留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同官能团多壁碳纳米管对镉的吸附及细菌毒性

李思艳 刘俊蕃 李梅

李思艳, 刘俊蕃, 李梅. 不同官能团多壁碳纳米管对镉的吸附及细菌毒性[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200297
引用本文: 李思艳, 刘俊蕃, 李梅. 不同官能团多壁碳纳米管对镉的吸附及细菌毒性[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200297
LI Siyan, LIU Junfan, LI Mei. Adsorption of cadmium on multi-walled carbon nanotubes with different functional groups and their bacterial toxicity[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200297
Citation: LI Siyan, LIU Junfan, LI Mei. Adsorption of cadmium on multi-walled carbon nanotubes with different functional groups and their bacterial toxicity[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200297

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

不同官能团多壁碳纳米管对镉的吸附及细菌毒性

doi: 10.11833/j.issn.2095-0756.20200297
基金项目: 浙江农林大学大学生科研训练项目(KX20180093);国家自然科学基金资助项目(21607132,42076038)
详细信息
    作者简介: 李思艳,从事碳纳米管与重金属相互作用研究。E-mail: 1203921869@qq.com
    通信作者: 李梅,讲师,从事水污染控制和纳米材料环境风险评估研究。E-mail: limei@zafu.edu.cn
  • 中图分类号: S682.2

Adsorption of cadmium on multi-walled carbon nanotubes with different functional groups and their bacterial toxicity

  • 摘要:   目的  探讨不同官能团多壁碳纳米管对镉离子(Cd2+)的吸附作用,揭示多壁碳纳米管影响镉细菌毒性的机制。  方法  通过批量吸附平衡实验研究不同官能团(羟基化、羧基化、氨基化、未经修饰)多壁碳纳米管(MWCNTs)对Cd2+的吸附性能,通过细菌毒性实验评估不同官能团多壁碳纳米管和Cd2+对大肠埃希菌Escherichia coli的毒性效应。  结果  4种多壁碳纳米管对Cd2+的吸附能力从大到小依次为羧基化多壁碳纳米管、羟基化多壁碳纳米管、多壁碳纳米管、氨基化多壁碳纳米管,吸附性能与碳纳米管含氧量相关。多壁碳纳米管- Cd2+复合物细菌毒性低于游离Cd2+,随纳米管质量浓度增加(0~200 mg·L−1),羧基化多壁碳纳米管-Cd2+复合物作用下细菌存活率从67%提高到81%。  结论  不同官能团多壁碳纳米管对Cd2+的吸附量与碳纳米管含氧量呈正相关;多壁碳纳米管-Cd2+复合物细菌毒性低于游离Cd2+,认为多壁碳纳米管可降低游离Cd2+的细菌毒性。图4表2参26
  • 图  1  不同官能团多壁碳纳米管对Cd2+的吸附等温线

    Figure  1  Adsorption isotherm of Cd2+ on MWCNTs with different functional groups

    图  2  Cd2+的细菌毒性

    Figure  2  Bacterial toxicity of Cd2+

    图  3  不同官能团多壁碳纳米管的细菌毒性

    Figure  3  Bacterial toxicity of MWCNTs with different functional groups

    图  4  不同官能团多壁碳纳米管对Cd2+细菌毒性的影响

    Figure  4  Effect of MWCNTs with different functional groups on toxicity of Cd2+ to E. coli

    表  1  不同官能团多壁碳纳米管的测定参数

    Table  1.   Determination parameters of MWCNTs with different functional groups

    zeta电位/mV含氧量/%电导率/(μS·cm−1)pH
    多壁碳纳米管    −9.14 5.654 0.87 6.57
    羟基化多壁碳纳米管−7.196.6291.796.10
    羧基化多壁碳纳米管−12.7611.2862.985.88
    氨基化多壁碳纳米管−8.984.5811.137.23
    下载: 导出CSV

    表  2  不同碳纳米管对Cd的吸附等温线方程拟合参数

    Table  2.   Regression parameters of adsorption isotherms of cadmium onto different MWCNTs

