 0.64** 0.37 −0.25 −0.44* 0.06 0.60** 0.21 pH −0.53* −0.23 0.14 −0.43 −0.41 −0.29 0.21 0.09 −0.22 −0.29 MBC 0.11 −0.05 −0.30 0.30 0.33 −0.13 −0.36 −0.02 0.15 0.30 MBN −0.35 −0.07 −0.36 0.36 0.22 −0.31 −0.36 0.03 0.11 0.05 TN 0.27 0.09 0.10 0.03 0.30 −0.28 −0.41 0.25 0.75*** 0.15 TP 0.03 −0.37 −0.68** 0.34 0.29 −0.20 −0.33 0.11 0.41 0.36 BG 0.64** −0.05 −0.09 0.01 0.24 0.49* 0.04 0.11 0.19 0.67** CBH 0.21 −0.18 −0.30 0.07 0.03 0.26 0.09 −0.17 −0.07 0.72*** NAG 0.44 −0.07 −0.22 0.18 0.73*** −0.12 −0.69*** −0.04 0.26 0.63** AP 0.28 −0.10 −0.21 0.09 0.13 −0.15 −0.20 −0.03 0.23 0.81*** LAP 0.49* −0.12 −0.27 0.13 0.16 0.12 −0.08 −0.28 −0.10 EOOC 0.08 0.07 0.10 0.04 0.21 −0.19 −0.28 0.45* AHN −0.11 −0.13 0.03 −0.17 0.02 0.05 0.00 SES(C∶N) −0.04 −0.11 −0.05 −0.13 −0.86*** 0.49* SES(C∶P) 0.46* −0.10 −0.06 −0.09 0.02 SES(N∶P) 0.32 0.03 −0.02 0.10 C∶N −0.19 0.51* −0.23 N∶P 0.15 0.71*** C∶P 0.01 指标 AP NAG CBH BG TP TN MBN MBC pH SOC 0.35 0.48* 0.04 0.23 0.69 *** 0.78 *** 0.49* 0.59** −0.64** pH −0.30 −0.50* −0.15 −0.54* −0.40 −0.44 −0.21 -0.50* MBC 0.46* 0.46* 0.23 0.27 0.64** 0.51* 0.88*** MBN 0.27 0.24 0.10 −0.05 0.58** 0.33 TN 0.38 0.43 −0.02 0.27 0.62** TP 0.44 0.51* 0.24 0.23 BG 0.66** 0.62** 0.49* CBH 0.73*** 0.33 NAG 0.69*** 说明:土壤酶化学计量比用SES表示,*表示P<0.05,**表示P<0.01,***表示P<0.001 图 4 0~5(A)和5~20 cm(B)土壤酶活性和酶化学计量比与土壤理化因子的冗余分析(RDA)
Figure 4. 0−5 (A) and 5−20 cm(B) redundancy analysis of soil enzyme activities and ecoenzymatic stoichiometry
表 4 不同比例兴安落叶松林地土壤(5~20 cm)酶活性与土壤化学性质间Pearson相关系数
Table 4. Peaeson correlation between soil enzymes, ecoenzymate stoichiometry and physicochemical properties in the depth of 5−20 cm of in different L. gmelinii stands
指标 MBC∶MBN C∶P N∶P C∶N SES(N∶P) SES(C∶P) SES(C∶N) AHN EOOC LAP SOC −0.33 0.53* 0.48* 0.58** 0.54* 0.10 −0.39 −0.02 0.55* 0.44* pH 0.34 −0.65** −0.59** −0.02 −0.53* 0.23 0.58** 0.15 −0.37 −0.46* MBC −0.13 0.77*** 0.76*** −0.15 0.59** −0.26 −0.66** 0.26 0.74*** 0.55* MBN −0.56* 0.83*** 0.85*** −0.20 0.58** −0.20 −0.60** 0.16 0.85*** 0.50* TN −0.42 0.77*** 0.81*** −0.30 0.52* −0.30 −0.61** 0.41 0.91*** 0.53* TP 0.14 −0.90*** −0.88*** 0.15 −0.50* 0.40 0.66** −0.24 −0.59** −0.32 BG −0.15 0.21 0.23 −0.17 0.24 0.46* 0.08 −0.31 0.48* 0.08 CBH −0.14 0.44 0.50* −0.28 0.42 −0.23 −0.49* 0.64** 0.59** 0.15 NAG −0.32 0.70*** 0.75*** −0.26 0.71*** −0.17 −0.67** 0.19 0.64** 0.28 AP −0.25 0.53* 0.60** −0.40 0.36 −0.29 −0.48* 0.30 0.59** 0.30 LAP −0.15 0.31 0.31 −0.05 0.33 −0.26 −0.43 0.13 0.45* EOOC −0.37 0.73*** 0.74*** −0.28 0.43 −0.05 −0.39 0.18 AHN 0.10 0.17 0.25 −0.37 0.01 −0.63** −0.38 SES(C∶N) 0.15 −0.71*** −0.74*** 0.13 −0.79*** 0.59** SES(C∶P) 0.07 −0.37 −0.44 0.40 0.02 SES(N∶P) −0.15 0.60** 0.58** 0.11 C∶N 0.03 −0.14 −0.23 N∶P −0.37 0.99*** C∶P −0.33 指标 AP NAG CBH BG TP TN MBN MBC pH SOC 0.21 0.38 0.30 0.15 −0.42 0.59** 0.56** 0.51* −0.4 pH −0.27 −0.35 −0.14 −0.10 0.62** −0.39 −0.62** −0.68** MBC 0.45* 0.53* 0.45* 0.21 −0.73*** 0.74*** 0.85*** MBN 0.63** 0.73*** 0.51* 0.42 −0.68*** 0.88*** TN 0.69*** 0.75*** 0.69*** 0.35 −0.64** TP −0.53* −0.62** −0.41 −0.19 BG 0.67** 0.61** 0.36 CBH 0.75*** 0.70*** NAG 0.86*** 说明:土壤酶化学计量比用SES表示,*表示P<0.05,**表示P<0.01,***表示P<0.001
Effect of Larix gmelinii proportion on soil chemical properties and enzymatic stoichiometry in mixed coniferous and broad-leaved forest
-
摘要:
目的 研究不同比例兴安落叶松Larix gmelinii的针阔混交林土壤的化学性质和酶化学计量比。 方法 按照群落中兴安落叶松材积所占的不同比例(70%、75%、80%、85%、90%、95%),把调查的森林群落分为6种类型,分别监测了各类型群落0~5和5~20 cm土层的养分和生物化学性状等。 结果 分析的5种酶中酸性磷酸酶的活性最高,0~5与5~20 cm土层均值分别为463.74 nmol·g−1·h−1和312.91 nmol·g−1·h−1。在0~5 cm土层中,群落中兴安落叶松比例的增加对亮氨酸氨肽酶的活性有明显的促进作用,兴安落叶松比例为95%的群落亮氨酸氨肽酶活性比兴安落叶松比例为75%和85%的群落显著提高了 57.44%和59.40%。群落中兴安落叶松的比例也影响了土壤中酶的化学计量特征,当兴安落叶松比例达95%时,5~20 cm土层与氮、磷矿化相关的酶计量比显著高于兴安落叶松比例为80%和85%的群落(P95%-80%=0.020, P95%-85%=0.020)。与碳、氮矿化相关的酶计量比在兴安落叶松为95%的群落中最低。土壤的酶活性与土壤养分质量分数间呈现复杂的相关性,并随着土壤深度的增加而改变。在0~5 cm土层,土壤pH与葡萄糖苷酶(BG)、乙酰氨基葡萄糖苷酶(NAG)的活性间存在显著的负相关(PpH-BG=0.010, PpH-NAG=0.030);在5~20 cm土层,亮氨酸氨肽酶(LAP)和乙酰氨基葡萄糖苷酶(NAG)的活性与土壤全氮(TN)质量分数存在显著的正相关(PLAP-TN=0.020, PNAG-TN=2×10−4),酸性磷酸酶(AP)与土壤全磷(TP)质量分数间存在显著的负相关(PAP-TP=0.020)。通过对上述变量进行冗余分析,发现土壤酶的化学计量比在0~5 cm土层主要受到土壤酸碱度的影响,在5~20 cm土层则主要受到土壤全氮和有效氮质量分数的影响。 结论 暖温带针阔混交林中兴安落叶松所占比例是调控土壤养分动态的一个重要生物因子,其调控作用的发挥则主要依赖于土壤中酶的活性及其化学计量特征。图4表4参41 Abstract:Objective The objective of this research is to study the chemical properties and enzyme stoichiometry of soil under different proportions of Larix gmelinii forests. Method The investigated L. gmelinii forests were classified into six groups according to its volume proportion in the community (70%, 75%, 80%, 85%, 90%, 95%), and its soil samples were monitored for the nutrient content and biochemical properties in 0−5 cm soil layers and 5−20 cm soil layers. Result Among the five enzymes analyzed, the activity of acid phosphatase was the highest, and the mean value of 0−5 and 5−20 cm soil layers were 463.74 and 312.91 nmol·g−1·h−1. In 0−5 cm soil layer, the activity of leucine aminopeptidase (LAP) was promoted by the increase of L. gmelinii proportion, and the leucine aminopeptidase activity of L. gmelinii community with 95% proportion significantly increased by 57.44% and 59.40%, compared with that of L. gmelinii community with 75% and 85% proportion. The proportion of L. gmelinii