留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松阳县典型中轻度污染耕地镉输入输出平衡研究

徐火忠 吴东涛 李贵松 吴林土 叶春福 郭彬 马嘉伟 叶正钱 柳丹

徐火忠, 吴东涛, 李贵松, 吴林土, 叶春福, 郭彬, 马嘉伟, 叶正钱, 柳丹. 松阳县典型中轻度污染耕地镉输入输出平衡研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200728
引用本文: 徐火忠, 吴东涛, 李贵松, 吴林土, 叶春福, 郭彬, 马嘉伟, 叶正钱, 柳丹. 松阳县典型中轻度污染耕地镉输入输出平衡研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200728
XU Huozhong, WU Dongtao, LI Guisong, WU Lintu, YE Chunfu, GUO Bin, MA Jiawei, YE Zhengqian, LIU Dan. Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200728
Citation: XU Huozhong, WU Dongtao, LI Guisong, WU Lintu, YE Chunfu, GUO Bin, MA Jiawei, YE Zhengqian, LIU Dan. Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200728

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

松阳县典型中轻度污染耕地镉输入输出平衡研究

doi: 10.11833/j.issn.2095-0756.20200728
基金项目: 浙江省重点研发计划项目(2018C03028)
详细信息
    作者简介: 徐火忠(ORCID: 0000-0003-3718-642X),从事土壤重金属污染评价及修复研究。E-mail: 475469834@qq.com
    通信作者: 柳丹(ORCID: 0000-0003-1102-6639),教授,博士生导师,从事重金属污染修复研究。E-mail: liudan7812@aliyun.com
  • 中图分类号: X53

Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County

  • 摘要:   目的  为准确了解浙江省丽水市松阳县农田土壤中镉(Cd)污染来源并制定修复对策。  方法  2017−2019年,以浙江省丽水市松阳县典型耕地为研究对象,通过采集当地的投入品和农作物,连续3 a监测重金属Cd的输入和输出量。  结果  2017−2019年,研究区肥料与大气沉降是Cd的主要农业污染来源,占比分别为49.78%和40.16%、50.20%和39.14%、34.04%和48.09%;投入品每年Cd的总输入量分别占土壤Cd总量的0.18%、0.17%和0.14%。水稻Oryza sativa、油菜Brassica napus与茶Camellia sinensis的Cd年总输出量分别为2 820.00、2 706.00和2 629.50 mg·hm−2·a−1,年平均输出量为2 718.50 mg·hm−2·a−1,年平均输出量总体较为平稳。2017−2019年间Cd年输入量和输出量均逐年降低,但Cd年输出量均大于Cd年输入量,其原因可能是Cd在植物中出现了富集。  结论  该地区Cd的农业污染来源主要为肥料和大气沉降,环境及农投品整体属于清洁水平,但大气沉降量有上升的趋势,因此需对该区域继续实施长期监测;植物的年输出量均大于投入品的输入量,因此需避免秸秆直接还田,并及时修复当地受污染的土壤以及种植的植物。图1表5参25
  • 图  1  2017−2019年研究区投入品镉输入占比比较

    Figure  1  Comparison of input analysis results of demonstration area in 2017−2019

    表  1  2017−2019年大气干湿沉降镉年输入量

    Table  1.   Cd input of atmospheric dry and wet deposition in 2017−2019

    年份降水中Cd质量浓度/(mg·L−1·a−1)Cd年输入量/(mg·hm−2·a−1)总计/(mg·hm−2·a−1)
    湿沉降干沉降
    20170.02±0.00 a308.55±56.30 a194.40±14.00 a502.95±63.30 a
    20180.02±0.00 a268.95±16.86 a183.00±12.52 a451.95±29.38 a
    20190.02±0.00 a343.20±18.28 a141.30±12.62 a484.50±30.90 a
      说明:不同小写字母表示在0.05水平上差异显著
    下载: 导出CSV

    表  2  2017−2019年研究区稻田与茶园化肥中镉年输入量

    Table  2.   Cd annual chemical fertilizer input of paddy field and tea garden in demonstration area from 2017 to 2019

