留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同官能团多壁碳纳米管对镉的吸附及细菌毒性

李思艳 刘俊蕃 李梅

农正国, 熊忠平, 徐正会, 等. 新疆天山中-西段不同垂直带蚂蚁物种多样性[J]. 浙江农林大学学报, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
引用本文: 李思艳, 刘俊蕃, 李梅. 不同官能团多壁碳纳米管对镉的吸附及细菌毒性[J]. 浙江农林大学学报, 2021, 38(2): 355-361. DOI: 10.11833/j.issn.2095-0756.20200297
NONG Zhengguo, XIONG Zhongping, XU Zhenghui, et al. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
Citation: LI Siyan, LIU Junfan, LI Mei. Adsorption of cadmium on multi-walled carbon nanotubes with different functional groups and their bacterial toxicity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 355-361. DOI: 10.11833/j.issn.2095-0756.20200297

不同官能团多壁碳纳米管对镉的吸附及细菌毒性

DOI: 10.11833/j.issn.2095-0756.20200297
基金项目: 浙江农林大学大学生科研训练项目(KX20180093);国家自然科学基金资助项目(21607132,42076038)
详细信息
    作者简介: 李思艳(ORCID: 0000-0001-8826-3531),从事碳纳米管与重金属相互作用研究。E-mail: 1203921869@qq.com
    通信作者: 李梅(ORCID: 0000-0002-1727-3617),讲师,从事水污染控制和纳米材料环境风险评估研究。E-mail: limei@zafu.edu.cn
  • 中图分类号: S682.2

Adsorption of cadmium on multi-walled carbon nanotubes with different functional groups and their bacterial toxicity

  • 摘要:   目的  探讨不同官能团多壁碳纳米管对镉离子(Cd2+)的吸附作用,揭示多壁碳纳米管影响镉细菌毒性的机制。  方法  通过批量吸附平衡实验研究不同官能团(羟基化、羧基化、氨基化、未经修饰)多壁碳纳米管(MWCNTs)对Cd2+的吸附性能,通过细菌毒性实验评估不同官能团多壁碳纳米管和Cd2+对大肠埃希菌Escherichia coli的毒性效应。  结果  4种多壁碳纳米管对Cd2+的吸附能力从大到小依次为羧基化多壁碳纳米管、羟基化多壁碳纳米管、多壁碳纳米管、氨基化多壁碳纳米管,吸附性能与碳纳米管含氧量相关。多壁碳纳米管- Cd2+复合物细菌毒性低于游离Cd2+,随纳米管质量浓度增加(0~200 mg·L−1),羧基化多壁碳纳米管-Cd2+复合物作用下细菌存活率从67%提高到81%。  结论  不同官能团多壁碳纳米管对Cd2+的吸附量与碳纳米管含氧量呈正相关;多壁碳纳米管-Cd2+复合物细菌毒性低于游离Cd2+,认为多壁碳纳米管可降低游离Cd2+的细菌毒性。图4表2参26
  • 蚂蚁作为膜翅目Hymenoptera蚁科Formicidae昆虫,在自然界中具有不可忽视的作用,具备改良土壤、分解有机质、促进土壤碳氮循环、维持微生态平衡等重要作用[12],常被用作各类环境生物多样性的指示物种[34]。全世界已记载的蚂蚁共有16亚科342属14 187种[5],蚂蚁是地球上分布最广、种类及数量最多的社会性昆虫[6]

    当前,中国的蚂蚁群落研究集中在西南地区[79],而对西北地区蚂蚁群落研究报道较少。在新疆地区蚂蚁研究方面,吴坚等[10]记录了新疆地区2亚科、5属、14种;夏永娟等[1112]记录了新疆地区3亚科、16属、43种,其中1新种;COLLINGWOOD等[13]报道准葛尔盆地及其邻近山区的蚂蚁46种,其中27种为中国新纪录种;黄人鑫等[14]报道了新疆蚂蚁42种新记录种。通过上述研究共记载了新疆蚂蚁3亚科20属118种,其中分布于天山的种类仅46种。可见,对新疆蚂蚁的研究,尤其是天山地区的研究还十分有限,且仅限于区系和分类,缺乏蚂蚁物种多样性的研究。近期,翟奖等[15]研究了新疆天山东部与邻近地区蚂蚁分布规律,共报道2亚科、14属、29种,发现蚂蚁物种主要集中在土壤温润、树木高大的人工林内;杨林等[16]对新疆天山中部的蚂蚁物种多样性进行了分析,共报道蚂蚁2亚科27种,北坡的蚂蚁物种多样性显著高于南坡,且中海拔区域的物种多样性最高。这些研究丰富了天山地区蚂蚁分布和物种多样性的研究,也使分布于天山的物种增加至50种。

    天山中-西段主要位于克拉玛依的奎屯至阿克苏地区的库车一线区域,由北坡、山间谷地和南坡组成,于2022年7—8月对新疆天山中-西段的蚂蚁多样性进行调查,探讨蚂蚁群落结构、物种多样性与海拔和植被的关系等问题,并与天山中部的蚂蚁多样性进行比较,以全面揭示干旱区蚂蚁物种多样性随着海拔和植被的变化如何变化,以期为该地区的生物多样性保护提供基础资料。

    新疆天山中-西段海拔为781~3 235 m,依地形划分为北坡独山子垂直带、山间起伏盆地的乌拉斯台和那拉提2个垂直带及南坡的库车垂直带,共4个垂直带。海拔每上升250 m,选取植被典型的1块50 m×50 m样地进行调查,共设置33块样地,其中垂直带中海拔最低的1块样地位于奎屯市独山子区天景颐园,海拔为781 m。各垂直带调查样地的位置及自然概况见表1。受野外自然条件限制,选定样地的海拔会有一定误差,控制在±50 m内。