in the community also affected the chemometric characteristics of soil enzymes. When the proportion of L. gmelinii reached 95% in 5−20 cm soil layer, the ratio of nitrogen-acquiring enzyme to phosphorus-acquiring enzyme was much higher than that of L. gmelinii communities with the proportion of 80% and 85% (P95%-80%=0.02, P95%-85%=0.02). However, the ratio of carbon-acquiring enzyme to nitrogen-acquiring enzymewas lowest in forest community with 95% proportion of L. gmelinii. There existed a complex correlation between soil enzyme activity and soil nutrient content, which also changed with the increase of soil depth. In 0−5 cm soil layer, soil pH negatively correlated with the activities of glucosidase (BG), and acetylglucosaminidase (NAG) (PpH-BG=0.01, PpH-NAG=0.03). In the 5−20 cm soil layer, there existed a positive correlation between soil total nitrogen (TN) content and the activities of leucine aminopeptidase (LAP) and NAG (PLAP-TN=0.02, PNAG-TN=2×10−4), and a negative correlation between acid or alkaline phosphatase (AP) and soil total phosphorus (TP) content (PAP-TP=0.02). Through the redundancy analysis of the above variables, it was found that the enzymatic stoichiometry was greatly influenced by soil pH in 0−5 cm layer, while in 5−20 cm layer it was mainly affected by the mass fraction of soil total nitrogen and available nitrogen. Conclusion The proportion of L. gmelinii in the mixed coniferous and broad-leaved forest in warm temperate zone is an important biological factor for regulating soil nutrient dynamics, and its regulation largely relies on the activity and stoichiometric characteristics of soil enzymes. [Ch, 4 fig. 4 tab. 41 ref.] -
表 1 不同比例兴安落叶松林地土壤(0~5 cm)化学性质
Table 1. Soil chemical properties in the depth of 0−5 cm of in different L. gmelinii stands
兴安落叶松比例/% pH SOC/(g·kg−1) TN/(g·kg−1) TP/(g·kg−1) EOOC/(g·kg−1) AHN/(g·kg−1) C∶N N∶P C∶P 70 4.69 a 107.96 a 3.66 a 0.65 bcd 49.65 a 0.21 a 29.18 a 5.55 ab 163.20 a 75 4.95 a 109.71 a 3.85 a 0.90 ac 33.27 a 0.26 a 28.68 a 4.23 b 119.92 a 80 5.15 a 85.06 a 3.43 a 0.52 d 33.16 a 0.29 a 24.98 a 6.75 a 174.83 a 85 5.08 a 91.11 a 3.68 a 0.72 bcd 42.26 a 0.66 a 25.43 a 5.10 ab 127.20 a 90 4.80 a 87.56 a 3.53 a 0.69 bcd 32.70 a 0.32 a 23.67 a 5.23 ab 122.32 a 95 4.70 a 126.63 a 4.32 a 1.09 a 42.34 a 0.32 a 29.82 a 3.98 b 115.48 a 说明:不同小写字母表示差异显著(P<0.05) 表 2 不同比例兴安落叶松林地土壤(5~20 cm)化学性质
Table 2. Soil chemical properties in the depth of 0−5 cm of in different L. gmelinii stands