    年份类别Cd年输入量/(mg·hm−2·a−1)合计/(mg·hm−2·a−1)总计/(mg·hm−2·a−1)
    尿素过磷酸钙复合肥
    2017稻田3.00±0.23 b332.40±47.20 a137.34±25.60 a472.74±59.13 a623.49±102.35 a
    茶园3.60±0.32 b0147.15±30.26 a150.75±38.80 a
    2018稻田19.95±1.93 a48.48±3.20 b235.20±54.60 a303.63±44.96 ab579.57±65.05 a
    茶园23.94±3.72 a0252.00±58.50 a275.94±42.26 a
    2019稻田12.00±2.01 ab26.88±3.20 b139.86±23.60 a178.74±57.48 b342.99±37.26 a
    茶园14.40±1.80 ab0149.85±16.00 a164.25±34.84 a
      说明:不同小写字母表示在0.05水平上差异显著
    下载: 导出CSV

    表  3  2017−2019年灌溉水和农药镉年输入量

    Table  3.   Cd content of irrigation water and pesticides from 2017−2019

    年份灌溉水农药
    平均质量浓度/(μg·L−1)年输入量/(mg·hm−2·a−1)平均质量分数/(mg·kg−1)年输入量/(mg·hm−2·a−1)
    20170.21±0.04 a126.00±14.60 a0.07±0.01 a0.05±0.01 a
    20180.21±0.02 a123.00±19.90 a0.09±0.01 a0.06±0.01 a
    20190.30±0.02 a180.00±6.00 a0.06±0.03 a0.05±0.00 a
      说明:不同小写字母表示在0.05水平上差异显著
    下载: 导出CSV

    表  4  2017−2019年研究区不同植物部位的镉质量分数与总输出量

    Table  4.   Concentration and total output of Cd in different plant parts of demonstration area from 2017−2019

    年份水稻油菜Cd总输出量/
    (mg·hm−2·a−1)
    Cd质量分数/(mg·kg−1)Cd输出量/
    (mg·hm−2·a−1)
    Cd质量分数/(mg·kg−1)Cd输出量/
    (mg·hm−2·a−1)
    Cd质量分数(mg·kg−1)Cd输出量/
    (mg·hm−2·a−1)
    稻米稻秆油菜籽油菜秆茶叶茶枝条
    20170.12±0.02 a0.21±0.03 a1026.00±93.27 a0.13±0.03 a0.63±0.06 a723.00±82.70 a0.09±0.02 a0.66±0.13 a1 071.00±299.08 a2 820.00±335.05 a
    20180.10±0.01 a0.21±0.02 a943.50±62.90 a0.15±0.04 a0.63±0.08 a750.00±92.41 a0.05±0.01 b0.21±0.05 b1012.50±99.69 a2 706.00±235.04 b
    20190.09±0.01 a0.22±0.04 a985.50±75.59 a0.05±0.01 b0.63±0.06 a622.50±59.32 b0.06±0.01 b0.21±0.07 b1021.50±98.61 a2 629.50±223.52 b
      说明:不同小写字母表示在0.05水平上差异显著
    下载: 导出CSV

    表  5  2017−2019年镉输入与输出量各项比较

    Table  5.   Comparison of Cd input and output from 2017−2019

    年份Cd输入/(mg·hm−2)Cd输出/(mg·hm−2)
    大气沉降肥料灌溉水农药总量水稻油菜总量
    2017502.95±63.30 a623.49±102.35 a126.00±34.60 a0.05±0.01 a1 252.50±153.37 a1 026.00±93.27 a723.00±83.70 a0.66±0.13 a2820.00±335.05 a
    2018451.95±29.38 a579.57±65.05 a123.00±29.90 a0.06±0.02 a1 154.58±108.72 a943.50±62.9 a750.00±92.41 a0.21±0.05 b2706.00±235.04 b
    2019484.50±30.90 a342.99±37.26 a180.00±6.00 a0.05±0.02 a1 007.57±63.20 b985.50±75.59 a622.50±59.32 b0.21±0.07 b2629.50±223.52 b
      说明:不同小写字母表示在0.05水平上差异显著
    下载: 导出CSV
  • [1] 陈世宝, 王萌, 李杉杉, 等. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 2019, 26(6): 35 − 41.