    表 1  新疆天山中-西段蚂蚁群落调查样地概况
    Table 1  Survey sites of ant communities in the middle-western section of Tianshan Mountains in Xinjiang
    垂直带 样地
    编号
    海拔/m 纬度(N) 经度(E) 土壤类型 土壤湿度 植被类型 乔木郁闭度 盖度/% 地被物厚度/cm
    灌木 草本 地被物
    独山子 1 781 44°19′01.12″ 84°52′42.12″ 黄壤 潮湿 落叶阔叶林 0.5 0 70 70 1.0~2.0
    2 1 050 44°12′39.95″ 84°50′46.69″ 黄壤 干燥 落叶阔叶林 0.3 5 75 75 0.5~1.0
    3 1 278 44°09′56.52″ 84°49′39.46″ 黄沙土 干燥 灌丛 0 30 80 80 0.5~1.0
    4 1 540 44°07′11.10″ 84°49′31.52″ 黄沙土 干燥 灌丛 0 30 70 70 0.5~1.0
    5 1 726 44°06′08.44″ 84°48′15.93″ 黄沙土 潮湿 灌丛 0 40 60 60 1.0~2.0
    6 2 029 43°53′15.47″ 84°29′59.35″ 黄壤 湿润 草丛 0 0 95 95 0.5~1.0
    7 2 285 43°50′12.22″ 84°28′14.13″ 棕黄壤 湿润 灌丛 0 30 80 80 2.0~3.0
    8 2 549 43°47′27.07″ 84°27′51.96″ 棕壤 湿润 草丛 0 0 95 95 1.0~2.0
    9 2 773 43°46′43.76″ 84°27′21.36″ 灰黄壤 湿润 锦鸡儿灌丛 0 30 95 95 1.0~2.0
    10 3 023 43°45′14.16″ 84°26′13.54″ 黄沙土 湿 草甸 0 0 95 95 1.0~2.0
    11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0
    乌拉斯台 11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0
    12 3 024 43°42′27.20″ 84°26′51.60″ 棕壤 湿 草丛 0 0 80 80 1.0~2.0
    13 2 760 43°41′15.80″ 84°23′57.55″ 棕壤 湿 柏木灌丛 0 50 90 90 1.0~2.0
    14 2 533 43°40′02.69″ 84°24′24.03″ 棕壤 湿润 灌丛 0 30 90 95 0.5~1.0
    15 2 295 43°37′57.52″ 84°18′48.52″ 棕壤 湿润 云杉林 0.6 20 70 100 2.0~3.0
    16 2 000 43°21′36.52″ 84°22′00.32″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0
    17 1 798 43°20′12.98″ 84°21′30.23″ 棕壤 湿润 针阔混交林 0.4 0 95 95 1.0~2.0
    那拉提 18 1 802 43°13′43.85″ 84°19′15.64″ 棕壤 湿润 针阔混交林 0.5 30 95 95 2.0~3.0
    19 2 020 43°13′31.38″ 84°19′24.66″ 棕壤 湿润 针阔混交林 0.5 70 50 100 1.0~2.0
    20 2 288 43°11′26.28″ 84°19′42.82″ 棕壤 湿润 草丛 0 0 100 100 1.0~2.0
    21 2 548 43°10′06.98″ 84°21′04.21″ 棕壤 湿润 高山柳灌丛 0 90 100 100 2.0~3.0
    22 2 547 42°41′24.77″ 83°41′18.64″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0
    23 2 785 42°34′51.52″ 83°36′53.84″ 棕壤 湿润 草丛 0 10 95 95 1.0~2.0
    24 3 055 42°30′50.27″ 83°28′54.46″ 棕壤 湿 草丛 0 0 70 70 1.0~2.0
    库车 25 3 058 42°28′36.91″ 83°26′04.32″ 棕壤 湿 草丛 0 0 95 95 1.0~2.0
    26 2 759 42°27′50.54″ 83°24′29.82″ 黄壤 湿润 灌丛 0 50 95 95 1.0~2.0
    27 2 508 42°27′38.24″ 83°23′21.49″ 暗棕壤 湿润 云杉林 0.5 20 95 100 2.0~3.0
    28 2 233 42°26′31.70″ 83°15′21.55″ 黄壤 湿润 草丛 0 0 90 90 1.0~2.0
    29 2 052 42°25′05.20″ 83°16′01.70″ 黄壤 湿润 草丛 0 10 98 98 1.0~2.0
    30 1 773 42°13′34.37″ 83°13′57.53″ 黄沙土 湿润 灌丛 0 40 50 50 0.5~1.0
    31 1 539 42°07′16.52″ 83°09′02.09″ 红壤 干燥 灌丛 0 30 10 30 0.5
    32 1 269 41°51′24.16″ 82°49′08.19″ 黄沙土 干燥 疏灌丛 0 10 10 10 0.5
    33 1 009 41°44′01.62″ 82°55′43.37″ 黄沙土 干燥 落叶阔叶林 0.2 30 30 30 0.5
      说明:乌拉斯台垂直带在该海拔梯度内可选择的典型植被类型样地较少,为更直观地揭示蚂蚁物种数量变化,选择独山子垂直带海拔为3 235 m的样地(编号11)为乌拉斯台垂直带起始点。灌丛指多种灌木组成的灌丛,高于1.0 m,区别于单树种灌丛;疏灌丛指盖度小于10%的灌丛。锦鸡儿Caragana sinica;柏木Cupressus funebris;云杉Picea asperata;高山柳Salix cupularis。土壤湿度以含水量<12%为干燥,12%~15%为湿润,15%~20%为潮湿,>20%为湿。
    下载: 导出CSV 
    | 显示表格

    参考文献[1],在新疆天山中-西段不同海拔采用样地调查法和搜索法进行蚂蚁群落调查,在选定样地内沿对角线选取5个1 m×1 m的样方,每个样方间隔10 m,在采集地表蚂蚁前,先测量每个样方内地被物的厚度。分别采集样地地表样、土壤样和树冠样的蚂蚁,并将蚂蚁保存至装有无水乙醇的离心管,贴上标签。样方调查结束后,5人同时对样地内样方外周围地表、石下、树冠和朽木等微生境进行搜索调查,时间为1 h。将采集到的蚂蚁装入离心管并作标签和记录。依据同种同巢、同种形态相同原则对采集的标本进行归类、编号、登记,将每号标本制作成不超过9头的三角纸干制标本,多余的个体用无水乙醇浸渍保存,依据相关分类学文献[1, 10]鉴定蚂蚁标本,尽可能鉴定到种。

    按照黄钊等[8]的方法,以各类蚂蚁物种个体数占群落物种总数的比例(β)来揭示群落结构特征,采用常规划分标准分为5个类型,即类型 A 为 β≥10.0% ,优势种;类型B为 5.0%≤β<10.0% ,常见种;类型C为 1.0%≤β<5.0% ,较常见种;类型D为 0.1%≤β<1.0% ,较稀有种;类型E为 β<0.1%,稀有种。

    利用Estimate S 9.1.0 对数据进行处理[1718],采用5项主要指标测定物种多样性:物种数目、Shannon-Wiener 多样性指数、Pielou 均匀度指数、Simpson 优势度指数、Jaccard 相似性系数[1, 19],利用SPSS软件中的one-way ANOVA对各垂直带蚂蚁多样性的各个指数进行方差分析并进行多重比较;采用Pearson相关分析方法[20]分析蚂蚁群落多样性各个指数与海拔的相关性,若存在显著相关性,则使用线性和二项式模型进行拟合,基于拟合系数(R2)评价拟合度,并进行显著性t检验,同时分析蚂蚁群落多样性指标与植被特征的相关性。

    在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,经鉴定共29种,隶属于2亚科12属。其中优势种3种,分别为草地铺道蚁Tetramorium caespitum、黑毛蚁Lasius niger和丝光蚁Formica fusca;常见种3种,分别是黄毛蚁L. flavus、光亮黑蚁F. candida和工匠收获蚁 Messor structor;角结红蚁 Myrmica angulinodis、红林蚁F. sinae等10种为较常见种;凹唇蚁F. sanguinea、喜马毛蚁L. himalayanus 和纹头原蚁Proformica striaticeps 3种为较稀有种;诺斯铺道蚁T. nursei、堆土细胸蚁Leptothorax acervorum等10种为稀有种(表2),较常见种和稀有种种类较多。

    表 2  新疆天山中-西段蚂蚁群落结构
    Table 2  Ant community structure of the middle-western section of Tianshan Mountains in Xinjiang
    编号 物种名称 N/头 β/% 物种类型 编号 物种名称 N/头 β/% 物种类型
    1 草地铺道蚁Tetramorium caespitum 31 856 23.38 优势种 16 弯角红蚁Myrmica lobicornis 1 411 1.04 较常见种
    2 黑毛蚁Lasius niger 22 629 16.61 优势种 17 凹唇蚁Formica sanguinea 1 002 0.74 较稀有种
    3 丝光蚁Formica fusca 17 991 13.20 优势种 18 喜马毛蚁Lasius himalayanus 736 0.54 较稀有种
    4 黄毛蚁Lasius flavus 12 247 8.99 常见种 19 纹头原蚁Proformica striaticeps 139 0.10 较稀有种
    5 光亮黑蚁Formica candida 10 500 7.71 常见种 20 诺斯铺道蚁Tetramorium nursei 129 0.09 稀有种
    6 工匠收获蚁Messor structor 9 688 7.11 常见种 21 堆土细胸蚁Leptothorax acervorum 128 0.09 稀有种
    7 角结红蚁Myrmica angulinodis 4 406 3.23 较常见种 22 蒙古原蚁Proformica mongolica 116 0.08 稀有种
    8 红林蚁Formica sinae 4 023 2.95 较常见种 23 长柄心结蚁Cardiocondyla elegans 12 0.01 稀有种
    9 阿富汗红蚁Myrmica afghanica 3 903 2.86 较常见种 24 广布弓背蚁Camponotus herculeanus 5 0 稀有种
    10 艾箭蚁Cataglyphis aenescens 3 695 2.71 较常见种 25 吉市红蚁Myrmica jessensis 4 0 稀有种
    11 满斜结蚁Plagiolepis manczshurica 3 030 2.22 较常见种 26 婀娜收获蚁Messor aralocaspius 3 0 稀有种
    12 草地蚁Formica pratensis 3 009 2.21 较常见种 27 蒙古切胸蚁Temnothorax mongolicus 3 0 稀有种
    13 类干蚁Formica approximans 2 043 1.50 较常见种 28 针毛收获蚁Messor aciculatus 1 0 稀有种
    14 掘穴蚁Formica cunicularia 1 933 1.42 较常见种 29 条纹切胸蚁Temnothorax striatus 1 0 稀有种
    15 中亚凹头蚁Formica mesasiatica 1 604 1.18 较常见种 合计 136 247 100
      说明:N为个体数,β为各类蚂蚁物种个体数占群落物种总数的比例。
    下载: 导出CSV 
    | 显示表格
    2.2.1   物种累积曲线分析