兴安落叶松比例/% pH SOC/(g·kg−1) TN/(g·kg−1) TP/(g·kg−1) EOOC/(g·kg−1) AHN/(g·kg−1) C∶N N∶P C∶P 70 5.15 a 47.21 ab 1.41 b 0.50 ab 9.16 a 0.14 a 33.45 a 2.80 b 94.38 b 75 5.06 a 45.44 ab 1.70 b 0.26 ab 15.40 ab 0.13 a 26.76 a 15.07 ab 369.03 ab 80 5.45 a 35.33 ab 1.57 b 0.47 b 14.33 ab 0.16 a 22.36 a 3.42 b 76.97 b 85 5.21 a 29.40 b 1.59 b 0.57 ab 14.15 ab 0.21 a 18.86 a 2.82 b 51.29 b 90 4.88 a 38.16 ab 1.58 b 0.14 ab 13.97 ab 0.16 a 24.73 a 26.18 ab 294.67 ab 95 4.93 a 55.37 a 2.74 a 0.08 a 25.23 b 0.21 a 20.18 a 39.06 a 779.56 a 说明:不同小写字母表示差异显著(P<0.05) 表 3 不同比例兴安落叶松林地土壤(0~5 cm)酶活性与土壤化学性质间Pearson相关系数
Table 3. Peaeson correlation between soil enzymes, ecoenzymate stoichiometry and physicochemical properties in the depth of 0−5 cm of in different L. gmelinii stands
指标 MBC∶MBN C∶P N∶P C∶N SES(N∶P) SES(C∶P) SES(C∶N) AHN EOOC LAP SOC 0.11 0.36 −0.09 0.64** 0.37 −0.25 −0.44* 0.06 0.60** 0.21 pH −0.53* −0.23 0.14 −0.43 −0.41 −0.29 0.21 0.09 −0.22 −0.29 MBC 0.11 −0.05 −0.30 0.30 0.33 −0.13 −0.36 −0.02 0.15 0.30 MBN −0.35 −0.07 −0.36 0.36 0.22 −0.31 −0.36 0.03 0.11 0.05 TN 0.27 0.09 0.10 0.03 0.30 −0.28 −0.41 0.25 0.75*** 0.15 TP 0.03 −0.37 −0.68** 0.34 0.29 −0.20 −0.33 0.11 0.41 0.36 BG 0.64** −0.05 −0.09 0.01 0.24 0.49* 0.04 0.11 0.19 0.67** CBH 0.21 −0.18 −0.30 0.07 0.03 0.26 0.09 −0.17 −0.07 0.72*** NAG 0.44 −0.07 −0.22 0.18 0.73*** −0.12 −0.69*** −0.04 0.26 0.63** AP 0.28 −0.10 −0.21 0.09 0.13 −0.15 −0.20 −0.03 0.23 0.81*** LAP 0.49* −0.12 −0.27 0.13 0.16 0.12 −0.08 −0.28 −0.10 EOOC 0.08 0.07 0.10 0.04 0.21 −0.19 −0.28 0.45* AHN −0.11 −0.13 0.03 −0.17 0.02 0.05 0.00 SES(C∶N) −0.04 −0.11 −0.05 −0.13 −0.86*** 0.49* SES(C∶P) 0.46* −0.10 −0.06 −0.09 0.02 SES(N∶P) 0.32 0.03 −0.02 0.10 C∶N −0.19 0.51* −0.23 N∶P 0.15 0.71*** C∶P 0.01 指标 AP NAG CBH BG TP TN MBN MBC pH SOC 0.35 0.48* 0.04 0.23 0.69 *** 0.78 *** 0.49* 0.59** −0.64** pH −0.30 −0.50* −0.15 −0.54* −0.40 −0.44 −0.21 -0.50* MBC 0.46* 0.46* 0.23 0.27 0.64** 0.51* 0.88*** MBN 0.27 0.24 0.10 −0.05 0.58** 0.33 TN 0.38 0.43 −0.02 0.27 0.62** TP 0.44 0.51* 0.24 0.23 BG 0.66** 0.62** 0.49* CBH 0.73*** 0.33 NAG 0.69*** 说明:土壤酶化学计量比用SES表示,*表示P<0.05,**表示P<0.01,***表示P<0.001 表 4 不同比例兴安落叶松林地土壤(5~20 cm)酶活性与土壤化学性质间Pearson相关系数
Table 4. Peaeson correlation between soil enzymes, ecoenzymate stoichiometry and physicochemical properties in the depth of 5−20 cm of in different L. gmelinii stands