    样品Langmuir方程Freundlich方程
    方程式qm/(mg·g-1)Kl/(L·mg-1)R2方程式nKfR2
    多壁碳纳米管   q=1.002c/(1+0.238c)4.2120.2380.896q=0.976c0.4672.1080.9760.954
    羟基化多壁碳纳米管q=2.346c/(1+0.273c)8.5930.2730.954q=2.131c0.4732.1132.1310.994
    羧基化多壁碳纳米管q=7.442c/(1+0.451c)16.4860.4510.989q=5.103c0.4832.0715.1030.950
    氨基化多壁碳纳米管q=0.386c/(1+0.066c)5.8820.0660.796q=0.564c0.6071.6470.5640.852
    下载: 导出CSV
  • [1] IHSANULLAH, ABBAS A, AL-AMER A M, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications [J]. Sep Purif Technol, 2016, 157(5): 141 − 161.
    [2] FIYADH S S, ALSAADI M A, JAAFAR W Z, et al. Review on heavy metal adsorption processes by carbon nanotubes [J]. J Clean Prod, 2019, 230(7): 783 − 793.
    [3] 常兰, 秦伟超. 碳纳米管表面改性及其吸附水中污染物的研究进展[J]. 化工技术与开发, 2014, 43(3): 43 − 46. doi:  10.3969/j.issn.1671-9905.2014.03.014

    CHANG Lan, QIN Weichao. Research progress in surface modification of carbon nanotubes and adsorption of pollutants in wastewater [J]. Technol Dev Chem Ind, 2014, 43(3): 43 − 46. doi:  10.3969/j.issn.1671-9905.2014.03.014
    [4] ANSARI A, MEHRABIAN M A, HASHEMIPOUR H. Zinc ion adsorption on carbon nanotubes in an aqueous solution [J]. Pol J Chem Technol, 2014, 13(1): 29 − 37.
    [5] 聂海瑜, 沈甘霓, 杜凤沛, 等. 碳纳米管对水体污染物吸附的研究进展[J]. 西南民族大学学报(自然科学版), 2015, 41(3): 326 − 330.

    NIE Haiyu, SHEN Ganni, DU Fengpei, et al. Research progress in adsorption of contaminates from water by carbon nanotubes [J]. J Southwest Univ Natl Nat Sci Ed, 2015, 41(3): 326 − 330.
    [6] YANG Xiaodong, WAN Yongshan, ZHENG Yulin, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metal from aqueous solutions: a critical review [J]. Chem Eng J, 2019, 366: 608 − 621. doi:  10.1016/j.cej.2019.02.119
    [7] 杨孝智, 高静, 贺婷婷, 等. 碳纳米管对水体重金属污染物的吸附/解吸性能研究进展[J]. 应用化工, 2011, 40(4): 692 − 695. doi:  10.3969/j.issn.1671-3206.2011.04.038

    YANG Xiaozhi, GAO Jing, HE Tingting, et al. Research progress on the adsorption/desorption of heavy metal pollutants on carbon nanotubes in water [J]. Appl Chem Ind, 2011, 40(4): 692 − 695. doi:  10.3969/j.issn.1671-3206.2011.04.038
    [8] LIU Shaobin, NG A K, XU Rong, et al. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy [J]. Nanoscale, 2010, 2(12): 2744 − 2750. doi:  10.1039/c0nr00441c
    [9] LIU Shaobin, WEI Li, HAO Lin, et al. Sharper and faster 'nano darts' kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube [J]. ACS Nano, 2009, 3(12): 3891 − 3902. doi:  10.1021/nn901252r
    [10] MARTINEZ D S T, ALVES O L, BARBIERI E. Carbon nanotubes enhanced the lead toxicity on the freshwater fish [J]. J Phys, 2013, 429: 012043. doi:  10.1088/1742-6596/429/1/012043.
    [11] YU Zhiguo, WANG Wenxiong. Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna [J]. Water Res, 2013, 47(12): 4179 − 4187. doi:  10.1016/j.watres.2013.01.059
    [12] WANG Fei, YAO Jun, LIU Haijun, et al. Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment [J]. J Hazard Mater, 2015, 292(9): 137 − 145.
    [13] 付勇, 裴建川, 李梅, 等. 多壁碳纳米管和重金属镉的细菌毒性及影响机制[J]. 浙江农林大学学报, 2020, 37(2): 319 − 324. doi:  10.11833/j.issn.2095-0756.2020.02.017