    随着调查样地的增加,实际观察物种数(S)、基于多度(个体数量)的预测值(ACE)、Chao 1和Chao 2值均先急剧上升,后缓慢上升,最后趋于稳定(图1)。蚂蚁物种S为29,与丰富度估计值(ACE值为30.03,Chao1值为30,Chao 2值为29.97)相接近,实际采集到的物种数约为预测值的96.57%~96.76%,可见抽样充分。

    图 1  新疆天山中-西段蚂蚁物种实测值和预测值累积曲线
    Figure 1  Cumulative curve of measured and predicted ant species in the middle-western section of Tianshan Mountains in Xinjiang
    2.2.2   物种数

    从物种的实测值来看,新疆天山中-西段4个垂直带的蚂蚁物种数都接近或等于ACE估计值(表3),其中独山子垂直带海拔2 773 m锦鸡儿灌丛、3 023 m草甸、3 235 m草甸,乌拉斯台垂直带海拔3 024 m草丛,那拉提垂直带海拔2 548 m高山柳灌丛、3055 m草丛及库车垂直带3 058 m草丛样地均未发现蚂蚁。4个垂直带蚂蚁物种数顺序为:独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种)。如图2所示:各垂直带的蚂蚁物种数与海拔存在显著(P<0.05)相关性。总体来看,各垂直带的蚂蚁物种数随海拔升高基本呈下降趋势。独山子、乌拉斯台和那拉提垂直带蚂蚁物种数与海拔的二项式变化趋势与线性变化趋势基本一致,线性模型显示乌拉斯台和那拉提垂直带的蚂蚁物种数与海拔分别呈显著(R2=0.770,P=0.022)和极显著(R2=0.739,P=0.013)负相关关系,二项式变化同线性分析趋势一致,但无显著相关性(P>0.05);而库车垂直带物种数与海拔的二项式模型呈现随海拔升高先升高后下降的单峰曲线。

    表 3  各垂直带蚂蚁群落多样性指标
    Table 3  Diversity indexes of ant communities in different vertical zones
    垂直带 物种数/种 ACE估计值 Shannon-Wiener多样性指数 Pielou均匀度指数 Simpson优势度指数
    独山子 18 20.10±0.00 0.515 2±0.153 9 a 0.313 8±0.095 8 a 0.446 3±0.107 8 a
    乌拉斯台 10 10.00±0.00 0.539 9±0.221 6 a 0.348 9±0.121 5 a 0.403 7±0.135 8 a
    那拉提 14 16.54±1.49 0.596 7±0.265 9 a 0.329 9±0.139 0 a 0.316 8±0.132 5 a
    库车 13 13.60±0.00 0.505 8±0.119 1 a 0.408 6±0.103 2 a 0.611 0±0.096 0 a
      说明:同列相同字母表示差异不显著(P>0.05)。数值为平均值±标准误。
    下载: 导出CSV 
    | 显示表格
    图 2  物种数目与海拔的关系
    Figure 2  Relationship between species number and altitude
    2.2.3   多样性指数

    新疆天山中-西段4个垂直带蚂蚁群落多样性指数变化顺序为:那拉提垂直带(0.596 7)>乌拉斯台垂直带(0.539 9)>独山子垂直带(0.515 2)>库车垂直带(0.505 8),但4个垂直带的蚂蚁多样性指数差异不显著(表3)。如图3所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁多样性指数与海拔存在显著(P<0.05)或极显著(P<0.01)相关性,而那拉提和库车垂直带的蚂蚁多样性指数与海拔的相关性不显著(P>0.05)。总体来看,各垂直带的蚂蚁多样性指数随海拔升高而呈现降低的趋势,二项式变化趋势与线性变化趋势基本一致。其中线性模型显示乌拉斯台垂直带蚂蚁多样性指数与海拔呈显著负相关(P<0.05),二项式变化趋势与线性分析一致,但无相关性。

    图 3  多样性指数与海拔的关系
    Figure 3  Relationship between diversity index and altitude
    2.2.4   均匀度指数

    新疆天山中-西段4个垂直带蚂蚁群落均匀度指数变化顺序为:库车垂直带(0.408 6)>乌拉斯台垂直带(0.348 9)>那拉提垂直带(0.329 9)>独山子垂直带(0.313 8),但4个垂直带的蚂蚁均匀度指数差异不显著(表3)。如图4所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁均匀度指数与海拔存在显著相关性(P<0.05),而那拉提和库车垂直带的蚂蚁均匀度指数与海拔关系不显著(P>0.05)。其中在独山子垂直带,均匀度指数与海拔的线性模型显著负相关(P<0.05),二项式模型呈现极显著负相关(P<0.01),二项式和线性模型变化趋势不一致;线性模型显示乌拉斯台垂直带蚂蚁群落均匀度指数与海拔化显著负相关(R2=0.697,P<0.05),二项式和线性模型变化趋势不一致,且相关性不显著(P>0.05);线性和二项式模型显示,那拉提和库车垂直带的蚂蚁群落均匀度指数与海拔变化相关性均不显著(P>0.05),但二项式和线性模型变化趋势基本一致。

    图 4  均匀度指数与海拔的关系
    Figure 4  Relationship between Pielou index and altitude
    2.2.5   优势度指数

    新疆天山中-西段4个垂直带蚂蚁群落优势度指数变化顺序为:库车垂直带(0.611 0)>独山子垂直带(0.446 3)>乌拉斯台垂直带(0.403 7)>那拉提垂直带(0.316 8),与多样性指数的变化趋势正相反,但4个垂直带的蚂蚁群落优势度指数差异不显著(表3)。相关分析发现:各垂直带的蚂蚁群落优势度指数与海拔的相关性不显著(P>0.05);4个垂直带的线性模型和二项式模型的变化趋势不一致,二项式模型分析均呈先升高后降低的变化趋势(图5),仅独山子垂直带的二项式模型呈显著性(R2=0.846,P<0.01)。

    图 5  优势度指数与海拔的关系
    Figure 5  Relationship between diversity index and altitude

    新疆天山中-西段各垂直带蚂蚁群落间相似性系数为0.166 7~0.600 0(表4),处于极不相似至中等相似水平;平均值0.289 0,显示中等不相似水平。其中同处于山间盆地的那拉提与乌拉斯台垂直带的蚂蚁群落间相似性最大(0.600 0),乌拉斯台与独山子垂直带的蚂蚁群落间相似性最小(0.166 7),库车与那拉提垂直带之间相似性较低,处于中等不相似水平,其余垂直带间相似性低,处于极不相似水平。总体来说,新疆天山中-西段蚂蚁群落之间相似性较低,群落结构差异较大。

    表 4  新疆天山中-西段各垂直带蚂蚁群落间相似性系数
    Table 4  Similarity coefficients of ant communities in the middle-western section of Tianshan Mountains in Xinjiang
    垂直带 垂直带q
    乌拉斯台 那拉提 库车
    独山子 0.166 7 0.230 8 0.240 0
    乌拉斯台 0.600 0 0.210 5
    那拉提 0.285 7
    平均值 0.289 0
      说明:q为相似性系数, 1≥q≥0.75,极相似;0.75 >q≥0.50,中等相似;0.50 >q≥0.25,中等不相似;0.25>q≥0,极不相似。
    下载: 导出CSV 
    | 显示表格

    表5所示:新疆天山中-西段蚂蚁物种数与乔木郁闭度显著正相关(P<0.05),但与灌木盖度、草木盖度、地被物盖度和地被物厚度相关性不显著;多样性指数、均匀度指数和优势度指数与植被特征的相关性均不显著。

