-
植物树干液流是研究森林生态水文过程的一个重要方面,对于掌握植物需耗水规律及评价森林生态系统功能意义重大。长期以来,人们定量研究植物液流多集中在树木的日变化及季节变化上[1-2],而针对夜间液流的研究相对较少[3-4],几乎所有的植物均存在夜间液流现象[5]。夜间液流不仅可以补充因白天蒸腾造成的水分亏缺[6],有助于夜间的养分运输[7],还能为树木器官夜间呼吸提供氧传递机制[8],同时还对第2天光合作用、蒸腾作用及抗干旱胁迫具有重要的生理意义[9]。以往学者认为树木夜间液流所占比例较小[10-11],因此,在传统生态水文模型中,很多均忽略了夜间液流,甚至假设无夜间液流。随着研究的深入,发现不同树种间的夜间液流差异很大,甚至很多树种夜间液流通量占整日液流通量的比例还较高。陈立欣等[12]对大连4种绿化乔木夜间液流研究中得出:夜间液流总量占观测期液流总量的比例为0.44%~75.96%;赵春彦等[13]对胡杨Populus euphratica各月夜间累计液流量的研究发现:夜间液流占整日累计液流量的比例为26.2%~45.7%。由此可见,多尺度水量平衡估算模型若假设夜间无液流[14],将大大降低对林分耗水量的估算精度,进而影响人们对水资源的管理和决策,因此,对夜间液流进行准确的定量分析对于进一步提高林分耗水估算精确度具有重要意义。桉树Eucalyptus spp.是中国南方的重要战略树种,种植面积已达546.74 万hm2。由于其光合作用强、生长迅速,单位时间单位面积水分利用量高于一般树种,使得桉树的耗水问题一直成为广泛争论和关注的焦点[15-16]。为了更好地理解桉树人工林生态水文过程,需准确定量研究水量平衡中的所有组成部分,而目前对桉树夜间树干耗水特征的研究一直鲜有报道,且对其夜间耗水产生的驱动因素尚不明确。本研究利用精确度高、对植株损伤小、可在树木自然生长状态下对树干液流连续观测的Granier热扩散探针法(TDP)[17]对雷州半岛地区10年生尾叶桉E. urophylla夜间液流进行连续观测,并结合自动气象观测站对环境因子作同步测定,深入探讨尾叶桉树干夜间耗水特征及驱动因素,旨在提高大尺度尾叶桉林分耗水估算精确度,也为正确认识尾叶桉蒸腾及耗水规律提供数据支持。
-
样地设置在广东雷州半岛湛江桉树森林生态系统国家定位观测站内(21°30′N,111°38′E),海拔90 m,地势平坦。属海洋性季风气候,年平均降雨量约1 500.0 mm,多集中在5−10月的雨季,占全年降雨量的77%~85%,年平均气温23.0 ℃,年总辐射量4 240 MJ·m−2·a−1,年平均相平相对湿度80%。研究区土壤类型主要是玄武岩砖红壤,土层厚度2 m以上,0~80 cm土层内平均有机质16.0 g·kg−1以上,pH 4.5~5.3,土壤肥力属中等水平。乔木层主要有尾叶桉;林下植被丰富,主要灌木有野牡丹Melastoma candidum、马樱丹Lantana camara等;主要草本植物有飞扬草Euphorbia hirta、飞机草Eupatorium odoratum、蟛蜞菊Wedelia chinensis以及白花鬼针草Bidens alba等。
观测林地为10年生尾叶桉人工纯林,现存密度1 245株·hm−2,叶面积指数1.37,平均胸径为22.5 cm,平均树高为21.7 m,平均冠幅为3.61 m。在尾叶桉人工林林分调查的基础上,选择具有代表性的样地,样地面积为400 m2。在样地内,选择5株生长良好、无病虫害、树干圆满通直无挤压的标准木作为液流持续观测样树。样树的各项参数详见表1。观测时间2017年6月−2018年5月。
表 1 尾叶桉被测样树基本参数
Table 1. Basic conditions of the sample trees
样树
编号林龄/
a胸径/
cm树高/
m冠幅(东西×
南北)/(m×m)边材面积/
cm21 10 21.7 21.2 2.80×3.45 205.8 2 10 25.5 23.7 3.35×3.33 284.3 3 10 22.2 24.5 4.60×3.20 215.4 4 10 25.1 20.3 3.90×3.65 275.4 5 10 20.8 18.8 3.55×3.90 189.1 -
树干液流测定方法采用Granier热扩散探针法,传感器采用德国Ecomatik公司SF-L4针型热扩散探针(4个探针分别为S0、S1、S2与S3,探针长33 mm),数据采集器采用DL2e数据采集器,采集频率为10 min 1次,与气象监测时间同步。为避免不同高度、不同方位间液流的差异以及太阳辐射的影响,探针均安装在同一高度(1.3 m)的北侧,同时用防辐射铝箔覆盖。液流计算公式:
$$ {V_{\rm{s}}} = 0.714 \times {\left( {{d_{\rm{tmax}}}/{d_{{\rm{t}}{\rm{act}}}} - 1} \right)^{1.231}}\text{;} $$ (1) $$ {d_{\rm{t}}} = {T_1}_{ - 0} - ({T_1}_{ - 2} + {T_1}_{ - 3})/2\text{。} $$ (2) 式(1)和(2)中:Vs为液流速率(cm·min−1);dtmax、dtact均由式(2)计算得到,dtmax一般指夜间空气湿度为100%长达2 d或树干直径停止变化、处于相对稳定状态时算得的dt值;T1−0、T1−2、T1−3为探针S0、S2、S3分别与S1间的温度差(℃)。