指标 MBC∶MBN C∶P N∶P C∶N SES(N∶P) SES(C∶P) SES(C∶N) AHN EOOC LAP SOC −0.33 0.53* 0.48* 0.58** 0.54* 0.10 −0.39 −0.02 0.55* 0.44* pH 0.34 −0.65** −0.59** −0.02 −0.53* 0.23 0.58** 0.15 −0.37 −0.46* MBC −0.13 0.77*** 0.76*** −0.15 0.59** −0.26 −0.66** 0.26 0.74*** 0.55* MBN −0.56* 0.83*** 0.85*** −0.20 0.58** −0.20 −0.60** 0.16 0.85*** 0.50* TN −0.42 0.77*** 0.81*** −0.30 0.52* −0.30 −0.61** 0.41 0.91*** 0.53* TP 0.14 −0.90*** −0.88*** 0.15 −0.50* 0.40 0.66** −0.24 −0.59** −0.32 BG −0.15 0.21 0.23 −0.17 0.24 0.46* 0.08 −0.31 0.48* 0.08 CBH −0.14 0.44 0.50* −0.28 0.42 −0.23 −0.49* 0.64** 0.59** 0.15 NAG −0.32 0.70*** 0.75*** −0.26 0.71*** −0.17 −0.67** 0.19 0.64** 0.28 AP −0.25 0.53* 0.60** −0.40 0.36 −0.29 −0.48* 0.30 0.59** 0.30 LAP −0.15 0.31 0.31 −0.05 0.33 −0.26 −0.43 0.13 0.45* EOOC −0.37 0.73*** 0.74*** −0.28 0.43 −0.05 −0.39 0.18 AHN 0.10 0.17 0.25 −0.37 0.01 −0.63** −0.38 SES(C∶N) 0.15 −0.71*** −0.74*** 0.13 −0.79*** 0.59** SES(C∶P) 0.07 −0.37 −0.44 0.40 0.02 SES(N∶P) −0.15 0.60** 0.58** 0.11 C∶N 0.03 −0.14 −0.23 N∶P −0.37 0.99*** C∶P −0.33 指标 AP NAG CBH BG TP TN MBN MBC pH SOC 0.21 0.38 0.30 0.15 −0.42 0.59** 0.56** 0.51* −0.4 pH −0.27 −0.35 −0.14 −0.10 0.62** −0.39 −0.62** −0.68** MBC 0.45* 0.53* 0.45* 0.21 −0.73*** 0.74*** 0.85*** MBN 0.63** 0.73*** 0.51* 0.42 −0.68*** 0.88*** TN 0.69*** 0.75*** 0.69*** 0.35 −0.64** TP −0.53* −0.62** −0.41 −0.19 BG 0.67** 0.61** 0.36 CBH 0.75*** 0.70*** NAG 0.86*** 说明:土壤酶化学计量比用SES表示,*表示P<0.05,**表示P<0.01,***表示P<0.001 -
[1] 曾凡鹏, 迟光宇, 陈欣, 等. 辽东山区不同林龄落叶松人工林土壤-根系C∶N∶P生态化学计量特征[J]. 生态学杂志, 2016, 35(7): 1819 − 1825. ZENG Fanpeng, CHI Guangyu, CHEN Xin, et al. The stoichiometric characteristics of C, N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province, China [J]. Chin J Ecol, 2016, 35(7): 1819 − 1825. [2] 梅莉, 张卓文, 谷加存, 等. 水曲柳和落叶松人工林乔木层碳、氮储量及分配[J]. 应用生态学报, 2009, 20(8): 1791 − 1796. MEI Li, ZHANG Zhuowen, GU Jiacun, et al. Carbon and nitrogen storages and allocation in tree layers of Fraxinus mandshurica and Larix gmelinii plantations [J]. Chin J Appl Ecol, 2009, 20(8): 1791 − 1796. [3] 纪文婧, 程小琴, 韩海荣, 等. 不同林龄华北落叶松人工林生物量及营养元素分布特征[J]. 应用与环境生物学报, 2016, 22(2): 277 − 284. JI Wenjing, CHENG Xiaoqin, HAN Hairong, et al. The biomass and nutrient distribution in Larix principis-ruppechtii Magyr plantations at different forest age [J]. Chin J Appl Environ Biol, 2016, 22(2): 277 − 284. [4] 唐仕姗, 杨万勤, 殷睿, 等. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子[J]. 植物生态学报, 2014, 38(6): 529 − 539. TANG Shishan, YANG Wanqin, YIN Rui, et al. Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems [J]. Chin J Plant Ecol, 2014, 38(6): 529 − 539. [5] 潘建平, 王华章, 杨秀琴. 落叶松人工林地力衰退研究现状与进展[J]. 东北林业大学学报, 1997, 25(2): 59 − 63. PAN Jianping, WANG Huazhang, YANG Xiuqin. Research state and advance on soil degradation under Larch plantations [J]. J Northeast For Univ, 1997, 25(2): 59 − 63. [6] 王理德, 王方琳, 郭春秀, 等. 土壤酶学硏究进展[J]. 