    表 5  蚂蚁多样性与植被特征相关分析
    Table 5  Correlation analysis between ant diversity and vegetation feature      
    植被特征 物种数 多样性
    指数
    均匀度
    指数
    优势度
    指数
    乔木郁闭度 0.424* 0.296 0.285 0.095
    灌木盖度 0.049 0.099 0.114 −0.015
    草本盖度 −0.226 −0.234 −0.234 −0.072
    地被物盖度 −0.161 −0.143 −0.137 −0.075
    地被物厚度 −0.148 −0.240 −0.256 −0.071
      说明:数值为Pearson相关系数,*表示在0.05水平上显著相关。
    下载: 导出CSV 
    | 显示表格

    在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,隶属于2亚科12属29种,物种数略高于新疆天山中段[16](2亚科15属27种),与天山东段[15](2亚科14属29种)相等,但明显高于临近的祁连山国家公园青海片区[21](2亚科6属13种),可能是因为天山中部和祁连山国家公园海拔较高,海拔落差较大,其物种丰富度较低,而新疆天山中-西段和东段由于平均海拔较低,蚂蚁物种丰富度较高,相对海拔高度对蚂蚁物种丰富度也有着重要影响。与同为干旱区的伊朗中部相比,新疆天山中-西段的蚂蚁物种数明显低于伊朗中部[22](8亚科12属34种),可能是伊朗中部纬度和海拔均低于新疆天山,表明耐热性较低的物种更喜欢聚集在中部高海波区域[22],而伊朗中部因适合蚂蚁生存的海拔跨度较大造成物种多样性较高,新疆天山中-西段由于低海拔炎热干燥,高海拔温度过低,适合蚂蚁生存的海拔跨度较小而使多样性较低。

    目前,全球蚂蚁物种多样性沿海拔梯度变化主要呈现5种模式[23]:①随海拔升高蚂蚁多样性呈递减的趋势(物种多样性最高出现在低海拔区域)[24];②低高原模式(300 m以下最低海拔的高多样性);③单峰模式,即在中海拔区域物种多样性最高,可用“中域效应”来解释(海拔高于300 m)[25];④随海拔升高蚂蚁多样性呈现多个峰值,可用“多域效应”来解释[26];⑤无规律模式。研究表明:在沿海拔梯度的5种模式中,最常见的是单峰模式和递减模式[2729]。中海拔地区的物种丰富度较高是由于高海拔或低海拔地区的气候严酷和高海拔地区资源的可利用性有限[3031];物种丰富度随海拔升高而下降,原因是海拔升高,温度和生产力下降[32]。通过对新疆天山中-西段4个垂直带的物种数和多样性指数分析发现:蚂蚁物种多样性沿海拔梯度变化总体呈现随海拔升高而降低的趋势,主要原因是随着海拔的升高气温会逐渐降低而影响蚂蚁的生存;4个垂直带的物种数和多样性指数与海拔变化显著相关,均匀度指数和优势度指数与海拔的相关显著性不尽相同,这与天山中部南北坡的蚂蚁多样性变化规律一致[16]。除了气温以外,还可能受到湿度的制约。与藏东南、四川西部大凉山和云南地区自然保护区不同,新疆天山位居中国内陆,印度洋季风因受到喜马拉雅山脉的阻挡而无法到达,太平洋季风虽可以到达,但距离较远,因此新疆天山常年较干旱,雨水较少,湿度较低,植被类型多以草地及灌木为主,蚂蚁物种丰富度也较低;从4个垂直带来看,蚂蚁物种数独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种),独山子垂直带位于天山北坡,库车垂直带位于天山南坡,可见天山的北坡蚂蚁物种数比南坡要多,可能是因为新疆天山位于北半球,南坡为阳坡,北坡为阴坡,南坡日照时间长,水分蒸发量大,土壤湿度低,蚂蚁物种较少,这与天山中部南北坡的蚂蚁物种分布一致[16]。因此湿度也成为制约蚂蚁物种多样性的因素之一。同时温度和湿度也影响着植被类型、土壤结构和微生境等,故蚂蚁物种多样性受到多种因素的影响。

    从群落相似性来看,那拉提与乌拉斯台垂直带的蚂蚁群落间相似性较高,其原因可能是这2个垂直带地理位置相邻,海拔高度和植被类型相似,相同的生境提供了相同的栖息场所和食物资源,从而孕育了较多相同的蚂蚁种类;而其余各垂直带间的群落相似性较低,处于极不相似至中等不相似水平,蚂蚁群落组成差异明显。相关性分析表明:天山中-西段蚂蚁群落的物种数与多样性指数与海拔变化呈显著负相关,海拔梯度显著影响该区域的蚂蚁物种多样性。有研究表明:凋落物覆盖率增高可增加蚂蚁的物种丰富度[33],但蚂蚁物种丰富度与凋落物的数量间无显著相关性,本研究中各垂直带蚂蚁物种数与草本盖度、地被物的盖度和厚度负相关,但相关性不显著,与前人研究结果一致[34];物种数与乔木郁闭度呈显著正相关,在四川王朗自然保护区[ 35]、青藏高原西南坡[36]和西北坡[37]等地区的研究也存在这种相关关系,可能是高大的乔木给蚂蚁提供了较理想的栖息场所、食物来源,蚂蚁群落得以发展。从栖息生境来看,天山中-西段的植被多为草丛和灌丛,仅在海拔相对较低的地方分布有阔叶林、针阔混交林,生态系统脆弱,保护和利用好区域内的昆虫生物多样性,对维持和改善生态系统具有重要意义。

    在新疆天山中-西段4个垂直带共记录到蚂蚁2亚科12属29种,优势种为草地铺道蚁、黑毛蚁和丝光蚁。新疆天山中-西段的蚂蚁物种多样性明显高于祁连山国家公园青海片区,与天山东段和中段接近,低于同为干旱区的伊朗中部。整体而言,天山中-西段4个垂直带蚂蚁群落多样性指数随海拔升高而呈现降低趋势。物种数和多样性指数与海拔显著负相关,且物种数与乔木郁闭度显著正相关,海拔显著影响该地区的蚂蚁物种多样性,同时坡向、湿度、植被等也起到重要作用。各垂直带间的蚂蚁群落相似性总体较低,表明蚂蚁群落分化明显。

    感谢西南林业大学图书馆房华老师和研究生杨蕊、韩秀、杨林、钱怡顺在标本采集和样地调查,本科生杨润娇、何丽华、杨洋和潘宇航在标本整理与制作中的帮助。

  • 图  1  不同官能团多壁碳纳米管对Cd2+的吸附等温线

    Figure  1  Adsorption isotherm of Cd2+ on MWCNTs with different functional groups

    图  2  Cd2+的细菌毒性

    Figure  2  Bacterial toxicity of Cd2+

    图  3  不同官能团多壁碳纳米管的细菌毒性

    Figure  3  Bacterial toxicity of MWCNTs with different functional groups

    图  4  不同官能团多壁碳纳米管对Cd2+细菌毒性的影响

    Figure  4  Effect of MWCNTs with different functional groups on toxicity of Cd2+ to E. coli

    表  1  不同官能团多壁碳纳米管的测定参数

    Table  1.   Determination parameters of MWCNTs with different functional groups

    zeta电位/mV含氧量/%电导率/(μS·cm−1)pH
    多壁碳纳米管    −9.14 5.654 0.87 6.57
    羟基化多壁碳纳米管−7.196.6291.796.10
    羧基化多壁碳纳米管−12.7611.2862.985.88
    氨基化多壁碳纳米管−8.984.5811.137.23
    下载: 导出CSV

    表  2  不同碳纳米管对Cd2+的吸附等温线方程拟合参数

    Table  2.   Regression parameters of adsorption isotherms of Cd2+ onto different MWCNTs

    样品Langmuir方程Freundlich方程
    方程式qm/(mg·g−1)Kl/(L·mg−1)R2方程式nKfR2
    多壁碳纳米管   q=1.002c/(1+0.238c)4.2120.2380.896q=0.976c0.4672.1080.9760.954
    羟基化多壁碳纳米管q=2.346c/(1+0.273c)8.5930.2730.954q=2.131c0.4732.1132.1310.994
    羧基化多壁碳纳米管q=7.442c/(1+0.451c)16.4860.4510.989q=5.103c0.4832.0715.1030.950
    氨基化多壁碳纳米管q=0.386c/(1+0.066c)5.8820.0660.796q=0.564c0.6071.6470.5640.852
    下载: 导出CSV
  • [1] IHSANULLAH, ABBAS A, AL-AMER A M, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications [J]. Sep Purif Technol, 2016, 157(5): 141 − 161.
    [2] FIYADH S S, ALSAADI M A, JAAFAR W Z, et al. Review on heavy metal adsorption processes by carbon nanotubes [J]. J Clean Prod, 2019, 230(7): 783 − 793.
    [3] 常兰, 秦伟超. 碳纳米管表面改性及其吸附水中污染物的研究进展[J]. 化工技术与开发, 2014, 43(3): 43 − 46.