-
在尾叶桉人工林试验区附近开阔地带安置有自动气象观测系统,装有Campbell公司CR 3000型数据采集器、HMP 155A空气温湿度传感器、TE 525MM雨量筒及LI 190SB型光合有效辐射传感器,连续观测试验期间的大气温度(T,℃)、空气相对湿度(HR,%)、降雨量(R,mm)及光合有效辐射(PPAR, μmol·s−1·m−2)等气象指标,数据采集时间间隔为10 min,与液流监测时间间隔一致。同时,为考虑大气温度和湿度的协同效应,利用大气温度和相对湿度计算空气饱和水汽压差(DVPD,kPa),公式如下:
$$ {D_{{\rm{VPD}}}} = (1 - {H_{\rm{R}}}) \times 0.610\;8{\rm{exp}}\; \left[{\frac{17.27T}{\left(T + 273.3\right)}}\right] \text{。} $$ (3) 式(3)中:HR为空气相对湿度(%);T为空气温度(℃)。
-
尾叶桉夜间耗水量是指在PPAR为0时由液流速率(取5株样树的平均值)计算而得的液流通量[18-19],夜间耗水贡献率是指桉树夜间液流通量占日总液流通量的比率。其计算公式为:
$$ {Q_{{\text{夜}}}} = \sum\limits_{i = 1}^{n} {v_{{\rm{s}}_{{i}}} \times {A_{\rm{s}}} \times t} \text{;} $$ (4) $$ r = {Q_{{\text{夜}}}}/{Q_{{\text{全天}}}} \times 100\% \text{。} $$ (5) 式(4)和(5)中:Q夜为夜间耗水量(kg);n为夜间的数据采集个数,
$v_{{\rm{s}}_i} $ 为夜间第i个10 min液流速率的平均值(cm·min−1);As为边材面积(cm2);t为监测时间间隔,大小为10 min。Q全天为日总液流通量(kg);r为夜间耗水贡献率(%)。 -
边材面积As是计算耗水量的重要参数,且无法在树木生长的情况下直接测量,只能通过生长锥测定胸径处的边材厚度(尾叶桉边心材颜色区分明显),然后量取胸径和树皮厚度,来计算边材面积。为避免生长锥对样树液流产生影响,在样地外选取30株不同胸径的树木进行测定,建立胸径和边材面积关系方程:As=0.438 2
$D^2_{\rm{BH}} $ −2.701 4DBH+18.489 0,其中DBH为胸径,R2=0.81,拟合效果较好,并以此关系式计算5株样树的边材面积(表1)。 -
采用Excel 2016制表并作图,利用SPSS 19.0统计软件对所有数据进行统计分析。胸径与边材面积关系方程采用曲线估计法;各月日平均液流速率、夜间耗水量及耗水贡献率年内变化采用单因素方差分析及Duncan分析;夜间液流速率、耗水量与主要影响因子的关系分析采用相关分析及回归分析。
-
分别选取旱季(12月)与雨季(7月)典型月份的夜间液流速率进行分析并作图(图1)。由图1可知:无论旱季还是雨季,夜间液流速率均是前半夜液流速率高,变化幅度大,而后半夜较小且相对比较稳定。尾叶桉夜间液流旱季与雨季存在较大差异,由于夏季昼长夜短,而研究区雨季与夏季同期,根据自动气象观测站光合有效辐射数据可以得出:雨季夜间液流启动时间(20:00)要比旱季晚约1.5 h,而结束时间(6:30)要早于旱季1.0 h;夜间平均液流速率雨季(0.005 0 cm·min−1)显著大于旱季(0.004 3 cm·min−1,P<0.05),且前半夜的夜间液流速率雨季(0.007 3 cm·min−1)极显著大于旱季(0.005 4 cm·min−1,P<0.01),后半夜平均液流速率旱雨季间差异不显著(P>0.05)。可见夜间耗水主要发生于前半夜。
-
分别选取雨季典型雨天7月3日(降雨量11.0 mm)、13日(降雨量40.0 mm)、26日(降雨量16.0 mm)、29日(降雨量14.7 mm)和典型晴天7月12、15、16、24日的夜间平均液流速率及旱季典型雨天11月27日(降雨量7.9 mm)、28日(降雨量2.4 mm)、29日(降雨量0.3 mm)、39日(降雨量0.6 mm)和典型晴天11月22、23、24、25日的夜间平均液流速率数据作图(图2)。由图2可知:无论旱季还是雨季,晴天夜间液流变化幅度均显著大于雨天,夜间平均液流速率晴天(雨季0.006 3 cm·min−1、旱季0.004 1 cm·min−1)均极显著大于对应雨天(雨季0.003 8 cm·min−1、旱季0.002 3 cm·min−1)(P<0.01)。这可能是由于晴天白天的蒸腾作用强,引起的树干水分缺失大于雨天,根压较大,为保持体内水分平衡,水分以主动方式吸收进入树干,导致夜间液流速率及液流通量均大于雨天[19]。
-
通过对监测期间的夜间耗水贡献率的统计发现(图3):各月平均夜间耗水贡献率为3.5%~9.5%,总平均夜间贡献率为6.62%,其中旱季(11−4月)的夜间耗水贡献率为7.32%,是雨季月份(5.41%)的1.4倍。监测期间夜间耗水贡献率最大值出现在12月(46.2%),最小值出现在8月(0.61%)。由此可见,尾叶桉夜间也存在可观的耗水量,因此,对于大尺度尾叶桉人工林生态系统耗水量的估算,要充分考虑夜间的耗水。这将对于提高桉树林分耗水量估算模型的精确度意义重大。