    FU Yong, PEI Jianchuan, LI Mei, et al. Effects and mechanism of multi-walled carbon nanotubes on the bacterial toxicity of cadmium [J]. J Zhejiang A&F Univ, 2020, 37(2): 319 − 324. doi:  10.11833/j.issn.2095-0756.2020.02.017
    [14] 李梅, 裴建川, 付勇, 等. 表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响[J]. 环境化学, 2018, 37(12): 2730 − 2739. doi:  10.7524/j.issn.0254-6108.2018050902

    LI Mei, PEI Jianchuan, FU Yong, et al. Effect of surfactants on the combined toxicity of TiO2 nanoparticles and zinc ions [J]. Environ Chem, 2018, 37(12): 2730 − 2739. doi:  10.7524/j.issn.0254-6108.2018050902
    [15] BASSYOUNI M, MANSI A E, ELGABRY A, et al. Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNT’s potential and current challenges [J]. Appl Phys A Mater Sci Proc, 2020, 126(1): 38. doi:  10.1007/s00339-019-3211-7.
    [16] XU Jiang, CAO Zhen, ZHANG Yilin, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism [J]. Chemosphere, 2018, 195(10): 351 − 364.
    [17] LI Jiaxing, CHEN Shuyu, SHENG Guodong, et al. Effect of surfactants on Pb(Ⅱ) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes [J]. Chem Eng J, 2011, 166(2): 551 − 558. doi:  10.1016/j.cej.2010.11.018
    [18] PEREIRA R F P, VALENTE A J M, BURROWS H D. The interaction of long chains odium carboxylates and sodium dodecylsulfate with lead(Ⅱ) ions in aqueous solutions [J]. J Colloid Interface Sci, 2014, 414(1): 66 − 72.
    [19] TOFIGHY M A, MOHAMMADI T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets [J]. J Hazard Mater, 2011, 185(1): 140 − 147. doi:  10.1016/j.jhazmat.2010.09.008
    [20] XU Yijun, ARRIGO R, LIU Xi, et al. Characterization and use of functionalized carbon nanotubes for the adsoption of heavy metal anions [J]. New carbon Mater, 2011, 26(1): 57 − 62. doi:  10.1016/S1872-5805(11)60066-8
    [21] 谭凌艳, 杨柳燕, 缪爱军. 人工纳米颗粒对重金属在水生生物中的富集与毒性研究进展[J]. 南京大学学报(自然科学), 2016, 52(4): 582 − 589.

    TAN Lingyan, YANG Liuyan, MIAO Aijun. Engineered nanoparticle effects on heavy metal bioaccumulation and toxicity in aquatic ecosystem [J]. J Nanjing Univ Nat Sci, 2016, 52(4): 582 − 589.
    [22] BENNETT S W, ADELEYE A, JI Zhaoxia, et al. Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes [J]. Water Res, 2013, 47(12): 4074 − 4085. doi:  10.1016/j.watres.2012.12.039
    [23] 李梅. 水环境中ZnO纳米颗粒对大肠杆菌的毒性及影响因素[D]. 杭州: 浙江大学, 2012.