    CHANG Lan, QIN Weichao. Research progress in surface modification of carbon nanotubes and adsorption of pollutants in wastewater [J]. Technol Dev Chem Ind, 2014, 43(3): 43 − 46.
    [4] ANSARI A, MEHRABIAN M A, HASHEMIPOUR H. Zinc ion adsorption on carbon nanotubes in an aqueous solution [J]. Pol J Chem Technol, 2014, 13(1): 29 − 37.
    [5] 聂海瑜, 沈甘霓, 杜凤沛, 等. 碳纳米管对水体污染物吸附的研究进展[J]. 西南民族大学学报(自然科学版), 2015, 41(3): 326 − 330.

    NIE Haiyu, SHEN Ganni, DU Fengpei, et al. Research progress in adsorption of contaminates from water by carbon nanotubes [J]. J Southwest Univ Natl Nat Sci Ed, 2015, 41(3): 326 − 330.
    [6] YANG Xiaodong, WAN Yongshan, ZHENG Yulin, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metal from aqueous solutions: a critical review [J]. Chem Eng J, 2019, 366: 608 − 621.
    [7] 杨孝智, 高静, 贺婷婷, 等. 碳纳米管对水体重金属污染物的吸附/解吸性能研究进展[J]. 应用化工, 2011, 40(4): 692 − 695.

    YANG Xiaozhi, GAO Jing, HE Tingting, et al. Research progress on the adsorption/desorption of heavy metal pollutants on carbon nanotubes in water [J]. Appl Chem Ind, 2011, 40(4): 692 − 695.
    [8] LIU Shaobin, NG A K, XU Rong, et al. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy [J]. Nanoscale, 2010, 2(12): 2744 − 2750.
    [9] LIU Shaobin, WEI Li, HAO Lin, et al. Sharper and faster ‘nano darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube [J]. ACS Nano, 2009, 3(12): 3891 − 3902.
    [10] MARTINEZ D S T, ALVES O L, BARBIERI E. Carbon nanotubes enhanced the lead toxicity on the freshwater fish [J]. J Phys, 2013, 429: 012043. doi: 10.1088/1742-6596/429/1/012043.
    [11] YU Zhiguo, WANG Wenxiong. Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna [J]. Water Res, 2013, 47(12): 4179 − 4187.
    [12] WANG Fei, YAO Jun, LIU Haijun, et al. Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment [J]. J Hazard Mater, 2015, 292(9): 137 − 145.
    [13] 付勇, 裴建川, 李梅, 等. 多壁碳纳米管和重金属镉的细菌毒性及影响机制[J]. 浙江农林大学学报, 2020, 37(2): 319 − 324.

    FU Yong, PEI Jianchuan, LI Mei, et al. Effects and mechanism of multi-walled carbon nanotubes on the bacterial toxicity of cadmium [J]. J Zhejiang A&F Univ, 2020, 37(2): 319 − 324.
    [14] 李梅, 裴建川, 付勇, 等. 表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响[J]. 环境化学, 2018, 37(12): 2730 − 2739.

    LI Mei, PEI Jianchuan, FU Yong, et al. Effect of surfactants on the combined toxicity of TiO2 nanoparticles and zinc ions [J]. Environ Chem, 2018, 37(12): 2730 − 2739.
    [15] BASSYOUNI M, MANSI A E, ELGABRY A, et al. Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNT’s potential and current challenges [J]. Appl Phys A Mater Sci Proc, 2020, 126(1): 38. doi: 10.1007/s00339-019-3211-7.
    [16] XU Jiang, CAO Zhen, ZHANG Yilin, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism [J]. Chemosphere, 2018, 195(10): 351 − 364.
    [17] LI Jiaxing, CHEN Shuyu, SHENG Guodong, et al. Effect of surfactants on Pb(Ⅱ) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes [J]. Chem Eng J, 2011, 166(2): 551 − 558.
    [18] PEREIRA R F P, VALENTE A J M, BURROWS H D. The interaction of long chains odium carboxylates and sodium dodecylsulfate with lead(Ⅱ) ions in aqueous solutions [J]. J Colloid Interface Sci, 2014, 414(1): 66 − 72.
    [19] TOFIGHY M A, MOHAMMADI T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets [J]. J Hazard Mater, 2011, 185(1): 140 − 147.
    [20] XU Yijun, ARRIGO R, LIU Xi, et al. Characterization and use of functionalized carbon nanotubes for the adsoption of heavy metal anions [J]. New carbon Mater, 2011, 26(1): 57 − 62.
    [21] 谭凌艳, 杨柳燕, 缪爱军. 人工纳米颗粒对重金属在水生生物中的富集与毒性研究进展[J]. 南京大学学报(自然科学), 2016, 52(4): 582 − 589.

    TAN Lingyan, YANG Liuyan, MIAO Aijun. Engineered nanoparticle effects on heavy metal bioaccumulation and toxicity in aquatic ecosystem [J]. J Nanjing Univ Nat Sci, 2016, 52(4): 582 − 589.
    [22] BENNETT S W, ADELEYE A, JI Zhaoxia, et al. Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes [J]. Water Res, 2013, 47(12): 4074 − 4085.
    [23] 李梅. 水环境中ZnO纳米颗粒对大肠杆菌的毒性及影响因素[D]. 杭州: 浙江大学, 2012.