-
气象因子一直是影响树木冠层蒸腾耗水的主要影响因子。那么夜间在没有光照等条件下,树木的耗水速率是否受气象因子的影响?通过Person相关分析可以看出(表2):雨季尾叶桉夜间液流速率与夜间气温和夜间饱和水汽压差均呈极显著正相关(P<0.01),相关系数分别为0.26和0.59,而与夜间空气相对湿度呈极显著负相关(P<0.01),相关系数为−0.54;旱季夜间液流速率与夜间饱和水汽压差和夜间风速呈极显著正相关(P<0.01),相关系数分别为0.61和0.17,而与夜间空气相对湿度呈极显著负相关(P<0.01),与夜间温度呈显著负相关(P<0.05),相关系数分别为0.60和0.06。可见尾叶桉夜间液流速率受夜间气象因子的影响。
表 2 夜间液流速率与夜间主要气象因子间Person相关分析
Table 2. Person correlation analysis of nighttime flow rate and nighttime meteorological factor
季节 夜间气温 夜间空气相对湿度 夜间风速 夜间饱和水汽压差 相关系数 P 相关系数 P 相关系数 P 相关系数 P 雨季 0.26** 0.000 −0.54** 0.000 −0.02 0.090 0.59** 0.000 旱季 −0.06* 0.017 −0.60** 0.000 0.17** 0.000 0.61** 0.000 说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关 把尾叶桉夜间液流速率与气象因子通过逐步法进行回归分析,以5%和10%的可靠性作为因变量入选和剔除临界值,最终得出回归方程:V雨=7.82×10−4+2.135×10−2VVPD,决定系数R2为0.346,t检验结果为极显著相关;V旱=1.22×10−3+2.571×10−2 VVPD,决定系数R2为0.370;t检验结果为极显著相关。其中:V雨和V旱分别为雨季夜间液流速率和旱季夜间液流速率(cm·min−1);DVPD为夜间饱和水汽压差(kPa)。通过t检验,可以看出无论是旱季还是雨季,夜间液流速率与饱和水汽压差间的拟合方程均具有高度统计学意义。旱季和雨季的决定系数R2分别为0.37和0.35,说明饱和水汽压差等气象因子可以解释37%(旱季)和35%(雨季)的夜间液流速率的变化。
-
较大的日间蒸腾量往往会导致树干水分的缺失,夜间耗水是否与树干补水作用相关,一定程度上可以通过分析夜间耗水量与日间蒸腾量是否存在相关关系来确定。本研究通过Pearson相关分析发现:夜间耗水量与日间蒸腾量存在极显著的正相关关系,相关系数为0.497。同时通过曲线参数估计法,描述夜间耗水量与日间蒸腾量间的回归关系,调用曲线参数估计法(curve estimation)模块,生成11种模型(线性模型、对数曲线模型、指数曲线模型及幂函数曲线模型等),筛选解析量决定系数R2最高的模型回归。最终结果如图4所示。分析发现:夜间耗水量与日间蒸腾量间的幂函数关系拟合最好,关系方程为:y=0.184 2x0.607 4,决定系数R2为0.330 1,经t检验,达到极显著水平。
Characteristics and driving factors of nocturnal water consumption of Eucalyptus urophylla plantations in Leizhou Peninsula
-
摘要:
目的 研究尾叶桉Eucalyptus urophylla夜间耗水特征及其驱动因素,为提高大尺度尾叶桉林分耗水估算精度提供数据支持。 方法 应用Granier热扩散探针技术(TDP),以雷州半岛常见尾叶桉为研究对象,对其夜间液流持续观测,并同步测定大气温度、湿度、降雨量及光合有效辐射等主要环境因子。 结果 观测期间尾叶桉平均夜间耗水贡献率为6.62%,前半夜耗水量显著大于后半夜(P<0.05);夜间液流速率雨季显著大于旱季(P<0.05),晴天平均夜间液流速率极显著(P<0.01)大于雨天;旱季夜间耗水贡献率是雨季的1.4倍。旱、雨季夜间液流速率与夜间饱和水汽压差等气象要素呈极显著正相关(P<0.01),且拟合方程具有高度统计学意义,但决定系数旱雨季分别仅为0.37和0.35;同时夜间耗水量与当天白天蒸腾量也呈极显著正相关(P<0.01),并存在幂函数关系,决定系数为0.33。 结论 尾叶桉夜间耗水贡献率虽较小,但如不考虑夜间液流,根据日间液流通过尺度扩展推算的尾叶桉人工林生态系统年蒸腾量可能偏低;夜间蒸腾和树干补水共同驱动尾叶桉的夜间耗水。