留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于InVEST模型的杭州市典型年份年产水量时空变化特征及其影响因素

蔡梦卿 黄璐 严力蛟

蔡梦卿, 黄璐, 严力蛟. 基于InVEST模型的杭州市典型年份年产水量时空变化特征及其影响因素[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210170
引用本文: 蔡梦卿, 黄璐, 严力蛟. 基于InVEST模型的杭州市典型年份年产水量时空变化特征及其影响因素[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210170
CAI Mengqing, HUANG Lu, YAN Lijiao. Temporal and spatial variation characteristics of annual water yield and its influencing factors in Hangzhou based on InVEST model[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210170
Citation: CAI Mengqing, HUANG Lu, YAN Lijiao. Temporal and spatial variation characteristics of annual water yield and its influencing factors in Hangzhou based on InVEST model[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210170

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

基于InVEST模型的杭州市典型年份年产水量时空变化特征及其影响因素

doi: 10.11833/j.issn.2095-0756.20210170
基金项目: 国家自然科学基金资助项目(41701638);国家重点研发计划课题资助项目(2016YFC0502704)
详细信息
    作者简介: 蔡梦卿(ORCID: 0000-0001-7829-3809),从事生态系统服务研究。Email: caimengqing@zju.edu.cn
    通信作者: 严力蛟(ORCID: 0000-0003-2374-0354),研究员,博士,从事生态系统服务、生态规划、城市生态等研究。E-mail: yanlj@zju.edu.cn
  • 中图分类号: Q149

Temporal and spatial variation characteristics of annual water yield and its influencing factors in Hangzhou based on InVEST model

  • 摘要:   目的  自然因素和土地利用变化是引起生态系统服务改变的两大驱动因素。研究年产水量时空变化特征及两大驱动因素对年产水量的影响,对维持或提升城市水源涵养、保持水土具有现实意义。  方法  以浙江省杭州市为研究对象,采用景观格局分析、空间梯度分析、相关性分析等方法,综合应用InVEST、ArcGIS、Fragstats、SPSS等工具,识别杭州市土地利用和气象因子变化特征,评估并分析年产水量时空变化特征及其与气象因子、景观格局指数的相关性。  结果  2000−2015年杭州市年产水量呈先下降后上升趋势。在空间上表现为东北高、西南低,随着远离城市中心先增大后减小,于10 km处达到最大值。建设用地的产水量最大。2000-2015年杭州市土地利用变化最剧烈的是耕地与建设用地之间的转化。景观总体呈现更强烈的破碎化和异质性趋势,在距离城市中心10~20 km处达到峰值。年降水量先降低后升高,年均气温波动上升,年实际蒸散量处于波动状态。离城市中心50 km内年降水量变化不显著,年均气温显著下降,年实际蒸散量先减小后增大。杭州市年产水量与气象因子的相关性大于其与景观格局指数的相关性,其中与气象因子中降水量正相关性最强。  结论  气象因子的变化是引起杭州市年产水量变化的主要因素,但景观格局的影响仍值得关注。距离城市中心10 km处是年产水量变化的拐点。图4表7参34
  • 图  1  杭州市2000-2015年产水量空间分布图

    Figure  1  Spatial distribution of water yield in Hangzhou in 2000-2015

    图  2  杭州市各县区年产水量变化趋势

    Figure  2  Changes of water yield of counties and districts in Hangzhou

    图  3  杭州市各景观格局指数沿梯度变化趋势

    Figure  3  Changes of landscape pattern indices along gradient in Hangzhou    

    图  4  杭州市气象因子沿梯度变化趋势

    Figure  4  Changes of climate factors along gradient in Hangzhou

    表  1  2000−2015年杭州市的产水量

    Table  1.   Water yield of Hangzhou during 2000−2015

    年份总量/(×109 m3)平均值/mm耕地/mm林地/mm草地/mm水体/mm建设用地/mm未利用土地/mm
    20001.42756.75856.53741.30880.33388.631001.17816.48
    20051.09582.42700.64556.62686.54214.30875.89692.31
    20102.151147.681264.091115.641279.94789.691430.851254.00
    20152.721457.241601.451409.231565.031094.851796.251600.17
      说明:除总量外,其余产水量均为栅格单元平均值
    下载: 导出CSV