    LI Mei. The Toxicity and Impact Factors of ZnO Nanoparticles to Escherichia coli in Aquatic Environment[D]. Hangzhou: Zhejiang University, 2012.
    [24] CORTES P, DENG Shuguang, SMITH G B. The toxic effects of single wall carbon nanotubes on E. coli and a spore-forming Bacillus species [J]. Nanosci Nanotechnol Lett, 2014, 6(1): 26 − 30.
    [25] HANDY R D, OWEN R, VALSAMI-JONES E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs [J]. Ecotoxicology, 2008, 17(5): 315 − 325.
    [26] QU Yuanyuan, WANG Jingwei, ZHOU Hao, et al. Concentration-dependent effects of carbon nanotubes on growth and biphenyl degradation of Dyella ginsengisoli LA-4 [J]. Environ Sci Pollut Res, 2016, 23(3): 2864 − 2872.
  • [1] 李钧洋, 霍丽竹, 龚著祥, 许浩, 王宇轩, 郭超飞, 杨雪娟, 罗锡平.  木质素磺酸钠吸附材料的制备及对刚果红的吸附性能 . 浙江农林大学学报, 2024, 41(4): 870-878. doi: 10.11833/j.issn.2095-0756.20230585
    [2] 李业庆, 郑叶, 魏奕博, 王丹, 李烜桢, 范国强.  不同绿化树种对镉的富集特征 . 浙江农林大学学报, 2024, 41(4): 752-759. doi: 10.11833/j.issn.2095-0756.20230630
    [3] 贾军伟, 陈振华, 廖诗彦, 骆文轩, 徐炜杰, 钟斌, 马嘉伟, 叶正钱, 柳丹.  镉胁迫下低吸收水稻品种中镉的转移系数和分布特征 . 浙江农林大学学报, 2022, 39(5): 1059-1066. doi: 10.11833/j.issn.2095-0756.20210402
    [4] 史航, 李兵, 郭建忠.  功能化枝状复合吸附材料的制备及吸附Cr(Ⅵ)的性能 . 浙江农林大学学报, 2022, 39(2): 396-404. doi: 10.11833/j.issn.2095-0756.20200119
    [5] 戴志楠, 温尔刚, 陈翰博, 杨兴, 陈俊辉, 郭佳, 王海龙.  施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响 . 浙江农林大学学报, 2021, 38(2): 346-354. doi: 10.11833/j.issn.2095-0756.20200392
    [6] 谢德志, 魏子璐, 朱峻熠, 杜莹, 金水虎, 岳春雷.  水禾对镉胁迫的生理响应 . 浙江农林大学学报, 2020, 37(4): 683-692. doi: 10.11833/j.issn.2095-0756.20190407
    [7] 胡蝶, 李文奇, 张利萍, 关莹, 高慧.  废报纸生物质炭的制备及对铜离子的吸附性能 . 浙江农林大学学报, 2020, 37(2): 325-334. doi: 10.11833/j.issn.2095-0756.2020.02.018
    [8] 汪敦飞, 朱胜男, 肖清铁, 郑新宇, 林瑞余.  基于响应面法的耐镉假单胞菌TCd-1培养条件优化 . 浙江农林大学学报, 2020, 37(5): 914-921. doi: 10.11833/j.issn.2095-0756.20190587
    [9] 付勇, 裴建川, 李梅, 王鹏程, 王洁洁.  多壁碳纳米管和重金属镉的细菌毒性及影响机制 . 浙江农林大学学报, 2020, 37(2): 319-324. doi: 10.11833/j.issn.2095-0756.2020.02.017
    [10] 肖继波, 黄志达, 陈玉莹, 瞿倩, 褚淑祎.  高效除磷型底泥陶粒的制备及性能分析 . 浙江农林大学学报, 2019, 36(2): 415-421. doi: 10.11833/j.issn.2095-0756.2019.02.024
    [11] 王徵, 朱斐.  黑腹果蝇吞噬细胞对金黄葡萄球菌与大肠埃希菌的不同吞噬作用 . 浙江农林大学学报, 2017, 34(3): 381-388. doi: 10.11833/j.issn.2095-0756.2017.03.001
    [12] 沈泉, 沈颖, 徐秋芳, 王炀波.  外源竹炭对土壤硝酸根离子的吸附效应 . 浙江农林大学学报, 2014, 31(4): 541-546. doi: 10.11833/j.issn.2095-0756.2014.04.008
    [13] 沈振明, 夏俊, 戴勇, 沈秋兰, 李永春, 徐秋芳.  阴离子淀粉对土壤养分离子的吸附作用 . 浙江农林大学学报, 2014, 31(3): 366-372. doi: 10.11833/j.issn.2095-0756.2014.03.006
    [14] 吴光前, 孙新元, 张齐生.  活性炭表面氧化改性技术及其对吸附性能的影响 . 浙江农林大学学报, 2011, 28(6): 955-961. doi: 10.11833/j.issn.2095-0756.2011.06.020
    [15] 窦春英, 徐温新, 叶正钱, 张圆圆, 姚芳, 吕家珑.  6种典型农田土壤的锌吸附-解吸特性 . 浙江农林大学学报, 2010, 27(1): 8-14. doi: 10.11833/j.issn.2095-0756.2010.01.002
    [16] 张圆圆, 窦春英, 姚芳, 叶正钱.  氮素营养对重金属超积累植物东南景天吸收积累锌和镉的影响 . 浙江农林大学学报, 2010, 27(6): 831-838. doi: 10.11833/j.issn.2095-0756.2010.06.005
    [17] 徐爱春, 陈益泰, 陈庆红, 王树凤.  镉胁迫下旱柳无性系耐镉性变异及生理变化 . 浙江农林大学学报, 2009, 26(5): 674-681.
    [18] 鲍滨福, 王品维, 张齐生, 沈哲红, 马建义.  竹醋液与农药助剂对表面张力的联合效应 . 浙江农林大学学报, 2008, 25(5): 569-572.
    [19] 周兵, 安传福, 董云发, 强胜.  用大孔吸附树脂分离链格孢菌毒素 . 浙江农林大学学报, 2007, 24(2): 198-202.
    [20] 聂发辉, 吴彩斌, 吴双桃.  商陆对镉的富集特征 . 浙江农林大学学报, 2006, 23(4): 400-405.
  • 期刊类型引用(1)

    1. 王鹏,王雪峰,赵溪月. 基于双目视觉系统的幼龄格木生长因子测定. 森林与环境学报. 2024(06): 628-638 . 百度学术

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200297

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/355

图(4) / 表(2)
计量
  • 文章访问数:  1520
  • HTML全文浏览量:  381
  • PDF下载量:  30
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-04-28
  • 修回日期:  2020-12-01
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2021-04-01

不同官能团多壁碳纳米管对镉的吸附及细菌毒性

doi: 10.11833/j.issn.2095-0756.20200297
    基金项目:  浙江农林大学大学生科研训练项目(KX20180093);国家自然科学基金资助项目(21607132,42076038)
    作者简介:

    李思艳(ORCID: 0000-0001-8826-3531),从事碳纳米管与重金属相互作用研究。E-mail: 1203921869@qq.com

    通信作者: 李梅(ORCID: 0000-0002-1727-3617),讲师,从事水污染控制和纳米材料环境风险评估研究。E-mail: limei@zafu.edu.cn
  • 中图分类号: S682.2

摘要:   目的  探讨不同官能团多壁碳纳米管对镉离子(Cd2+)的吸附作用,揭示多壁碳纳米管影响镉细菌毒性的机制。  方法  通过批量吸附平衡实验研究不同官能团(羟基化、羧基化、氨基化、未经修饰)多壁碳纳米管(MWCNTs)对Cd2+的吸附性能,通过细菌毒性实验评估不同官能团多壁碳纳米管和Cd2+对大肠埃希菌Escherichia coli的毒性效应。  结果  4种多壁碳纳米管对Cd2+的吸附能力从大到小依次为羧基化多壁碳纳米管、羟基化多壁碳纳米管、多壁碳纳米管、氨基化多壁碳纳米管,吸附性能与碳纳米管含氧量相关。多壁碳纳米管- Cd2+复合物细菌毒性低于游离Cd2+,随纳米管质量浓度增加(0~200 mg·L−1),羧基化多壁碳纳米管-Cd2+复合物作用下细菌存活率从67%提高到81%。  结论  不同官能团多壁碳纳米管对Cd2+的吸附量与碳纳米管含氧量呈正相关;多壁碳纳米管-Cd2+复合物细菌毒性低于游离Cd2+,认为多壁碳纳米管可降低游离Cd2+的细菌毒性。图4表2参26

English Abstract

农正国, 熊忠平, 徐正会, 等. 新疆天山中-西段不同垂直带蚂蚁物种多样性[J]. 浙江农林大学学报, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
引用本文: 李思艳, 刘俊蕃, 李梅. 不同官能团多壁碳纳米管对镉的吸附及细菌毒性[J]. 浙江农林大学学报, 2021, 38(2): 355-361. DOI: 10.11833/j.issn.2095-0756.20200297
NONG Zhengguo, XIONG Zhongping, XU Zhenghui, et al. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
Citation: LI Siyan, LIU Junfan, LI Mei. Adsorption of cadmium on multi-walled carbon nanotubes with different functional groups and their bacterial toxicity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 355-361. DOI: 10.11833/j.issn.2095-0756.20200297
  • 近年来,随着纳米技术的发展,碳纳米管作为一种新型吸附剂被广泛应用于多种重金属的去除[1-2]。碳纳米管表面的羧基、羟基等官能团与重金属相互作用,提高了碳纳米管对重金属的吸附和选择[3-7],是影响碳纳米管吸附重金属的重要因素。除作为吸附剂使用外,碳纳米管和重金属在环境中共存时,也会影响重金属的生态毒性。LIU等[8-9]发现:多壁碳纳米管本身对斑马鱼Danio rerio没有毒性,但却由于吸附了铅(Pb)和锌(Zn),加重了两者在斑马鱼体内的积累和毒性。MARTINEZ等[10]发现:硝酸氧化后的多壁碳纳米管加剧了Pb在鱼体中的累积。YU等[11]发现:表面未处理的多壁碳纳米管会抑制大型蚤Daphnia magna对重金属的吸收,而表面具有含氧官能团的多壁碳纳米管吸附了重金属,由于“木马效应”,重金属在大型蚤内大量积累。与其他生物相比,微生物既是生态食物链的最底层也是分解者,因此微生物的生态风险评价更为重要。WANG等[12]发现:铜(Cu)和铬(Cr)增强了碳纳米管对微生物群落的影响。付勇等[13]对3种短多壁碳纳米管和镉离子(Cd2+)的复合细菌毒性进行了初步研究,但未阐明不同官能团对碳纳米管吸附机制的影响[13]。在此基础上,本研究以未经修饰、羧基化、羟基化和氨基化多壁碳纳米管为材料,通过Cd2+吸附平衡实验和细菌毒性实验评估不同官能团多壁碳纳米管对重金属吸附及对大肠埃希菌Escherichia coli毒性的影响,从多壁碳纳米管与重金属相互作用角度揭示表面官能团在多壁碳纳米管影响重金属细菌毒性中的作用机制。