图4表2参27 Abstract:Objective This research aims to explore the water consumption characteristics of Eucalyptus urophylla at night and its driving factors, and provide data support for improving the estimation accuracy of water consumption in large scale eucalyptus forests. Method Using thermal dissipation probe(TDP) technique, E. urophylla, a common eucalyptus from Leizhou Peninsula, was chosen as the research object to continuously observe its nocturnal sap flow and simultaneously measure the main environmental factors such as atmospheric temperature, humidity, rainfall and photosynthetically active radiation. The characteristics and the driving mechanism of sap flow at night were discussed in depth. Result The results indicated that the average water consumption contribution rate of E. urophylla at night during the observation period was 6.62%, and the first half of the night consumed significantly more water than the second half (P<0.05). The nocturnal flow rate was significantly higher in the rainy season than in the dry season (P<0.05). The average nocturnal flow rate was extremely significantly higher on sunny days than on rainy days (P<0.01). The nocturnal water consumption contribution rate in the dry season is 1.4 times that in the rainy season. Nocturnal flow rate was significantly and positively correlated with vapor pressure deficit(P<0.01)during the dry and rainy seasons, and the fitting equation was of high statistical significant. However, the coefficient of determination was only 0.37 and 0.35 for the dry season and the rainy season, respectively. Meanwhile, there was an extremely significant positive correlation between the nocturnal water consumption and the daytime transpiration (P<0.01), and there was a power function relationship with a determination coefficient of 0.33. Conclusion Nocturnal water consumption accounts for a small proportion of the total transpiration volume. However, if nocturnal sap flow is fully ignored, total water consumption of the E. urophylla plantation ecosystem based only on the daytime sap flow can be underestimated. Nocturnal transpiration and trunk hydration together drive the E. urophylla’s nocturnal water consumption. [Ch, 4 fig. 2 tab. 27 ref.] -
表 1 尾叶桉被测样树基本参数
Table 1. Basic conditions of the sample trees
样树
编号林龄/
a胸径/
cm树高/
m冠幅(东西×
南北)/(m×m)边材面积/
cm21 10 21.7 21.2 2.80×3.45 205.8 2 10 25.5 23.7 3.35×3.33 284.3 3 10 22.2 24.5 4.60×3.20 215.4 4 10 25.1 20.3 3.90×3.65 275.4 5 10 20.8 18.8 3.55×3.90 189.1 表 2 夜间液流速率与夜间主要气象因子间Person相关分析
