留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干旱影响下光能利用率模型模拟常绿针叶林总初级生产力的比较

董浩 丁丽霞

董浩, 丁丽霞. 干旱影响下光能利用率模型模拟常绿针叶林总初级生产力的比较[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200751
引用本文: 董浩, 丁丽霞. 干旱影响下光能利用率模型模拟常绿针叶林总初级生产力的比较[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200751
DONG Hao, DING Lixia. A comparison of different radiation use efficiency models in gross primary production accuracy under drought[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200751
Citation: DONG Hao, DING Lixia. A comparison of different radiation use efficiency models in gross primary production accuracy under drought[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200751

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

干旱影响下光能利用率模型模拟常绿针叶林总初级生产力的比较

doi: 10.11833/j.issn.2095-0756.20200751
基金项目: 浙江省自然科学基金资助项目(LY21C030001)
详细信息
    作者简介: 董浩(ORCID: 0000-0003-3399-4710),从事森林资源遥感监测与信息技术研究。E-mail: woshidonghao3@163.com
    通信作者: 丁丽霞(ORCID: 0000-0002-9016-9162),副教授,从事森林资源遥感监测与信息技术研究。E-mail: dlxlxy@126.com
  • 中图分类号: S718.5

A comparison of different radiation use efficiency models in gross primary production accuracy under drought

  • 摘要:   目的  研究干旱影响下不同光能利用率模型估算常绿针叶林总初级生产力(GPP)的能力,为精准模拟北半球常绿针叶林的GPP提供参考依据。  方法  采用MODIS数据和通量站点观测数据,在8 d尺度对常绿针叶林的GPP进行参数化建模。首先利用皮尔逊相关系数和随机森林因子评价方法分析GPP各个驱动因子的重要性。使用降水量和潜在蒸散量(PET)构造干湿度指数,对各个站点进行干湿分类。其次在植被光合模型(VPM)的基础上,去除其中的水分参数,得到改进的植被光合模型(VPMsw)。最后定量比较各站点在不同干湿类型下,VPM模型与VPMsw模型拟合GPP的精度。  结果  ①由驱动因子分析可知:GPP与温度、PET相关性较强,与陆表水指数(LSWI)相关性较弱,温度对GPP的重要性大于水分。②与VPM模型相比,VPMsw模型在干旱和半干旱站点拟合GPP的精度有所提高,均方根误差分别减少6.5%和23.4%,在半干旱地区精度提升效果更明显。  结论  干旱影响下,LSWI不能较好地反映干旱和半干旱地区常绿针叶林的水分情况,所以在干旱和半干旱地区,VPMsw模型拟合GPP的精度更高。图3表3参25
  • 图  1  不同干湿类型站点陆表水指数和日平均降水量分布

    Figure  1  Dstribution of land surface water index and daily mean precipitation at different dry and wet stations

    图  2  干旱和半干旱站点GPP拟合精度对比

    Figure  2  Comparison of fitting accuracy of GPP between arid and semi-arid sites

    图  3  每个站点的日平均降水量及其标准差

    Figure  3  Average daily precipitation and standard deviation in each site

    表  1  北半球常绿针叶林通量塔站点分布情况

    Table  1.   Distribution of flux tower sites of evergreen needleleaved forests in Northern Hemisphere

    站点名称纬度经度海拔/m站点名称纬度经度海拔/m
    CA-Man 55°52′47″N 98°28′51″W 259 CZ-BK1 49°30′08″N 18°32′13″E 875
    CA-Obs 53°59′14″N 105°07′04″W 629 DE-Obe 50°47′01″N 13°43′11″E 735
    CA-Qfo 49°41′33″N 74°20′32″W 382 DE-Tha 50°57′49″N 13°34′01″E 380
    FR-LBr 44°43′02″N 0°46′09″W 61 FI-Hyy 61°50′51″N 24°17′42″E 181
    IT-Ren 46°35′13″N 11°26′01″E 1 730 FI-Sod 67°21′43″N 26°38′16″E 180
    IT-SRo 43°43′40″N 10°17′04″E 6 IT-Lav 45°57′22″N 11°16′53″E 1 353
    US-Blo 38°53′43″N 120°37′58″W 1 315 NL-Loo 52°10′00″N 5°44′37″E 25
    US-GBT 41°21′57″N 106°14′23″W 3 191 RU-Fyo 56°27′41″N 32°55′20″E 265
    CA-TP1 42°39′39″N 80°33′34″W 265 US-GLE 41°21′59″N 106°14′24″W 3 197
    CA-TP3 42°42′24″N 80°20′54″W 184 US-Me2 44°27′08″N 121°33′27″W 1 253
    CA-TP4 42°42′37″N 80°21′27″W 184 US-NR1 40°01′58″N 105°32′47″W 3 050
    CH-Dav 46°48′55″N 9°51′21″E 1 639
    下载: 导出CSV