    • 未经修饰(MWCNTs)、羟基化(O-MWCNTs)、羧基化(C-MWCNTs)和氨基化多壁碳纳米管(N-MWCNTs)均购自上海阿拉丁生化科技股份有限公司,纯度>95%,内径为3~5 nm,外径为8~15 nm,长度约为50 μm。用超纯水配制成1 000 mg·L−1的碳纳米管悬液作为母液,使用前超声分散15 min,并用超纯水稀释至所需质量浓度。100 mg·L−1质量浓度下,4种不同官能团多壁碳纳米管的zeta电位、含氧量、电导率和pH等参数见表1

      表 1  不同官能团多壁碳纳米管的测定参数

      Table 1.  Determination parameters of MWCNTs with different functional groups

      zeta电位/mV含氧量/%电导率/(μS·cm−1)pH
      多壁碳纳米管    −9.14 5.654 0.87 6.57
      羟基化多壁碳纳米管−7.196.6291.796.10
      羧基化多壁碳纳米管−12.7611.2862.985.88
      氨基化多壁碳纳米管−8.984.5811.137.23

      用分析纯四水硝酸镉[Cd(NO3)2·4H2O]配制100 mg·L−1的Cd2+储备液作为母液,使用前超纯水稀释至所需质量浓度。以分离自生活污水的大肠埃希菌(Genbank收录号:MG388227)为模型微生物,菌种保存于4 ℃冰箱中。使用前接种于LB液体培养基,37 ℃、150 r·min−1在恒温振荡器中培养过夜,然后3 000 r·min−1离心制备菌悬液。为排除盐度影响,细菌用超纯水离心洗涤2次,利用紫外-可见分光光度计调节D(600)至1.0,菌落数量约为1×109 CFU·mL−1

    • 固定多壁碳纳米管质量浓度为1 000 mg·L−1,调节Cd2+质量浓度为0 (对照)、1、2、5、10和15 mg·L−1。150 r·min−1、25 ℃恒温振荡3 h;4 000 r·min−1离心后取上清液,经0.22 μm滤膜过滤,利用电感耦合等离子体发射光谱仪(ICP,Prodigy7,利曼-徕伯斯公司,美国)测定滤液中Cd2+质量浓度,计算平衡吸附量,绘制吸附等温线。Langmuir吸附等温式:q=qmKlc/1+Klc。其中:q为平衡吸附量(mg·g−1),qm为单分子层饱和吸附量(mg·g−1),Kl为平衡吸附常数,c为溶液中吸附质平衡浓度(mg·g−1)。Freundlich吸附等温式:q=Kfc1/n。其中: Kf为平衡吸附常数,n为常数。用Origin 9.0绘制吸附等温线,分别用Langmuir和Freundlich吸附等温式进行曲线拟合,得到qmKl以及Kfn

    • 参考付勇等[13]、李梅等[14]进行细菌毒性实验,采取染毒和生长抑制实验相结合的方法。量取Cd2+母液,调节质量浓度至0(对照)、1、2、4、8、10 mg·L−1,定容至9 mL。量取各官能团多壁碳纳米管悬液母液,调节质量浓度至0(对照)、10、20、50、100、200 mg·L−1,定容至9 mL。固定Cd2+质量浓度至1 mg·L−1,分别加入0(对照)、10、20、50、100、200 mg·L−1的各官能团多壁碳纳米管悬液,定容至9 mL。往各样品中加入1 mL细菌悬液[D(600)=1.0],150 r·min−1、25 ℃恒温培养3 h进行染毒实验。染毒结束后,取1 mL混合液转移至9 mL灭菌后的LB液体培养基中,37 ℃振荡培养,每隔1 h测定混合液600 mn波长处的吸光度[D(600)]。为避免颗粒沉降造成的影响,每次吸光度测定前样品均先涡旋混合10 s。计算细菌存活率(%):S=[D(600)t-sD(600)o-s]/[D(600)t-cD(600)o-c]。其中:D(600)o-c为对照组初始时刻600 nm下吸光度,D(600)t-c为对照组t时刻600 nm下吸光度,D(600)o-s为样品组初始时刻600 nm下吸光度,D(600)t-s为样品组t时刻600 nm下吸光度。根据对照组迟滞期长短,t时刻选取2或3,各组取的t时刻与对照组相同。利用SPSS软件对数据进行显著性分析。

    • 25 ℃条件下不同官能团多壁碳纳米管对Cd2+的吸附等温线见图1,Langmuir和Freundlich等温式拟合参数见表2。从图1可以看出:相同条件下,不同官能团多壁碳纳米管对Cd2+的吸附能力大小依次为羧基化多壁碳纳米管、羟基化多壁碳纳米管、多壁碳纳米管、氨基化多壁碳纳米管。结合表2可知:4种多壁碳纳米管对Cd2+的吸附均可以用Langmuir和Freundlich方程较好地拟合,其中羟基化和羧基化多壁碳纳米管的Langmuir和Freundlich拟合相关系数R2均达到了0.95以上。对于未修饰的多壁碳纳米管和氨基化多壁碳纳米管,Freundlich方程拟合效果更好。

      图  1  不同官能团多壁碳纳米管对Cd2+的吸附等温线

      Figure 1.  Adsorption isotherm of Cd2+ on MWCNTs with different functional groups

      表 2  不同碳纳米管对Cd2+的吸附等温线方程拟合参数

      Table 2.  Regression parameters of adsorption isotherms of Cd2+ onto different MWCNTs

      样品Langmuir方程Freundlich方程
      方程式qm/(mg·g−1)Kl/(L·mg−1)R2方程式nKfR2
      多壁碳纳米管   q=1.002c/(1+0.238c)4.2120.2380.896q=0.976c0.4672.1080.9760.954
      羟基化多壁碳纳米管q=2.346c/(1+0.273c)8.5930.2730.954q=2.131c0.4732.1132.1310.994
      羧基化多壁碳纳米管q=7.442c/(1+0.451c)16.4860.4510.989q=5.103c0.4832.0715.1030.950
      氨基化多壁碳纳米管q=0.386c/(1+0.066c)5.8820.0660.796q=0.564c0.6071.6470.5640.852

      Langmuir吸附等温式适用于表面均匀吸附剂的吸附,可预测最大吸附量,拟合相关系数R2值越接近于1,预测得到的最大吸附量将越接近于真实值。Freundlich吸附等温式适用于不均匀表面吸附剂的吸附,n值越小代表越难吸附。由表2可以看出:羧基化多壁碳纳米管吸附量最大,是羟基化多壁碳纳米管的约2倍,是未修饰多壁碳纳米管的约4倍;Langmuir吸附等温式拟合的氨基化多壁碳纳米管吸附方程对应的R2值偏低,其计算最大吸附量比实际值要大;平衡吸附常数的大小也在一定程度上代表了吸附剂的吸附性能,4种碳纳米管的Freundlich平衡吸附常数Kf与其最大吸附量相一致,说明Freundlich吸附等温式更适用于分析不同多壁碳纳米管对Cd2+的吸附。

    • 图2可知:1 mg·L−1的Cd2+处理下,大肠埃希菌存活率约为70%;随着Cd2+质量浓度升高(10 mg·L−1),大肠埃希菌存活率缓慢但持续下降(50%)。为减少因Cd2+质量浓度变化对多壁碳纳米管毒性实验的影响,后续实验中固定Cd2+质量浓度为1 mg·L−1