    表  2  2000−2015年杭州市沿梯度变化的年产水量

    Table  2.   Water yield along gradient in Hangzhou during 2000−2015

    年份不同梯度下的产水量/mm
    5101520253035404550 km
    2000774.12787.18775.87772.57769.36780.96770.26757.03749.18725.81
    2005704.70722.54706.81680.91667.67663.95644.82618.20596.43567.25
    20101 260.331 282.991 268.251 241.941 220.991 211.721 186.361 160.961 153.731 144.39
    20151 663.701 705.391 681.581 639.731 612.601 595.341 565.241 528.581 509.991 491.25
    下载: 导出CSV

    表  3  杭州市2000−2015年各土地利用类型转移矩阵

    Table  3.   Statistics of conversion rates of landscape types in Hangzhou from 2000 to 2015

    土地利用类型2015年
    耕地/%林地/%草地/%水体/%建设用地/%未利用土地/%合计/%
    2000年耕地   15.840.980.040.333.240.0020.44
    林地   1.0466.400.280.160.510.0168.40
    草地   0.040.221.980.010.030.012.29
    水体   0.570.140.024.710.150.005.60
    建设用地 0.200.040.010.022.980.003.25
    未利用土地0.000.000.000.000.000.020.02
    合计   17.6967.792.335.246.920.04100.00
      说明:对角线粗体数值为没有发生变化的土地利用类型的保留率
    下载: 导出CSV

    表  4  2000−2015年杭州市各景观格局指数

    Table  4.   Statistics of landscape pattern indices in Hangzhou from 2000 to 2015

    年份景观格局指数
    PDLPIEDLSICONTAGSHDI
    20000.4835.5220.2068.0869.310.95
    20050.4335.0420.9870.5968.410.97
    20100.4634.5021.5072.2768.040.98
    20150.4634.2921.2771.7767.541.00
    下载: 导出CSV

    表  5  2000−2015年杭州市的气象因子

    Table  5.   Statistics of climate factors in Hangzhou from 2000 to 2015

    年份年降水量/mm年均气温/℃年实际蒸散量/mm年份年降水量/mm年均气温/℃年实际蒸散量/mm
    20001 319.7917.25563.0420101 713.0317.26565.35
    20051 136.2517.38553.8320152 016.7717.56559.54
    下载: 导出CSV

    表  6  2000−2015年杭州市各县区的气象因子

    Table  6.   Statistics of climate factors of counties and districts in Hangzhou from 2000 to 2015

    各县区年降水量/mm年均气温/℃年实际蒸散量/mm各县区年降水量/mm年均气温/℃年实际蒸散量/mm
    上城区1 543.1017.39432.37余杭区1 544.7517.37477.82
    下城区1 543.9517.38289.10富阳区1 542.5217.36533.47
    江干区1 543.2917.37455.50临安区1 545.7417.34564.34
    拱墅区1 544.4017.38359.98桐庐县1 545.8417.35560.42
    西湖区1 543.2417.39488.31淳安县1 550.7017.38617.13
    滨江区1 542.2617.39446.74建德市1 548.6317.37583.63
    萧山区1 540.1417.35497.46
    下载: 导出CSV

    表  7  杭州市年产水量与气象因子、景观格局指数的Spearman相关性分析

    Table  7.   Spearman correlation coefficients among water yield, climate factors and landscape pattern indices

    指标相关性显著性指标相关性显著性
    Pre0.959**0.000ED0.148**0.002
    Tem0.325**0.000LSI0.129**0.006
    AET−0.110**0.000CONTAG−0.132**0.002
    PD0.153**0.103SHDI0.139**0.001
    LPI−0.109*0.016
      说明:** 表示在0.01水平极显著相关(双尾),*表示在0.05水平上显著相关(双尾)
    下载: 导出CSV
  • [1] Millennium Ecosystem Assessment. Ecosystem and Human Well-being: Synthesis[M]. Washington DC: Island Press, 2005: 137.
    [2] BAI Yang, OCHUODHO T O, YANG Jian. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA [J]. Ecol Indic, 2019, 102: 51 − 64. doi:  10.1016/j.ecolind.2019.01.079
    [3] LANG Yanqing, SONGWei, ZHANG Ying. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China [J]. Physic Chem Earth, 2017, 101: 102 − 111. doi:  10.1016/j.pce.2017.06.003
    [4] ZHENG Hua, LI Yifeng, ROBINSON B E, et al. Using ecosystem service trade-offs to inform water conservation policies and management practices [J]. Front Ecol Environ, 2016, 14(10): 527 − 532. doi:  10.1002/fee.1432
    [5] 吕乐婷, 任甜甜, 李赛赛, 等. 基于InVEST模型的大连市产水量时空变化分析[J]. 水土保持通报, 2019, 39(4): 144 − 150, 157.