    表  2  各因子之间皮尔逊相关性

    Table  2.   Pearson correlation among the factors

    因子陆表水指数光合有效辐射温度潜在蒸散量GPP
    陆表水指数 1−0.31**−0.45**−0.36**−0.28**
    光合有效辐射−0.31**10.68**0.86**0.60**
    温度    −0.45**0.68**10.74**0.74**
    潜在蒸散量 −0.36**0.86**0.74**10.66**
    GPP    −0.28**0.60**0.74**0.66**1
      说明:**表示相关极显著(P<0.01)
    下载: 导出CSV

    表  3  站点干湿度指数及模型均方根误差对比

    Table  3.   Comparison of dry humidity index and model root mean square error

    干湿
    类型
    站点干湿度
    指数
    均方根误差决定系数干湿
    类型
    站点干湿度
    指数
    均方根误差决定系数
    VPMsw
    模型
    VPM
    模型
    VPMsw
    模型
    VPM
    模型
    VPMsw
    模型
    VPM
    模型
    VPMsw
    模型
    VPM
    模型
    干旱  CA-Man 0.28 1.28 1.58 0.71 0.77 FR-LBr 0.73 2.27 2.15 0.49 0.47
    US-GBT 0.29 1.29 1.70 0.83 0.66 CH-Dav 0.76 2.17 2.38 0.46 0.47
    US-Me2 0.35 1.91 1.96 0.51 0.51 IT-Ren 0.76 2.09 1.85 0.63 0.72
    CA-Obs 0.41 1.23 1.44 0.78 0.68 DE-Obe 0.79 3.69 3.53 0.62 0.7
    US-NR1 0.47 1.58 1.72 0.77 0.72 CA-TP1 0.80 3.84 3.73 0.31 0.39
    CA-TP4 0.81 2.46 2.20 0.6 0.66
    半干旱 RU-Fyo 0.50 2.48 2.77 0.65 0.53 CA-TP3 0.82 2.46 2.15 0.61 0.69
    FI-Hyy 0.56 2.17 2.53 0.69 0.49 CA-Qfo 0.94 1.39 1.28 0.61 0.71
    FI-Sod 0.62 1.55 1.90 0.63 0.38 US-GLE 0.95 1.39 1.24 0.71 0.76
    IT-SRo 0.62 3.19 3.00 0.36 0.36
    DE-Tha 0.66 2.93 3.03 0.67 0.57 湿润 CZ-BK1 1.00 3.23 3.28 0.59 0.49
    NL-Loo 0.67 2.49 2.72 0.71 0.61 IT-Lav 1.04 3.59 3.48 0.61 0.6
    半湿润 US-Blo 0.72 1.75 2.48 0.42 0.49
    下载: 导出CSV
  • [1] 张方敏, 居为民, 陈镜明, 等. 基于遥感和过程模型的亚洲东部陆地生态系统初级生产力分布特征[J]. 应用生态学报, 2012, 23(2): 307 − 318.