    CHEN Shibao, WANG Meng, LI Shanshan, et al. Current status of and discussion on farmland heavy metal pollution prevention in China [J]. Earth Sci Front, 2019, 26(6): 35 − 41.
    [2] CHEN Junren, SHAFI M, LI Song, et al. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens) [J]. Sci Rep, 2015, 5: 13554. doi: 10.1038/srep13554.
    [3] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689 − 1692. doi:  10.11654/jaes.2017-1220

    CHEN Nengyang ZHENG Yuji, HE Xiaofeng, et al. Analysis of the bulletin of national soil pollution survey [J]. J Agro-Environ Sci, 2017, 36(9): 1689 − 1692. doi:  10.11654/jaes.2017-1220
    [4] TENG Yangguo, NI Shijun, WANG Jinsheng. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China [J]. J Geochem Exp, 2010, 104(3): 118 − 127. doi:  10.1016/j.gexplo.2010.01.006
    [5] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261 − 272.

    CHEN Weiping, YANG Yang, XIE Tian et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China [J]. Acta Pedol Sin, 2018, 55(2): 261 − 272.
    [6] ZARCINAS B A, CHE F I, MCLAUGHLIN M J, et al. Heavy metals in soils and crops in southeast Asia [J]. Environ Geochem Health, 2004, 26(3): 343 − 357.
    [7] YI Kexin, FAN Wang, CHEN Jiayu. Annual input and output fluxes of heavy metals to paddy fields in four types of contaminated areas in Hunan Province, China [J]. Sci Total Environ, 2018, 634: 67 − 76. doi:  10.1016/j.scitotenv.2018.03.294
    [8] BELON E, BOISSON M, DEPORTES I Z, et al. An inventory of trace elements inputs to French agricultural soils [J]. Sci Total Environ, 2012, 439(15): 87 − 95.
    [9] JIANG Wei, HOU Qingye, YANG Zhongfang, et al. Annual input fluxes of heavy metals in agricultural soil of Hainan Island, China [J]. Environ Sci Pollut Res, 2014, 21(13): 7876 − 7885. doi:  10.1007/s11356-014-2679-0
    [10] 周永章, 沈文杰, 李勇, 等. 基于通量模型的珠江三角洲经济区土壤重金属地球化学累积预测预警研究[J]. 地球科学进展, 2012, 27(10): 1115 − 1125.

    ZHOU Yongzhang, SHEN Wenjie, LI Yong, et al. A study of prediction and early-warning forecast on geochemical accumulation of soil heavy metals based on flux model in Pearl River delta Economic zone (China) [J]. Adv Earth Sci, 2012, 27(10): 1115 − 1125.
    [11] NICHOLSON F A, MCIWEM S R S, ALLOWAY B J, et al. Quantifying heavy metal inputs to agricultural soils in England and Wales [J]. Water Environ J, 2006, 20(2): 87 − 95. doi:  10.1111/j.1747-6593.2006.00026.x
    [12] 张昱, 胡君利, 白建峰, 等. 电子废弃物拆解区周边农田土壤重金属污染评价及成因解析[J]. 生态环境学报, 2017, 26(7): 1228 − 1234.

    ZHANG Yu, HU Junli, BAI Jianfeng, et al. Contamination assessment and genesis analysis of heavy metals in farmland soils around a waste electrical and electronic equipment’s disassembling area [J]. Ecol Environl Sci, 2017, 26(7): 1228 − 1234.
    [13] XIA Xueqi, YANG Zhongfang, CUI Yujun, et al. Soil heavy metal concentrations and their typical input and output fluxes on the southern Song-nen Plain, Heilongjiang Province, China [J]. J Geochem Exp, 2014, 139: 85 − 96. doi:  10.1016/j.gexplo.2013.06.008
    [14] DOABI, AHMADI S, AFYUNI K M, et al. Regional-scale fluxes of zinc, copper, and nickel into and out of the agricultural soils of the Kermanshah province in western Iran [J]. Environ Monit Assess, 2016, 188(4): 1 − 18.
    [15] 石陶然. 基于输入输出清单的浙江省农田土壤重金属预测预警及污染状况研究[D]. 杨凌: 西北农林科技大学, 2019.