    LÜ Leting, REN Tiantian, LI Saisai, et al. Analysis on spatio-temporal variation of water supply in Dalian City based on InVEST model [J]. Bull Soil Water Conserv, 2019, 39(4): 144 − 150, 157.
    [6] 潘韬, 吴绍洪, 戴尔阜, 等. 基于InVEST模型的三江源区生态系统水源供给服务时空变化[J]. 应用生态学报, 2013, 24(1): 183 − 189.

    PAN Tao, WU Shaohong, DAI Erfu, et al. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model [J]. Chin J Appl Ecol, 2013, 24(1): 183 − 189.
    [7] LEGESSE D, VALLET-COULOMB C, GASSE F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia [J]. J Hydrol, 2003, 275(1): 67 − 85.
    [8] PESSACG N, FLAHERTY S, BRANDIZI L, et al. Getting water right: a case study in water yield modelling based on precipitation data [J]. Sci Total Environ, 2015, 537: 225 − 234. doi:  10.1016/j.scitotenv.2015.07.148
    [9] SAMPLE J E, BABER I, BADGER R. A spatially distributed risk screening tool to assess climate and land use change impacts on water-related ecosystem services [J]. Environ Modelling Software, 2016, 83: 12 − 26. doi:  10.1016/j.envsoft.2016.05.011
    [10] HOYER R, CHANG Heejun. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization [J]. Appl Geogr, 2015, 53: 402 − 416.
    [11] GAO Jie, LI Feng, GAO Hui, et al. The impact of land-use change on water-related ecosystem services: a study of the Guishui River Basin, Beijing, China [J]. J Cleaner Prod, 2016, 163(S): 148 − 155.
    [12] NIE Wenming, YUAN Yongping, KEPNER W, et al. Assessing impacts of land use and land cover changes on hydrology for the upper San Pedro watershed [J]. J Hydrol, 2011, 407: 105 − 114. doi:  10.1016/j.jhydrol.2011.07.012
    [13] 顾晋饴, 李一平, 杜薇. 基于InVEST模型的太湖流域水源涵养能力评价及其变化特征分析[J]. 水资源保护, 2018, 34(3): 62 − 67, 84. doi:  10.3880/j.issn.1004-6933.2018.03.10

    GU Jinyi, LI Yiping, DU Wei. Evaluation on water source conservation capacity and analysis of its variation characteristics of Taihu Lake Basin based on InVEST model [J]. Water Resour Prot, 2018, 34(3): 62 − 67, 84. doi:  10.3880/j.issn.1004-6933.2018.03.10
    [14] 窦攀烽, 左舒翟, 任引, 等. 气候和土地利用/覆被变化对宁波地区生态系统产水服务的影响[J]. 环境科学学报, 2019, 39(7): 2398 − 2409.