    ZHANG Fangming, JU Weimin, CHEN Jingming, et al. Characteristics of terrestrial ecosystem primary productivity in East Asia based on remote sensing and process-based model [J]. Chin J Appl Ecol, 2012, 23(2): 307 − 318.
    [2] 陈静清, 闫慧敏, 王绍强, 等. 中国陆地生态系统总初级生产力VPM遥感模型估算[J]. 第四纪研究, 2014, 34(4): 732 − 742. doi:  10.3969/j.issn.1001-7410.2014.04.05

    CHEN Jingqing, YAN Huimin, WANG Shaoqiang, et al. Estimation of gross primary productivity in Chinese terrestrial ecosystems by using VPM model [J]. Quaternary Sci, 2014, 34(4): 732 − 742. doi:  10.3969/j.issn.1001-7410.2014.04.05
    [3] WANG Zheng, XIAO Xiangming, YAN Xiaodong. Modeling gross primary production of maize cropland and degraded grassland in northeastern China [J]. Agric For Meteorol, 2010, 150(9): 1160 − 1167. doi:  10.1016/j.agrformet.2010.04.015
    [4] 刘世梁, 董玉红, 安南南, 等. 基于增强型植被指数序列和景观格局分析的松嫩平原盐碱地动态——以大安市为例[J]. 应用生态学报, 2014, 25(11): 3263 − 3269.

    LIU Shiliang, DONG Yuhong, AN Nannan, et al. Dynamics of salinization land based on EVI series data and landscape pattern analysis in Songnen Plain: a case study in Da’an City [J]. Chin J Appl Ecol, 2014, 25(11): 3263 − 3269.
    [5] NEMANI R R, KEELING C D, HASHIMOTO H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999 [J]. Science, 2003, 300(5625): 1560 − 1563. doi:  10.1126/science.1082750
    [6] 刘丹, 冯锐, 于成龙, 等. 基于植被指数的春玉米干旱响应遥感监测[J]. 农业工程学报, 2019, 35(20): 152 − 161. doi:  10.11975/j.issn.1002-6819.2019.20.019

    LIU Dan, FENG Rui, YU Chenlong, et al. Remote sensing monitoring of drought response of spring maize based on vegetation indexes [J]. Trans Chin Soc Agric Eng, 2019, 35(20): 152 − 161. doi:  10.11975/j.issn.1002-6819.2019.20.019
    [7] 叶昊天. 锡林郭勒半干旱针茅草原夜间生态系统呼吸作用及生态系统呼吸模型研究[D]. 南京: 南京信息工程大学, 2019.

    YE Haotian. Light Use Efficiency Based Gross Primary Productivity Estimation and Uncertainty Analysis[D]. Nanjing: Nanjing University of Information Science and Technology, 2019.
    [8] CUI Mingyue, WANG Junbang, WANG Shaoqiang, et al. Temporal and spatial distribution of evapotranspiration and its influencing factors on Qinghai-Tibet Plateau from 1982 to 2014 [J]. J Resour Ecol, 2019, 10(2): 213 − 224. doi:  10.5814/j.issn.1674-764x.2019.02.012
    [9] 宋成刚, 李红琴, 王军邦, 等. 青海海北高寒嵩草草甸系统水分利用效率特征[J]. 干旱区资源与环境, 2017, 31(6): 90 − 96.

    SONG Chenggang, LI Hongqin, WANG Junbang, et al. Characterizing ecosystem water use efficiency of alpine Kobresia meadow over the northeastern Qinghai-Tibetan Plateau [J]. J Arid Land Resour Environ, 2017, 31(6): 90 − 96.
    [10] BOVARD B D, CURTIS P S, VOGEL C S, et al. Environmental controls on sap flow in a northern hardwood forest [J]. Tree Physiol, 2005, 25(1): 31 − 38. doi:  10.1093/treephys/25.1.31
    [11] 汪本福, 王晴芳, 李阳, 等. 干旱胁迫对水稻叶片生理生化特性的影响综述[J]. 湖北农业科学, 2019, 58(23): 5 − 9.

    WANG Benfu, WANG Qingfang, LI Yang, et al. Review on the effects of drought stress on physiological and biochemical characteristics of rice leaves [J]. Hubei Agric Sci, 2019, 58(23): 5 − 9.
    [12] 袁文平, 蔡文文, 刘丹, 等. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5): 541 − 550. doi:  10.11867/j.issn.1001-8166.2014.05.0541

    YUAN Wenping, CAI Wenwen, LIU Dan, et al. Satellite-based vegetation production models of terrestrial ecosystem: an overview [J]. Adv Earth Sci, 2014, 29(5): 541 − 550. doi:  10.11867/j.issn.1001-8166.2014.05.0541
    [13] 孔令颖, 扶松林, 韩晓阳, 等. 基于传统干湿指数的省域长历时气象干旱变化特征及其对旱作粮食单产的影响[J]. 水土保持研究, 2020, 27(3): 159 − 167.