    SHI Taoran. Prediction and Early-Warning Forecast on Heavy Metals and Their Pollution Status in Agricultural Soils in Zhejiang Province, China Based on Input-Output Inventory[D]. Yangling: Northwest A&F University, 2019.
    [16] 黄颖. 不同尺度农田土壤重金属污染源解析研究[D]. 杭州: 浙江大学, 2018.

    HUANG Ying. The Exploring of Heavy Metal Pollution Source Apportionment in Various Scale of Agricultural Soils[D]. Hangzhou: Zhejiang University, 2018.
    [17] 李娇, 吴劲, 蒋进元, 等. 近十年土壤污染物源解析研究综述[J]. 土壤通报, 2018, 49(1): 232 − 242.

    LI Jiao, WU Jin, JIANG Jinyuan, et al. Review on source apportionment of soil pollutants in recent ten years [J]. Chin J Soil Sci, 2018, 49(1): 232 − 242.
    [18] 杨硕, 阎秀兰, 冯依涛. 河北曹妃甸某农场农田土壤重金属空间分布特征及来源分析[J]. 环境科学学报, 2019, 39(9): 3064 − 3072.

    YANG Shuo, YAN Xiulan, FENG Yitao. Spatial distribution and source identification of heavy metals in the farmland soil of the Caofeidian in Hebei Province [J]. Acta Sci Circumstantiate, 2019, 39(9): 3064 − 3072.
    [19] LIU Ping, ZHAO Haijun, WANG Lili, et al. Analysis of heavy metal sources for vegetable soils from Shandong Province, China [J]. Agric Sci China, 2011, 10(1): 109 − 119. doi:  10.1016/S1671-2927(11)60313-1
    [20] 杨梦丽, 马友华, 黄文星, 等. 土壤Cd和Pb有效态与全量和pH相关性研究[J]. 广东农业科学, 2019, 46(4): 80 − 86.

    YANG Mengli, MA Youhua, HUANG Wenxing, et al. Study on the correlation between available state, total amount and pH of soil Cd and Pb [J]. Guangdong Agric Sci, 2019, 46(4): 80 − 86.
    [21] 朱鹏, 刘洋, 陈良华, 等. 岷江下游农田生态系统重金属铅镉锌的输入源格局[J]. 农业环境科学学报, 2013, 32(9): 1814 − 1820. doi:  10.11654/jaes.2013.09.016

    ZHU Peng, LIU Yang, CHEN Lianghua, et al. Input pattern of sources for Pb, Cd and Zn in the agricultural ecological system in the lower reaches(Wutongqiao Section) of Minjiang River [J]. J Agri-Environ Sci, 2013, 32(9): 1814 − 1820. doi:  10.11654/jaes.2013.09.016
    [22] HUANG Wen, DUAN Danan, ZHANG Yulong, et al. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China [J]. Mar Pollut Bull, 2014, 85(2): 720 − 726. doi:  10.1016/j.marpolbul.2013.12.041
    [23] 张国忠, 黄威, 潘月鹏, 等. 河北典型农田大气重金属干沉降通量及来源解析[J]. 中国生态农业学报, 2019, 27(8): 1245 − 1254.

    ZHANG Guozhong, HUANG Wei, PAN Yuepeng, et al. Dry deposition flux of atmospheric heavy metals and its source apportionment in a typical farmland of Hebei Province [J]. Chin J Eco-Agric, 2019, 27(8): 1245 − 1254.
    [24] 陈芳, 董元华, 安琼, 等. 长期肥料定位试验条件下土壤中重金属的含量变化[J]. 土壤, 2005, 37(3): 308 − 311. doi:  10.3321/j.issn:0253-9829.2005.03.015

    CHEN Fang, DONG Yuanhua, AN Qiong, et al. Changes of soil heavy metal content in long-term fertilization trial [J]. Soils, 2005, 37(3): 308 − 311. doi:  10.3321/j.issn:0253-9829.2005.03.015
    [25] 童文彬, 郭彬, 林义成, 等. 衢州典型重金属污染农田镉、铅输入输出平衡分析[J]. 核农学报, 2020, 34(5): 1061 − 1069. doi:  10.11869/j.issn.100-8551.2020.05.1061