    LI Mei. The Toxicity and Impact Factors of ZnO Nanoparticles to Escherichia coli in Aquatic Environment[D]. Hangzhou: Zhejiang University, 2012.
    [24] CORTES P, DENG Shuguang, SMITH G B. The toxic effects of single wall carbon nanotubes on E. coli and a spore-forming Bacillus species [J]. Nanosci Nanotechnol Lett, 2014, 6(1): 26 − 30. doi:  10.1166/nnl.2014.1719
    [25] HANDY R D, OWEN R, VALSAMI-JONES E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs [J]. Ecotoxicology, 2008, 17(5): 315 − 325. doi:  10.1007/s10646-008-0206-0
    [26] QU Yuanyuan, WANG Jingwei, ZHOU Hao, et al. Concentration-dependent effects of carbon nanotubes on growth and biphenyl degradation of Dyella ginsengisoli LA-4 [J]. Environ Sci Pollut Res, 2016, 23(3): 2864 − 2872. doi:  10.1007/s11356-015-5532-1
  • [1] 戴志楠, 温尔刚, 陈翰博, 杨兴, 陈俊辉, 郭佳, 王海龙.  施用原始及铁改性生物质炭对土壤吸附As(Ⅴ)的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200392
    [2] 谢德志, 魏子璐, 朱峻熠, 杜莹, 金水虎, 岳春雷.  水禾对镉胁迫的生理响应 . 浙江农林大学学报, 2020, 37(4): 683-692. doi: 10.11833/j.issn.2095-0756.20190407
    [3] 胡蝶, 李文奇, 张利萍, 关莹, 高慧.  废报纸生物质炭的制备及对铜离子的吸附性能 . 浙江农林大学学报, 2020, 37(2): 325-334. doi: 10.11833/j.issn.2095-0756.2020.02.018
    [4] 汪敦飞, 朱胜男, 肖清铁, 郑新宇, 林瑞余.  基于响应面法的耐镉假单胞菌TCd-1培养条件优化 . 浙江农林大学学报, 2020, 37(5): 914-921. doi: 10.11833/j.issn.2095-0756.20190587
    [5] 付勇, 裴建川, 李梅, 王鹏程, 王洁洁.  多壁碳纳米管和重金属镉的细菌毒性及影响机制 . 浙江农林大学学报, 2020, 37(2): 319-324. doi: 10.11833/j.issn.2095-0756.2020.02.017
    [6] 朱光耀, 何丽芝, 秦鹏, 杨兴, 陆扣萍, 刘兴元, 王海龙.  施用猪炭对土壤吸附Pb2+的影响 . 浙江农林大学学报, 2019, 36(3): 573-580. doi: 10.11833/j.issn.2095-0756.2019.03.019
    [7] 肖继波, 黄志达, 陈玉莹, 瞿倩, 褚淑祎.  高效除磷型底泥陶粒的制备及性能分析 . 浙江农林大学学报, 2019, 36(2): 415-421. doi: 10.11833/j.issn.2095-0756.2019.02.024
    [8] 王徵, 朱斐.  黑腹果蝇吞噬细胞对金黄葡萄球菌与大肠埃希菌的不同吞噬作用 . 浙江农林大学学报, 2017, 34(3): 381-388. doi: 10.11833/j.issn.2095-0756.2017.03.001
    [9] 赵婷, 韩小娇, 刘明英, 乔桂荣, 蒋晶, 姜彦成, 卓仁英.  东南景天耐镉相关基因SaFer的克隆与功能初步分析 . 浙江农林大学学报, 2015, 32(1): 25-32. doi: 10.11833/j.issn.2095-0756.2015.01.004
    [10] 沈泉, 沈颖, 徐秋芳, 王炀波.  外源竹炭对土壤硝酸根离子的吸附效应 . 浙江农林大学学报, 2014, 31(4): 541-546. doi: 10.11833/j.issn.2095-0756.2014.04.008
    [11] 沈振明, 夏俊, 戴勇, 沈秋兰, 李永春, 徐秋芳.  阴离子淀粉对土壤养分离子的吸附作用 . 浙江农林大学学报, 2014, 31(3): 366-372. doi: 10.11833/j.issn.2095-0756.2014.03.006
    [12] 吴光前, 孙新元, 张齐生.  活性炭表面氧化改性技术及其对吸附性能的影响 . 浙江农林大学学报, 2011, 28(6): 955-961. doi: 10.11833/j.issn.2095-0756.2011.06.020
    [13] 张文标, 李文珠, 金首文, 陈斌, 任红星, 孙进.  竹炭负载壳聚糖对 Zn2+吸附动力学及其机制分析 . 浙江农林大学学报, 2010, 27(5): 641-645. doi: 10.11833/j.issn.2095-0756.2010.05.001
    [14] 窦春英, 徐温新, 叶正钱, 张圆圆, 姚芳, 吕家珑.  6种典型农田土壤的锌吸附-解吸特性 . 浙江农林大学学报, 2010, 27(1): 8-14. doi: 10.11833/j.issn.2095-0756.2010.01.002
    [15] 张圆圆, 窦春英, 姚芳, 叶正钱.  氮素营养对重金属超积累植物东南景天吸收积累锌和镉的影响 . 浙江农林大学学报, 2010, 27(6): 831-838. doi: 10.11833/j.issn.2095-0756.2010.06.005
    [16] 赵志新, 乔瑞芳, 季孔庶.  镉胁迫对不同家系杂交鹅掌楸生长及抗性的影响 . 浙江农林大学学报, 2009, 26(5): 667-673.
    [17] 徐爱春, 陈益泰, 陈庆红, 王树凤.  镉胁迫下旱柳无性系耐镉性变异及生理变化 . 浙江农林大学学报, 2009, 26(5): 674-681.
    [18] 鲍滨福, 王品维, 张齐生, 沈哲红, 马建义.  竹醋液与农药助剂对表面张力的联合效应 . 浙江农林大学学报, 2008, 25(5): 569-572.
    [19] 周兵, 安传福, 董云发, 强胜.  用大孔吸附树脂分离链格孢菌毒素 . 浙江农林大学学报, 2007, 24(2): 198-202.
    [20] 聂发辉, 吴彩斌, 吴双桃.  商陆对镉的富集特征 . 浙江农林大学学报, 2006, 23(4): 400-405.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200297