    KONG Lingying, FU Songlin, HAN Xiaoyang, et al. Spatiotemporal variation of long-term meteorological drought and its impacts on grain yield in Shaanxi Province based on the traditional arid-wet index [J]. Res Soil Water Conserv, 2020, 27(3): 159 − 167.
    [14] 牛忠恩, 闫慧敏, 陈静清, 等. 基于VPM与MOD17产品的中国农田生态系统总初级生产力估算比较[J]. 农业工程学报, 2016, 32(4): 191 − 198. doi:  10.11975/j.issn.1002-6819.2016.04.027

    NIU Zhongen, YAN Huimin, CHEN Jingqing, et al. Comparison of crop gross primary productivity estimated with VPM model and MOD17 product in field ecosystem of China [J]. Trans Chin Soc Agric Eng, 2016, 32(4): 191 − 198. doi:  10.11975/j.issn.1002-6819.2016.04.027
    [15] XIAO Xiangming, ZHANG Qingyuan, BRASWELL B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing Environ, 2004, 91(2): 256 − 270. doi:  10.1016/j.rse.2004.03.010
    [16] 刘正佳, 刘纪远, 邵全琴. 不同土地覆盖类型上植被生长的最适温度[J]. 地球信息科学学报, 2014, 16(1): 1 − 7.

    LIU Zhengjia, LIU Jiyuan, SHAO Quanqin, et al. Optimum temperature of vegetation growth for various land cover types in China [J]. J Geo-inf Sci, 2014, 16(1): 1 − 7.
    [17] JÖNSSON A M, EKLUNDH L, HELLSTRÖM M. Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology [J]. Remote Sensing Environ, 2010, 114(11): 2719 − 2730. doi:  10.1016/j.rse.2010.06.005
    [18] LIAW A, WIENER M. Classification and regression by randomForest [J]. R News, 2002, 2(3): 18 − 22.
    [19] 郭含茹, 张茂震, 徐丽华, 等. 基于地理加权回归的区域森林碳储量估计[J]. 浙江农林大学学报, 2015, 32(4): 497 − 508. doi:  10.11833/j.issn.2095-0756.2015.04.002

    GUO Hanru, ZHANG Maozhen, XU Lihua, et al. Geographically weighted regression based on estimation of regional forest carbon storage [J]. J Zhejiang A&F Univ, 2015, 32(4): 497 − 508. doi:  10.11833/j.issn.2095-0756.2015.04.002
    [20] 贺忠华, 张育慧, 何月, 等. 浙江省近20年植被变化趋势及驱动因子分析[J]. 生态环境学报, 2020, 29(8): 1530 − 1539.

    HE Zhonghua, ZHANG Yuhui, HE Yue, et al. Trends of vegetation change and driving factor analysis in recent 20 years over Zhejiang Province [J]. Ecol Environ Sci, 2020, 29(8): 1530 − 1539.
    [21] 陈正华, 麻清源, 王建, 等. 利用CASA模型估算黑河流域净第一性生产力[J]. 自然资源学报, 2008, 23(2): 263 − 273. doi:  10.3321/j.issn:1000-3037.2008.02.011

    CHEN Zhenghua, MA Qingyuan, WANG Jian, et al. Estimation of Heihe basin net primary producivity using the CASA model [J]. J Nat Resour, 2008, 23(2): 263 − 273. doi:  10.3321/j.issn:1000-3037.2008.02.011
    [22] 杨明兴, 代侦勇, 杜启勇, 等. 遥感GPP模型在亚热带常绿林的应用比较[J]. 测绘地理信息, 2019, 44(1): 69 − 73.