土壤, 2016, 48(1): 12 − 21. WANG Lide, WANG Fanglin, GUO Chunxiu, et al. Review: progress of soil enzymology [J]. Soils, 2016, 48(1): 12 − 21. [7] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105 − 109. CAO Hui, SUN Hui, YANG Hao, et al. A review soil enzyme activity and its indication for soil quality [J]. Chin J Appl Environ Biol, 2003, 9(1): 105 − 109. [8] PAZ-FERREIRO J, FU Shenglei, MWNDEZ A, et al. Interactive effects of biochar and the earthworm pontoscolex corethrurus on plant productivity and soil enzyme activities [J]. J Soil Sediment, 2014, 14(3): 483 − 494. [9] 刘捷豹, 陈光水, 郭剑芬, 等. 森林土壤酶对环境变化的响应研究进展[J]. 生态学报, 2017, 37(1): 110 − 117. LIU Jiebao, CHEN Guangshui, GUO Jianfen, et al. Advances in research on the responses of forest soil enzymes to environmental change [J]. Acta Ecol Sin, 2017, 37(1): 110 − 117. [10] HILL B H, ELONEN C M, SEIFERT L R, et al. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers [J]. Ecol Indic, 2012, 18: 540 − 551. [11] OLANDER L P, VITOUSEK P M. Regulation of soil phosphatase and chitinase activityby N and P availability [J]. Biogeochemistry, 2000, 49(2): 175 − 191. [12] SINSABAUGH R L, HILL B H, SHAH J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462: 795 − 798. [13] 吴秀芝, 阎欣, 王波, 等. 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响[J]. 植物生态学报, 2018, 42(10): 1022 − 1032. WU Xiuzhi, YAN Xin, WANG Bo, et al. Effects of desertification on the C∶N∶P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland [J]. Chin J Plant Ecol, 2018, 42(10): 1022 − 1032. [14] 袁萍, 周嘉聪, 张秋芳, 等. 中亚热带不同森林更新方式生态酶化学计量特征[J]. 生态学报, 2018, 38(18): 6741 − 6748. YUAN Ping, ZHOU Jiacong, ZHANG Qiufang, et al. Patterns of ecoenzymatic stoichiometry in midsubtropical forest regeneration [J]. Acta Ecol Sin, 2018, 38(18): 6741 − 6748. [15] 牛瑞龙, 高星, 徐福利, 等. 秦岭中幼林龄华北落叶松针叶与土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2016, 36(22): 7384 − 7392. NIU Ruilong, GAO Xing, XU Fuli, et al. Carbon,nitrogen,and phosphorus stoichiometric characteristics of soil and leaves from young and middle aged Larix principis-rupprechtii growing in a Qinling Mountain plantation [J]. Acta Ecol Sin, 2016, 36(22): 7384 − 7392. [16] ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs [J]. Soil Biol Biochem, 2004, 37(5): 937 − 944. [17] 牛小云, 孙晓梅, 陈东升, 等. 辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性[J]. 应用生态学报, 2015, 26(9): 2663 − 2672. NIU Xiaoyun, SUN Xiaomei, CHEN Dongsheng, et al. Soil microorganisms,nutrients and enzyme activity of Larix kaempferi plantation under different ages in mountainous region of eastern Liaoning Province,China [J]. Chin J Appl Ecol, 2015, 26(9): 2663 − 2672. [18] 刘欣, 彭道黎, 邱新彩. 