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/1

计量
  • 文章访问数:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 修回日期:  2020-12-01
  • 网络出版日期:  2020-12-28

不同官能团多壁碳纳米管对镉的吸附及细菌毒性

doi: 10.11833/j.issn.2095-0756.20200297
    基金项目:  浙江农林大学大学生科研训练项目(KX20180093);国家自然科学基金资助项目(21607132,42076038)
    作者简介:

    李思艳,从事碳纳米管与重金属相互作用研究。E-mail: 1203921869@qq.com

    通信作者: 李梅,讲师,从事水污染控制和纳米材料环境风险评估研究。E-mail: limei@zafu.edu.cn
  • 中图分类号: S682.2

摘要:   目的  探讨不同官能团多壁碳纳米管对镉离子(Cd2+)的吸附作用,揭示多壁碳纳米管影响镉细菌毒性的机制。  方法  通过批量吸附平衡实验研究不同官能团(羟基化、羧基化、氨基化、未经修饰)多壁碳纳米管(MWCNTs)对Cd2+的吸附性能,通过细菌毒性实验评估不同官能团多壁碳纳米管和Cd2+对大肠埃希菌Escherichia coli的毒性效应。  结果  4种多壁碳纳米管对Cd2+的吸附能力从大到小依次为羧基化多壁碳纳米管、羟基化多壁碳纳米管、多壁碳纳米管、氨基化多壁碳纳米管,吸附性能与碳纳米管含氧量相关。多壁碳纳米管- Cd2+复合物细菌毒性低于游离Cd2+,随纳米管质量浓度增加(0~200 mg·L−1),羧基化多壁碳纳米管-Cd2+复合物作用下细菌存活率从67%提高到81%。  结论  不同官能团多壁碳纳米管对Cd2+的吸附量与碳纳米管含氧量呈正相关;多壁碳纳米管-Cd2+复合物细菌毒性低于游离Cd2+,认为多壁碳纳米管可降低游离Cd2+的细菌毒性。图4表2参26

English Abstract

李思艳, 刘俊蕃, 李梅. 不同官能团多壁碳纳米管对镉的吸附及细菌毒性[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200297
引用本文: 李思艳, 刘俊蕃, 李梅. 不同官能团多壁碳纳米管对镉的吸附及细菌毒性[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200297
LI Siyan, LIU Junfan, LI Mei. Adsorption of cadmium on multi-walled carbon nanotubes with different functional groups and their bacterial toxicity[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200297
Citation: LI Siyan, LIU Junfan, LI Mei. Adsorption of cadmium on multi-walled carbon nanotubes with different functional groups and their bacterial toxicity[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200297

返回顶部

目录

    /

    返回文章
    返回