    TONG Wenbin, GUO Bin, LIN Yicheng, et al. Assessment of input-output patterns of Cd and Pb of typical heavy metal polluted agricultural land in Quzhou [J]. J Nucl Agric Sci, 2020, 34(5): 1061 − 1069. doi:  10.11869/j.issn.100-8551.2020.05.1061
  • [1] 张天然, 郑文革, 章银柯, 黄芳, 李晓璐, 袁楚阳, 于慧, 晏海, 邵锋.  杭州市临安区4种绿地内细颗粒物中重金属污染特征 . 浙江农林大学学报, 2021, 38(4): 737-745. doi: 10.11833/j.issn.2095-0756.20200558
    [2] 彭博, 刘鹏, 王妍, 张叶飞, 杨波.  普者黑流域表层水和沉积物中重金属污染特征及风险评价 . 浙江农林大学学报, 2021, 38(4): 746-755. doi: 10.11833/j.issn.2095-0756.20200547
    [3] 付勇, 裴建川, 李梅, 王鹏程, 王洁洁.  多壁碳纳米管和重金属镉的细菌毒性及影响机制 . 浙江农林大学学报, 2020, 37(2): 319-324. doi: 10.11833/j.issn.2095-0756.2020.02.017
    [4] 张延平, 陈振超, 汤富彬, 任传义, 倪张林, 屈明华.  浙、川、湘毛竹主产区冬笋重金属质量分数及健康风险评估 . 浙江农林大学学报, 2018, 35(4): 635-641. doi: 10.11833/j.issn.2095-0756.2018.04.008
    [5] 叶朝军, 吴家胜, 钟斌, 陈俊任, 郭佳, 徐美贞, 柳丹.  EDTA和有机酸对毛竹修复重金属污染土壤的强化作用 . 浙江农林大学学报, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006
    [6] 张友青, 李凯利, 刘兴泉, 王昭君, 吴俊, 陆品.  浙江省毛笋干有害物质污染及健康风险评估 . 浙江农林大学学报, 2017, 34(1): 178-184. doi: 10.11833/j.issn.2095-0756.2017.01.024
    [7] 金文奖, 侯平, 张伟, 梁立成, 俞飞.  温州鳌江流域表层底泥及河岸土壤重金属空间分布与生态风险评价 . 浙江农林大学学报, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [8] 张建云, 高才慧, 朱晖, 钟水根, 杨纹砚, 郑均泷, 吴胜春, 单胜道, 王志荣, 张进, 曹志洪, Peter CHRISTIE.  生物质炭对土壤中重金属形态和迁移性的影响及作用机制 . 浙江农林大学学报, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
    [9] 梁立成, 余树全, 张超, 钱力, 齐鹏.  浙江省永康市城区土壤重金属空间分布及潜在生态风险评价 . 浙江农林大学学报, 2017, 34(6): 972-982. doi: 10.11833/j.issn.2095-0756.2017.06.002
    [10] 许佳霖, 武帅, 梁鹏, 张进, 吴胜春.  高虹镇稻米中重金属污染状况及健康风险评价 . 浙江农林大学学报, 2017, 34(6): 983-990. doi: 10.11833/j.issn.2095-0756.2017.06.003
    [11] 张素, 梁鹏, 吴胜春, 张进, 曹志洪.  节能灯产地竹林土壤重金属污染的时空分布特征 . 浙江农林大学学报, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [12] 刘伸伸, 张震, 何金铃, 马友华, 胡宏祥, 张春格.  水生植物对氮磷及重金属污染水体的净化作用 . 浙江农林大学学报, 2016, 33(5): 910-919. doi: 10.11833/j.issn.2095-0756.2016.05.025
    [13] 钟斌, 陈俊任, 彭丹莉, 刘晨, 郭华, 吴家森, 叶正钱, 柳丹.  速生林木对重金属污染土壤植物修复技术研究进展 . 浙江农林大学学报, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [14] 晏闻博, 柳丹, 彭丹莉, 李松, 陈俊任, 叶正钱, 吴家森, 王海龙.  重金属矿山生态治理与环境修复技术进展 . 浙江农林大学学报, 2015, 32(3): 467-477. doi: 10.11833/j.issn.2095-0756.2015.03.021
    [15] 胡杨勇, 马嘉伟, 叶正钱, 柳丹, 赵科理.  东南景天Sedum alfredii修复重金属污染土壤的研究进展 . 浙江农林大学学报, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [16] 郭明, 武晓鹏, 孙东海, 周建钟, 张华.  新型基质固相萃取重金属离子分析及残留关联性 . 浙江农林大学学报, 2012, 29(4): 551-557. doi: 10.11833/j.issn.2095-0756.2012.04.011
    [17] 李冬林, 金雅琴, 张纪林, 阮宏华.  秦淮河河岸带典型区域土壤重金属污染分析与评价 . 浙江农林大学学报, 2008, 25(2): 228-234.
    [18] 姜培坤, 徐秋芳, 罗煦钦, 王俊奇.  雷竹笋重金属含量及其与施肥的关系 . 浙江农林大学学报, 2004, 21(4): 424-427.
    [19] 洪震, 楼建强.  松阳县野生木本观赏植物资源调查及利用 . 浙江农林大学学报, 2004, 21(4): 428-432.
    [20] 姜培坤, 徐秋芳, 杨芳.  雷竹土壤水溶性有机碳及其与重金属的关系 . 浙江农林大学学报, 2003, 20(1): 8-11.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200728