华北落叶松不同林型土壤理化性质差异[J]. 应用与环境生物学报, 2018, 24(4): 735 − 743. LIU Xin, PENG Daoli, QIU Xincai. Differences in soil physicochemical properties between different forest types of Larix principis-rupprechtii [J]. Chin J Appl Environ Biol, 2018, 24(4): 735 − 743. [19] CHEN Guangcheng, GAO Min, PANG Bopeng, et al. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages [J]. For Ecol Manage, 2018, 422: 87 − 94. [20] 魏圣钊, 李林, 骆晓, 等. 不同连栽代次的巨桉(Eucalyptus grandis)人工林土壤酶活性及其与土壤理化性质的关系[J]. 应用与环境生物学报, 2019, 25(6): 1312 − 1318. WEI Shengzhao, LI Lin, LUO Xiao, et al. Soil enzyme activities and their relationships to soil physicochemical properties in different successive rotation plantations of Eucalyptus grandis [J]. Chin J Appl Environ Biol, 2019, 25(6): 1312 − 1318. [21] 邓娇娇, 周永斌, 殷有, 等. 油松和蒙古栎混交对土壤微生物群落功能多样性的影响[J]. 生态学杂志, 2017, 36(11): 3028 − 3035. DENG Jiaojiao, ZHOU Yongbin, YIN You, et al. Effects of mixed Pinus tabuliformis and Quercus mongolica plantation on the functional diversity of soil microbial community [J]. Chin J Ecol, 2017, 36(11): 3028 − 3035. [22] 刘旭军, 田慧霞, 程小琴, 等. 凋落物处理对不同林龄华北落叶松针阔混交林土壤磷组分的影响[J]. 生态学杂志, 2019, 38(10): 3024 − 3032. LIU Xujun, TIAN Huixia, CHENG Xiaoqin, et al. Effects of litter manipulation on soil phosphorus fractions in Larix principis-rupprechtii conifer and broadleaved forests at different ages [J]. Chin J Ecol, 2019, 38(10): 3024 − 3032. [23] 张雪. 根河林业局森林资源变化及其发展对策[D]. 呼和浩特: 内蒙古农业大学, 2018. ZHANG Xue. Study on Forest Resources Change and Development Countermeasures of Genhe Forest Bureau[D]. Huhehaote: Inner Mongolia Agricultural University, 2018. [24] 孙海滨, 王美莲, 张红星, 等. 大兴安岭森林火灾与气象因子相关性研究[J]. 内蒙古农业大学学报, 2012, 33(5/6): 87 − 90. SUN Haibin, WANG Meilian, ZHANG Hongxing, et al. Correlation analysis betweeb forest fire and meteorological elements in daxinganling mountain [J]. J Inn Mong Agric Univ, 2012, 33(5/6): 87 − 90. [25] SAIYAA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biol Biochem, 2002, 34(9): 1309 − 1315. [26] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [27] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biol Biochem, 1987, 19(6): 703 − 707. [28] 乔航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素[J]. 生态学报, 2019, 39(6): 1887 − 1896. QIAO Hang, MO Xiaoqin, LUO Yanhua, et al. Patterns of soil ecoenzymatic stoichiometry and its influencing factors during stand development in Camellia oleifera plantations [J]. Acta Ecol Sin, 2019, 39(6): 1887 − 1896. [29] 史军, 刘纪远, 高志强, 等. 造林对土壤碳储量影响的研究[J]. 