Table 2. Person correlation analysis of nighttime flow rate and nighttime meteorological factor
季节 夜间气温 夜间空气相对湿度 夜间风速 夜间饱和水汽压差 相关系数 P 相关系数 P 相关系数 P 相关系数 P 雨季 0.26** 0.000 −0.54** 0.000 −0.02 0.090 0.59** 0.000 旱季 −0.06* 0.017 −0.60** 0.000 0.17** 0.000 0.61** 0.000 说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关 -
[1] 王志超, 竹万宽, 杜阿朋. 尾巨桉旱雨两季树干液流特征分析[J]. 浙江农林大学学报, 2017, 34(2): 319 − 325. WANG Zhichao, ZHU Wankuan, DU Apeng. Variation in stem sap flow of Eucalyptus urophylla × E. grandis during and dry seasons [J]. J Zhejiang A&F Univ, 2017, 34(2): 319 − 325. [2] 王小菲, 孙永玉, 李昆, 等. 干热河谷大叶相思树干液流季节动态及其与气象因子的关系[J]. 林业科学研究, 2013, 26(2): 145 − 150. WANG Xiaofei, SUN Yongyu, LI Kun, et al. Stem sap flow characteristics of Acacia auriculaeformis in dry-hot valley and their relations to meteorological factors [J]. For Res, 2013, 26(2): 145 − 150. [3] 刘崴, 魏天兴, 朱清科. 半干旱黄土丘陵区河北杨和油松生长季树干液流特征[J]. 浙江农林大学学报, 2018, 35(6): 1045 − 1053. LIU Wei, WEI Tianxing, ZHU Qingke. Growing season sap flow of Populus hopeiensis and Pinus tabulaeformis in the semi-arid Loess Plateau, China [J]. J Zhejiang A&F Univ, 2018, 35(6): 1045 − 1053. [4] 张婕, 蔡永茂, 陈立欣, 等. 北京山区元宝枫夜间液流活动特征及影响因素[J]. 生态学报, 2019, 39(9): 3210 − 3223. ZHANG Jie, CAI Yongmao, CHEN Lixin, et al. Influencing factors and characteristics of nighttime sap flow of Acer truncatum in Beijing mountainous area [J]. Acta Ecol Sin, 2019, 39(9): 3210 − 3223. [5] PHILLIPS N G,RYAN M G,BOND B J. Reliance on stored water increases with tree size in three species in the Pacific Northwest [J]. Tree Physiol, 2003, 23(4): 237 − 245. [6] 王华, 赵平, 蔡锡安, 等. 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J]. 植物生态学报, 2007, 31(5): 777 − 786. WANG Hua, ZHAO Ping, CAI Xi’an, et al. Partitioning of night sap flow of acacia mangium and its implication for estimating whole tree transpiration [J]. J Plant Ecol, 2007, 31(5): 777 − 786. [7] MCDONALD E P, ERICKSON J E, KRUGER E L. Research note: can decreased transpiration limit plant nitrogen acquisition in elevated CO2? [J]. Funct Plant Biol, 2002, 29(9): 1115 − 1120. [8] 方伟伟, 吕楠, 傅伯杰. 植物夜间液流的发生、生理意义及影响因素研究进展[J]. 