    DOU Panfeng, ZUO Shudi, REN Yin, et al. The impacts of climate and land use/land cover changes on water yield service in Ningbo region [J]. Acta Sci Circum, 2019, 39(7): 2398 − 2409.
    [15] HU Wenmin, LI Guo, GAO Zhihai, et al. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model[J]. Sci Total Environ, 2020, 733: 139423. doi: 10.1016/j.scitotent.2020.139423.
    [16] MOREIRA M, FONSECA C, VERGíLIO M, et al. Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: a case study of Pico Island (Azores, Portugal) [J]. Land Use Policy, 2018, 78: 637 − 649. doi:  10.1016/j.landusepol.2018.07.015
    [17] LOGSDON R A, CHAUBEY I. A quantitative approach to evaluating ecosystem services [J]. Ecol Modelling, 2013, 257(24): 57 − 65.
    [18] VIGERSTOL K L, AUKEMA J E. A comparison of tools for modeling freshwater ecosystem services [J]. J Environ Manage, 2011, 92(10): 2403 − 2409. doi:  10.1016/j.jenvman.2011.06.040
    [19] de GROOT R S, ALKEMADE R, BRAAT L, et al. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making [J]. Ecol Complex, 2009, 7(3): 260 − 272.
    [20] GRAFIUS D R, CORSTANJE R, HARRIS J A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis [J]. Landsc Ecol, 2018, 33(4): 557 − 573. doi:  10.1007/s10980-018-0618-z
    [21] DAVIES Z G, EDMONDSON J L, HEINEMEYER A, et al. Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale [J]. J Appl Ecol, 2011, 48(5): 1125 − 1134. doi:  10.1111/j.1365-2664.2011.02021.x
    [22] ANDERSSON E, AHRNÉ K, PYYKÖNEN M, et al. Patterns and scale relations among urbanization measures in Stockholm, Sweden [J]. Landsc Ecol, 2009, 24(10): 1331 − 1339. doi:  10.1007/s10980-009-9385-1
    [23] 李全, 李腾, 杨明正, 等. 基于梯度分析的武汉市生态系统服务价值时空分异特征[J]. 生态学报, 2017, 37(6): 2118 − 2125.

    LI Quan, LI Teng, YANG Mingzheng, et al. Spatiotemporal variation of ecosystem services value based on gradient analysis in Wuhan: 2000−2010 [J]. Acta Ecol Sin, 2017, 37(6): 2118 − 2125.
    [24] 游松财, 邸苏闯, 袁晔. 黄土高原地区土壤田间持水量的计算[J]. 自然资源学报, 2009, 24(3): 545 − 552. doi:  10.3321/j.issn:1000-3037.2009.03.020

    YOU Songcai, DI Suchuang, YUAN Ye. Study on soil field capacity estimation in the Loess Plateau Region [J]. J Nat Resour, 2009, 24(3): 545 − 552. doi:  10.3321/j.issn:1000-3037.2009.03.020
    [25] ZHANG Lingyushan, HICKEL K, DAWES W R, et al. A rational function approach for estimating mean annual evapotranspiration [J]. Water Resour Res, 2004, 40(2): 89 − 97.
    [26] DONOHUE R J, RODERICK M L, McVICAR T R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model [J]. J Hydrol, 2012, 436/437: 35 − 50. doi:  10.1016/j.jhydrol.2012.02.033
    [27] ZHANG Canqiang, LI Wenhua, ZHANG Biao, et al. Water yield of Xitiaoxi River Basin based on InVEST modeling [J]. J Resour Ecol, 2012, 3(1): 50 − 54.
    [28] HOU Lei, WU Faqi, XIE Xinli. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China[J]. Ecol Indic, 2020, 108: 105720. doi: 10.1016/j.ecoind.2019.105720.
    [29] 赵晓松, 刘元波, 吴桂平. 基于遥感的鄱阳湖湖区蒸散特征及环境要素影响[J]. 湖泊科学, 2013, 25(3): 428 − 436. doi:  10.3969/j.issn.1003-5427.2013.03.018

    ZHAO Xiaosong, LIU Yuanbo, WU Guiping. A remote-sensing-based study on evapotranspiration and the environmental factors over the Lake Poyang region [J]. J Lake Sci, 2013, 25(3): 428 − 436. doi:  10.3969/j.issn.1003-5427.2013.03.018
    [30] 卢慧婷, 黄琼中, 朱捷缘, 等. 拉萨河流域生态系统类型和质量变化及其对生态系统服务的影响[J]. 生态学报, 2018, 38(24): 8911 − 8918.

    LU Huiting, HUANG Qiongzhong, ZHU Jieyuan, et al. Ecosystem type and quality changes in Lhasa River Basin and their effects on ecosystem services [J]. Acta Ecol Sin, 2018, 38(24): 8911 − 8918.
    [31] YU Zhaowu, YAO Yawen, YANG Gaoyuan, et al. Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution [J]. For Ecol Manage, 2019, 446: 214 − 225. doi:  10.1016/j.foreco.2019.05.046
    [32] 寿飞云, 李卓飞, 黄璐, 等. 基于生态系统服务供求评价的空间分异特征与生态格局划分: 以长三角城市群为例[J]. 生态学报, 2020, 40(9): 2813 − 2826.