    YANG Mingxing, DAI Zhenyong, DU Qiyong, et al. Comparison of different GPP models in subtropical evergreen forest sites [J]. J Geomatics, 2019, 44(1): 69 − 73.
    [23] 郭海强. 长江河口湿地碳通量的地面监测及遥感模拟研究[D]. 上海: 复旦大学, 2010.

    GUO Haiqiang. Carbon Fluxes over an Estuarine Wetland: In Situ Measurement and Modeling[D]. Shanghai: Fudan University, 2010.
    [24] NIU Shuli, LI Zhixiong, XIA Jianyang, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China [J]. Environ Exp Bot, 2007, 63(1): 91 − 101.
    [25] 伍卫星, 王绍强, 肖向明, 等. 利用MODIS影像和气候数据模拟中国内蒙古温带草原生态系统总初级生产力[J]. 中国科学: 地球科学, 2008, 38(8): 993 − 1004.

    WU Weixing, WANG Shaoqiang, XIAO Xiangming, et al. Using MODIS images and climate data to simulate the total primary productivity of temperate grassland ecosystem in Inner Mongolia, China [J]. Sci Sin Terrae, 2008, 38(8): 993 − 1004.
  • [1] 郭建辉, 韦新良, 朱锦迪, 杨晶晶, 张继艳.  浙江省天然针阔混交林非空间结构分布特征与生产力相关性 . 浙江农林大学学报, 2021, 38(4): 682-691. doi: 10.11833/j.issn.2095-0756.20200442
    [2] 王兰芳, 韦新良, 汤孟平.  浙江省杉木林生产力地理分异特性 . 浙江农林大学学报, 2019, 36(6): 1107-1114. doi: 10.11833/j.issn.2095-0756.2019.06.007
    [3] 顾帆, 季梦成, 顾翠花, 郑钢, 郑绍宇.  高温干旱胁迫对黄薇抗氧化防御系统的影响 . 浙江农林大学学报, 2019, 36(5): 894-901. doi: 10.11833/j.issn.2095-0756.2019.05.007
    [4] 周欢欢, 傅卢成, 马玲, 赵亚红, 张汝民, 高岩.  干旱胁迫及复水对‘波叶金桂’生理特性的影响 . 浙江农林大学学报, 2019, 36(4): 687-696. doi: 10.11833/j.issn.2095-0756.2019.04.008
    [5] 汪雪, 周国模, 徐小军, 于亚妮, 李楠.  基于无线传感网的毛竹林净初级生产力估算 . 浙江农林大学学报, 2017, 34(1): 78-85. doi: 10.11833/j.issn.2095-0756.2017.01.012
    [6] 李黎, 宋帅杰, 方小梅, 杨丽芝, 邵珊璐, 应叶青.  高温干旱及复水对毛竹实生苗保护酶和脂质过氧化的影响 . 浙江农林大学学报, 2017, 34(2): 268-275. doi: 10.11833/j.issn.2095-0756.2017.02.010
    [7] 王琳, 景元书, 张悦.  基于MODIS的长江中下游地区植被净第一性生产力时空变化规律 . 浙江农林大学学报, 2015, 32(6): 829-836. doi: 10.11833/j.issn.2095-0756.2015.06.002
    [8] 高培军, 邱永华, 周紫球, 何仁华, 徐佳.  氮素施肥对毛竹生产力与光合能力的影响 . 浙江农林大学学报, 2014, 31(5): 697-703. doi: 10.11833/j.issn.2095-0756.2014.05.006
    [9] 张丽景, 葛宏立.  利用MODIS数据估测毛竹林总初级生产力 . 浙江农林大学学报, 2014, 31(2): 178-184. doi: 10.11833/j.issn.2095-0756.2014.02.003
    [10] 俞静芳, 余树全, 张超, 李土生.  应用CASA模型估算浙江省植被净初级生产力 . 浙江农林大学学报, 2012, 29(4): 473-481. doi: 10.11833/j.issn.2095-0756.2012.04.001
    [11] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [12] 张小朋, 殷有, 于立忠, 姚立海, 英慧, 张娜.  土壤水分与养分对树木细根生物量及生产力的影响 . 浙江农林大学学报, 2010, 27(4): 606-613. doi: 10.11833/j.issn.2095-0756.2010.04.022
    [13] 李雪芬, 韩有志, 张莉, 卢雅娟.  关帝山天然次生针叶林的林隙特征 . 浙江农林大学学报, 2008, 25(1): 28-32.
    [14] 杨同辉, 达良俊, 李修鹏.  浙江天童国家森林公园常绿阔叶林生物量研究(Ⅱ)群落生物量及其分配规律 . 浙江农林大学学报, 2007, 24(4): 389-395.
    [15] 王义平, 于振东, 吴鸿.  林木昆虫演变为重大害虫的主要环境因子 . 浙江农林大学学报, 2007, 24(6): 752-757.
    [16] 温佐吾.  不同密度2 代连栽马尾松人工林生产力水平比较 . 浙江农林大学学报, 2004, 21(1): 22-27.
    [17] 陈波.  陆地植被净第一性生产力对全球气候变化响应研究的进展 . 浙江农林大学学报, 2001, 18(4): 445-449.
    [18] 谢锦升, 黄荣珍, 陈银秀, 杨玉盛, 王维明.  严重侵蚀红壤封禁管理后群落的生物量及生产力变化 . 浙江农林大学学报, 2001, 18(4): 354-358.
    [19] 钱国钦.  枫香杉木混交林生产力及生态特性 . 浙江农林大学学报, 2000, 17(3): 289-293.
    [20] 徐荣森.  林地生产力类型与林种树种最优匹配研究 . 浙江农林大学学报, 1993, 10(1): 69-72.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200751