生态学报, 2018, 38(21): 4 − 12. FANG Weiwei, LÜ Nan, FU Bojie. Research advances in nighttime sap flow density, its physiological implications, and influencing factors in plants [J]. Acta Ecol Sin, 2018, 38(21): 4 − 12. [9] DALEY M J, PHILLIPS N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest [J]. Tree Physiol, 2006, 26(4): 411 − 419. [10] FISHER J B, BALDOCCHI D D, MISSON L, et al. What the towers don’t see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California [J]. Tree Physiol, 2007, 27(4): 597 − 610. [11] 池波, 蔡体久, 满秀玲, 等. 大兴安岭北部兴安落叶松树干液流规律及影响因子分析[J]. 北京林业大学学报, 2013, 35(4): 21 − 26. CHI Bo, CAI Tijiu, MAN Xiuling, et al. Effects of influencing factors on stem sap flow in Larix gmelinii in northern Da Hinggan Mountains, northeastern China [J]. J Beijing For Univ, 2013, 35(4): 21 − 26. [12] 陈立欣, 张志强, 李湛东, 等. 大连4种城市绿化乔木树种夜间液流活动特征[J]. 植物生态学报, 2010, 34(5): 535 − 546. CHEN Lixin, ZHANG Zhiqiang, LI Zhandong, et al. Nocturnal sap flow of four urban greening tree species in Dalian, Liaoning Province, China [J]. Chin J Plant Ecol, 2010, 34(5): 535 − 546. [13] 赵春彦, 司建华, 冯起, 等. 胡杨夜间液流通量及其影响因子研究[J]. 干旱区研究, 2015, 32(6): 1173 − 1180. ZHAO Chunyan, SI Jianhua, FENG Qi, et al. Nighttime sap flux of Populus euphratica and the environment factors influecing it [J]. Arid Zone Res, 2015, 32(6): 1173 − 1180. [14] de DIOS V R, DIAZ-SIERRA R, GOULDEN M L. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus [J]. New Phytol, 2013, 200(3): 743 − 752. [15] 刘国粹, 杜阿朋, 赵知渊, 等. 雷州半岛尾叶桉人工林蒸腾耗水特征[J]. 华中农业大学学报, 2015, 34(6): 27 − 32. LIU Guocui, DU Apeng, ZHAO Zhiyuan, et al. Transpiration and water consumption of Eucalyptus urophlla plantations on the Leizhou Peninsula [J]. J Huazhong Agric Univ, 2015, 34(6): 27 − 32. [16] 时忠杰, 徐大平, 张宁南, 等. 桉树人工林水文影响研究进展[J]. 林业科学, 2009, 45(11): 135 − 40. SHI Zhongjie, XU Daping, ZHANG Ningnan, et al. Progress in researches on hydrological effects of Eucalyptus plantation [J]. Sci Silv Sin, 2009, 45(11): 135 − 40. [17] GRANIER A. Evaluation of transpiration in a douglas-fir stand by means of sap flow measurements [J]. Tree Physiol, 1987, 3(4): 309 − 320. [18] 周翠鸣, 赵平, 倪广艳, 等. 广州地区荷木夜间树干液流补水的影响因子及其对蒸腾的贡献[J]. 应用生态学报, 2012, 23(7): 1751 − 1757. ZHOU Cuiming, ZHAO Ping, NI Guangyan, et al. Water recharge through nighttime stem sap flow of Schima superba in Guangzhou region of Guangdong Province, South China: affecting factors and contribution to transpiration [J]. Chin J Appl Ecol, 2012, 23(7): 1751 − 1757. [19] 王华, 赵平, 王权, 等. 