      图  2  Cd2+的细菌毒性

      Figure 2.  Bacterial toxicity of Cd2+

    • 图3可知:与对照相比,质量浓度不大于200 mg·L−1时,不同官能团多壁碳纳米管对大肠埃希菌存活不存在抑制作用,甚至不同程度提高了细菌的存活率,其中羧基化碳纳米管对大肠埃希菌的存活最有利。

      图  3  不同官能团多壁碳纳米管的细菌毒性

      Figure 3.  Bacterial toxicity of MWCNTs with different functional groups

    • 固定Cd2+质量浓度为1 mg·L−1,考察不同质量浓度的4种官能团多壁碳纳米管对Cd2+大肠埃希菌毒性的影响。从图4可以看出:随着多壁碳纳米管质量浓度的增大,4种官能团多壁碳纳米管-Cd2+复合物处理下的大肠埃希菌存活率缓慢增加。与1 mg·L−1的Cd2+相比,当复合物中多壁碳纳米管质量浓度达到200 mg·L−1时,细菌存活率提高了11%(未修饰多壁碳纳米管)~14%(羧基化多壁碳纳米管),可见4种官能团多壁碳纳米管均显著降低了Cd2+的细菌毒性。

      图  4  不同官能团多壁碳纳米管对Cd2+细菌毒性的影响

      Figure 4.  Effect of MWCNTs with different functional groups on toxicity of Cd2+ to E. coli

    • 碳纳米管对重金属的吸附机制包括物理吸附、静电引力、表面络合、离子交换等[15]。通常认为影响物理吸附的主要因素为吸附剂表面积,表面积越大,暴露的活性吸附点位也越多,吸附能力也越强[16]。本研究中4种多壁碳纳米管管长和管径相同,物理吸附能力(有效吸附面积,即吸附点位)主要与其在水中的分散性能有关。未修饰多壁碳纳米管和氨基化多壁碳纳米管在水中易团聚,羧基化和羟基化多壁碳纳米管分散性能较好,因此对Cd2+的物理吸附性能优于前两者。碳纳米管与Cd2+间的静电引力主要取决于碳纳米管的表面电荷。相较于其他3种多壁碳纳米管,羧基化多壁碳纳米管表面的羧基解离使-COOH变成了COO,带负电荷更多(表1),与带正电荷的Cd2+静电吸引强,是羧基化多壁碳纳米管对Cd2+的吸附能力大的原因[17]。多壁碳纳米管含氧官能团对重金属的吸附主要通过络合作用[18-19]。XU等[20]发现:羧基化和羟基化多壁碳纳米管都可与重金属离子产生表面络合作用。本研究发现:4种多壁碳纳米管含氧量从大到小依次为羧基化多壁碳纳米管、羟基化多壁碳纳米管、多壁碳纳米管、氨基化多壁碳纳米管;结合图1可知:多壁碳纳米管含氧量越高,与Cd2+的反应就越剧烈。本研究中未修饰的多壁碳纳米管和氨基化多壁碳纳米管对Cd2+的吸附主要为物理吸附和静电引力,而羟基化和羧基化多壁碳纳米管吸附Cd2+主要为络合作用,与羟基相比,羧基与Cd2+的化学键能更强,因而络合反应也更大,即羧基化多壁碳纳米管对Cd2+的吸附性能更好。

      多壁碳纳米管对Cd2+的吸附决定了水中游离Cd2+的质量浓度,一定程度上影响了Cd2+的生物可利用性。利用碳纳米管对溶解Cd2+质量浓度的影响可预测其对Cd2+细菌毒性的影响。若不考虑碳纳米管与细菌的接触,仅考虑Cd2+细菌毒性的变化,羧基化多壁碳纳米管对Cd2+细菌毒性的降低最明显,其次为羟基化多壁碳纳米管,氨基化多壁碳纳米管和未修饰的多壁碳纳米管对重金属细菌毒性影响较小。

    • 超纯水中Cd2+主要以游离态存在,其致毒机制主要为与大肠埃希菌表面上的吸附位点结合,通过离子通道等途径进入大肠埃希菌内,并在某些特定部位富集[21]。实验室条件下,Cd2+细菌毒性随Cd2+质量浓度增大(1~10 mg·L−1)而增强,在菌落数为1×108 CFU·mL−1时,大肠埃希菌存活率从70%降至50%左右。

    • 目前认为碳纳米管与细菌直接接触对细胞膜穿刺造成的物理损伤是碳纳米管对细菌产生毒性的重要因素[22]。碳纳米管与细菌是否能够直接接触不仅取决于碳纳米管表面电荷,还取决于碳纳米管质量浓度及分散状况。本研究中4种多壁碳纳米管表面均带负电荷,其中羧基化多壁碳纳米管负电荷最多,因此与带负电荷的细菌之间存在静电斥力,不利于接触。但羧基化多壁碳纳米管和羟基化碳纳米管分散性较好,与细菌接触机会相对更多;未修饰多壁碳纳米管和氨基化多壁碳纳米管团聚性较强,因团聚而大部分沉降,与细菌接触机会较少。同时多壁碳纳米管外径为8~15 nm,长度约为50 μm,因接触造成的物理损伤仅在细胞壁产生;因此可以认为多壁碳纳米管对细菌生长没有抑制。相反,羧基化多壁碳纳米管存在条件下,细菌存活率提高;这是由于细菌正常生长需要适合的渗透压,等渗条件下细菌抗毒能力强,低于等渗离子强度时,离子强度越大,细菌存活率越高[23]。为排除离子强度对碳纳米管影响,本研究利用超纯水为背景介质,100 mg·L−1质量浓度下,羧基化多壁碳纳米管电导率最高,表面负电荷最多,与细菌的静电斥力更强,因此羧基化多壁碳纳米管存在条件下,细菌存活率明显高于其他处理。

    • 多壁碳纳米管对Cd2+毒性的影响可以从3个方面来解释。①多壁碳纳米管的毒性。多壁碳纳米管吸附Cd2+后,表面负电荷均被中和,颗粒自团聚和颗粒与细菌间的异团聚性能均增加,2种团聚对细菌的毒性影响相反,因此多壁碳纳米管吸附Cd2+前后自身毒性变化可以忽略。②游离态Cd2+的毒性。游离态Cd2+质量浓度受到多壁碳纳米管类型与质量浓度的影响[24]。对4种多壁碳纳米管的吸附等温拟合发现:同等初始质量浓度时,不同官能团多壁碳纳米管对Cd2+的吸附能力从大到小依次为羧基化多壁碳纳米管、羟基化多壁碳纳米管、多壁碳纳米管、氨基化多壁碳纳米管,而由游离态Cd2+造成的细菌毒性与其质量浓度一致。③多壁碳纳米管-Cd2+复合物的毒性。除游离态Cd2+外,体系中存在的多壁碳纳米管-Cd2+复合物也可能会对细菌产生毒性[13]。多壁碳纳米管吸附Cd2+后表面负电荷降低,导致多壁碳纳米管与细菌的接触机会增加,此时,与多壁碳纳米管结合能力弱的Cd2+将可能转移至细菌表面对细胞膜产生损伤。另外,其物理损伤将会促进Cd2+进入细菌细胞内,从而产生伤害[25-26]。未修饰多壁碳纳米管-Cd2+复合物与氨基化多壁碳纳米管-Cd2+复合物对细菌的毒性不能忽略。总体上多壁碳纳米管吸附Cd2+造成的毒性降低大于多壁碳纳米管与细菌直接接触造成的毒性增强,因此表现为多壁碳纳米管可降低环境Cd2+的细菌毒性。

    • 多壁碳纳米管内外管径及长度均相同时,多壁碳纳米管吸附Cd2+性能与其表面官能团含氧量有关,含氧量越高,吸附能力越强。即4种多壁碳纳米管对Cd2+质量浓度降低程度从高到低依次为羧基化多壁碳纳米管、羟基化多壁碳纳米管、多壁碳纳米管、氨基化多壁碳纳米管。4种多壁碳纳米管对Cd2+的吸附在不同程度上降低Cd2+生物有效性,同时碳纳米管-Cd2+复合物也存在一定毒性,总体上多壁碳纳米管质量浓度越高,对Cd2+细菌毒性降低越显著,相比之下,羧基化多壁碳纳米管表现了更强的降毒能力。

参考文献 (26)

目录

/

返回文章
返回