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021//1

计量
  • 文章访问数:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-03-15

松阳县典型中轻度污染耕地镉输入输出平衡研究

doi: 10.11833/j.issn.2095-0756.20200728
    基金项目:  浙江省重点研发计划项目(2018C03028)
    作者简介:

    徐火忠(ORCID: 0000-0003-3718-642X),从事土壤重金属污染评价及修复研究。E-mail: 475469834@qq.com

    通信作者: 柳丹(ORCID: 0000-0003-1102-6639),教授,博士生导师,从事重金属污染修复研究。E-mail: liudan7812@aliyun.com
  • 中图分类号: X53

摘要:   目的  为准确了解浙江省丽水市松阳县农田土壤中镉(Cd)污染来源并制定修复对策。  方法  2017−2019年,以浙江省丽水市松阳县典型耕地为研究对象,通过采集当地的投入品和农作物,连续3 a监测重金属Cd的输入和输出量。  结果  2017−2019年,研究区肥料与大气沉降是Cd的主要农业污染来源,占比分别为49.78%和40.16%、50.20%和39.14%、34.04%和48.09%;投入品每年Cd的总输入量分别占土壤Cd总量的0.18%、0.17%和0.14%。水稻Oryza sativa、油菜Brassica napus与茶Camellia sinensis的Cd年总输出量分别为2 820.00、2 706.00和2 629.50 mg·hm−2·a−1,年平均输出量为2 718.50 mg·hm−2·a−1,年平均输出量总体较为平稳。2017−2019年间Cd年输入量和输出量均逐年降低,但Cd年输出量均大于Cd年输入量,其原因可能是Cd在植物中出现了富集。  结论  该地区Cd的农业污染来源主要为肥料和大气沉降,环境及农投品整体属于清洁水平,但大气沉降量有上升的趋势,因此需对该区域继续实施长期监测;植物的年输出量均大于投入品的输入量,因此需避免秸秆直接还田,并及时修复当地受污染的土壤以及种植的植物。图1表5参25

English Abstract

徐火忠, 吴东涛, 李贵松, 吴林土, 叶春福, 郭彬, 马嘉伟, 叶正钱, 柳丹. 松阳县典型中轻度污染耕地镉输入输出平衡研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200728
引用本文: 徐火忠, 吴东涛, 李贵松, 吴林土, 叶春福, 郭彬, 马嘉伟, 叶正钱, 柳丹. 松阳县典型中轻度污染耕地镉输入输出平衡研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200728
XU Huozhong, WU Dongtao, LI Guisong, WU Lintu, YE Chunfu, GUO Bin, MA Jiawei, YE Zhengqian, LIU Dan. Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200728
Citation: XU Huozhong, WU Dongtao, LI Guisong, WU Lintu, YE Chunfu, GUO Bin, MA Jiawei, YE Zhengqian, LIU Dan. Input and output balance of cadmium (Cd) in cultivated land with moderate pollution in Songyang County[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200728

返回顶部

目录

    /

    返回文章
    返回