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1

计量
  • 文章访问数:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-06-11

干旱影响下光能利用率模型模拟常绿针叶林总初级生产力的比较

doi: 10.11833/j.issn.2095-0756.20200751
    基金项目:  浙江省自然科学基金资助项目(LY21C030001)
    作者简介:

    董浩(ORCID: 0000-0003-3399-4710),从事森林资源遥感监测与信息技术研究。E-mail: woshidonghao3@163.com

    通信作者: 丁丽霞(ORCID: 0000-0002-9016-9162),副教授,从事森林资源遥感监测与信息技术研究。E-mail: dlxlxy@126.com
  • 中图分类号: S718.5

摘要:   目的  研究干旱影响下不同光能利用率模型估算常绿针叶林总初级生产力(GPP)的能力,为精准模拟北半球常绿针叶林的GPP提供参考依据。  方法  采用MODIS数据和通量站点观测数据,在8 d尺度对常绿针叶林的GPP进行参数化建模。首先利用皮尔逊相关系数和随机森林因子评价方法分析GPP各个驱动因子的重要性。使用降水量和潜在蒸散量(PET)构造干湿度指数,对各个站点进行干湿分类。其次在植被光合模型(VPM)的基础上,去除其中的水分参数,得到改进的植被光合模型(VPMsw)。最后定量比较各站点在不同干湿类型下,VPM模型与VPMsw模型拟合GPP的精度。  结果  ①由驱动因子分析可知:GPP与温度、PET相关性较强,与陆表水指数(LSWI)相关性较弱,温度对GPP的重要性大于水分。②与VPM模型相比,VPMsw模型在干旱和半干旱站点拟合GPP的精度有所提高,均方根误差分别减少6.5%和23.4%,在半干旱地区精度提升效果更明显。  结论  干旱影响下,LSWI不能较好地反映干旱和半干旱地区常绿针叶林的水分情况,所以在干旱和半干旱地区,VPMsw模型拟合GPP的精度更高。图3表3参25

English Abstract

董浩, 丁丽霞. 干旱影响下光能利用率模型模拟常绿针叶林总初级生产力的比较[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200751
引用本文: 董浩, 丁丽霞. 干旱影响下光能利用率模型模拟常绿针叶林总初级生产力的比较[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200751
DONG Hao, DING Lixia. A comparison of different radiation use efficiency models in gross primary production accuracy under drought[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200751
Citation: DONG Hao, DING Lixia. A comparison of different radiation use efficiency models in gross primary production accuracy under drought[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200751

返回顶部

目录

    /

    返回文章
    返回