马占相思夜间树干液流特征和水分补充现象的分析[J]. 生态学杂志, 2007, 26(4): 476 − 482. WANG Hua, ZHAO Ping, WANG Quan, et al. Characteristics of nighttime sap flow and water recharge in Acacia mangium trunk [J]. Chin J Ecol, 2007, 26(4): 476 − 482. [20] 王艳兵, 德永军, 熊伟, 等. 华北落叶松夜间树干液流特征及生长季补水格局[J]. 生态学报, 2013, 33(5): 1375 − 1385. WANG Yanbing, DE Yongjun, XIONG Wei, et al. The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation [J]. Acta Ecol Sin, 2013, 33(5): 1375 − 1385. [21] 魏潇, 常学向, 杨淇越, 等. 祁连山青海云杉(Picea crassifolia)夜间树干液流特征及影响因素[J]. 冰川冻土, 2015, 37(1): 87 − 94. WEI Xiao, CHANG Xuexiang, YANG Qiyue, et al. Characteristics of nocturnal sap flow of Picea crassifolia in the Qilian Mountains and its influence factors [J]. J Glaciol Geocryol, 2015, 37(1): 87 − 94. [22] 尹立河, 黄金廷, 王晓勇, 等. 陕西榆林地区旱柳和小叶杨夜间树干液流变化特征分析[J]. 西北农林科技大学学报(自然科学版), 2013, 41(8): 85 − 90. YIN Lihe, HUANG Jinting, WANG Xiaoyong, et al. Characteristics of night time sap flow of Salix matsudana and Populus simonii in Yulin, Shaanxi [J]. J Northwest A&F Univ Nat Sci Ed, 2013, 41(8): 85 − 90. [23] 王华田, 马履一, 孙鹏森. 油松、侧柏深秋边材木质部液流变化规律的研究[J]. 林业科学, 2002, 38(5): 31 − 37. WANG Huatian, MA Lüyi, SUN Pengsen. Sap flow fluctuations of Pinus tabulaeformis and Platycladus orientalis in late autumn [J]. Sci Silv Sin, 2002, 38(5): 31 − 37. [24] 鱼腾飞, 冯起, 司建华, 等. 胡杨的夜间蒸腾: 来自树干液流、叶片气体交换及显微结构的证据[J]. 北京林业大学学报, 2017, 39(9): 8 − 16. YU Tengfei, FENG Qi, SI Jianhua, et al. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture [J]. J Beijing For Univ, 2017, 39(9): 8 − 16. [25] BENYON R G. Nighttime water use in an irrigated Eucalyptus grandis plantation [J]. Tree Physiol, 1999, 19(13): 853 − 859. [26] BURGESS S S O, DAWSON T E. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration [J]. Plant Cell Environ, 2004, 27(8): 1023 − 1034. [27] 胡兴波, 韩磊, 张东, 等. 黄土半干旱区白榆和侧柏夜间液流动态分析[J]. 中国水土保持科学, 2010, 8(4): 51 − 56. HU Xingbo, HAN Lei, ZHANG Dong, et al. Analysis on the dynamics of nighttime sap flow of Ulmus pumila and Platycladus orientalis in semi-arid area of Loess Plateau [J]. Sci Soil Water Conserv, 2010, 8(4): 51 − 56. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190531