生态学杂志, 2005, 24(4): 410 − 416. SHI Jun, LIU Jiyuan, GAO Zhiqiang, et al. A review on the influence of afforestation on soil carbon storage [J]. Chin J Ecol, 2005, 24(4): 410 − 416. [30] 魏孝荣, 邵明安. 黄土高原小流域土壤pH、阳离子交换量和有机质分布特征[J]. 应用生态学报, 2009, 20(11): 2710 − 2715. WEI Xiaorong, SHAO Ming’ an. Distribution characteristics of soil pH, CEC and organic matter in a small watershed of the Loess Plateau [J]. Chin J Appl Ecol, 2009, 20(11): 2710 − 2715. [31] MOLLA M A Z, CHOWDHURY A A, ISLAM A, et al. Microbial mineralization of organic phosphate in soil [J]. Plant Soil, 1984, 78(3): 393 − 399. [32] ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand [J]. Soil Biol Biochem, 2007, 39(7): 1770 − 1781. [33] 陈立新, 段文标, 乔璐. 落叶松人工林根际与非根际土壤养分特征及酸度研究[J]. 水土保持学报, 2011, 25(3): 131 − 135. CHEN Lixin, DUAN Wenbiao, QIAO Lu. Study on nutrition characteristics and acidity in rhizosphere and non-rhizosphere soils in Larch plantations [J]. J Soil Water Conserv, 2011, 25(3): 131 − 135. [34] 张立欣, 段玉玺, 王博, 等. 库布齐沙漠不同人工固沙灌木林土壤微生物量与土壤养分特征[J]. 应用生态学报, 2017, 28(12): 3871 − 3880. ZHANG Lixin, DUAN Yuxi, WANG Bo, et al. Characteristics of soil microorganisms and soil nutrients in different sand-fixation shrub plantations in Kubuqi Desert [J]. Chin J Appl Ecol, 2017, 28(12): 3871 − 3880. [35] 赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2): 351 − 358. ZHAO Na, MENG Ping, ZHANG Jingsong, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China [J]. Chin JAppl Ecol, 2014, 25(2): 351 − 358. [36] 段益莉, 李继侠, 江强, 等. 长白山东坡不同海拔落叶松土壤微生物碳代谢及酶活性研究[J]. 生态环境学报, 2019, 28(4): 652 − 660. DUAN Yili, LI Jixia, JIANG Qiang, et al. Soil microbial carbon metabolism and enzyme activity of Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China [J]. Ecol Environ Sci, 2019, 28(4): 652 − 660. [37] ZHANG Xinyu, DONG Wenyu, DAI Xiaoqin, et al. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer [J]. Sci Total Environ, 2015, 536: 59 − 67. [38] RAIESI F, BEHESHTI A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran [J]. Appl Soil Ecol, 2014, 75: 63 − 70. [39] 林诚, 王飞, 李清华, 等. 不同施肥制度对黄泥田土壤酶活性及养分的影响[J]. 中国土壤与肥料, 2009(6): 24 − 27. LIN Cheng, WANG Fei, LI Qinghua, et al. Effects of different fertilizer application strategies on nutrients and enzymatic activities in yellow clayey soil [J]. Soil Fert Sci China, 2009(6): 24 − 27. [40] BLOOM A, CHAPIN I F S, MOONEY H. Resource limitation in plants--an economic analogy [J]. Ann Rev Ecol Syst, 1985, 16: 363 − 392. [41] TIAN Hanqin, CHEN Guangsheng, ZHANG Chi, et al. Pattern and variation of C∶N∶P ratios in China’ s soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98: 139 − 151. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190525