    SHOU Feiyun, LI Zhuofei, HUANG Lu, et al. Spatial differentiation and ecological patterns of urban agglomeration based on evaluations of supply and demand of ecosystem services: a case study on the Yangtze River Delta [J]. Acta Ecol Sin, 2020, 40(9): 2813 − 2826.
    [33] 邱问心, 张勇, 俞佳骏, 等. InVEST模型水源涵养模块实地应用的可行性验证[J]. 浙江农林大学学报, 2018, 35(5): 810 − 817. doi:  10.11833/j.issn.2095-0756.2018.05.004

    QIU Wenxin, ZHANG Yong, YU Jiajun, et al. Feasibility verification with field application of a water conservation module using the InVEST Model [J]. J Zhejiang A&F Univ, 2018, 35(5): 810 − 817. doi:  10.11833/j.issn.2095-0756.2018.05.004
    [34] NALEWANKOVÁ P, SITKOVÁ Z, KUCERA J, et al. Impact of water deficit on seasonal and diurnal dynamics of European Beech transpiration and time-lag effect between stand transpiration and environmental drivers[J]. Water, 2020, 12(12): 3437. doi: 10.3390/w12123437.
  • [1] 李玉杰, 卢娟, 陈思佳, 付晖.  海口市热力景观时空格局与分异特征 . 浙江农林大学学报, 2021, 38(4): 712-722. doi: 10.11833/j.issn.2095-0756.20200648
    [2] 曹嘉铄, 邓政宇, 胡远东, 吴妍.  神农架林区景观格局时空演变及其驱动力分析 . 浙江农林大学学报, 2021, 38(1): 155-164. doi: 10.11833/j.issn.2095-0756.20200279
    [3] 张天然, 郑文革, 章银柯, 黄芳, 李晓璐, 袁楚阳, 于慧, 晏海, 邵锋.  杭州市临安区4种绿地内细颗粒物中重金属污染特征 . 浙江农林大学学报, 2021, 38(4): 737-745. doi: 10.11833/j.issn.2095-0756.20200558
    [4] 刘玉卿, 张华兵, 孙小祥, 李玉凤.  1980−2018年江苏里下河平原景观格局时空变化及其热点分析 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20210178
    [5] 严泽埔, 张佳琦, 梁璧, 魏广利, 张启香, 王正加.  外施赤霉素对薄壳山核桃幼苗生长及相关代谢基因表达的影响 . 浙江农林大学学报, 2020, 37(5): 922-929. doi: 10.11833/j.issn.2095-0756.20190566
    [6] 俞飞, 李智勇.  天目山林区景观格局时空变化及驱动因素分析 . 浙江农林大学学报, 2020, 37(3): 439-446. doi: 10.11833/j.issn.2095-0756.20190306
    [7] 戴奥娜, 刘肖肖, 王兵, 戴伟.  丝栗栲林下土壤有机碳及其组分的时空年变化特征 . 浙江农林大学学报, 2018, 35(3): 405-411. doi: 10.11833/j.issn.2095-0756.2018.03.003
    [8] 竹万宽, 陈少雄, RogerARNOLD, 王志超, 许宇星, 杜阿朋.  不同种桉树人工林土壤呼吸速率时空动态及其影响要素 . 浙江农林大学学报, 2018, 35(3): 412-421. doi: 10.11833/j.issn.2095-0756.2018.03.004
    [9] 邱问心, 张勇, 俞佳骏, 张超, 郑超超, 余树全.  InVEST模型水源涵养模块实地应用的可行性验证 . 浙江农林大学学报, 2018, 35(5): 810-817. doi: 10.11833/j.issn.2095-0756.2018.05.004
    [10] 郭玉静, 王妍, 郑毅, 刘云根, 闻国静, 展鹏飞.  滇西北高原湖泊剑湖流域景观时空演变特征 . 浙江农林大学学报, 2018, 35(4): 695-704. doi: 10.11833/j.issn.2095-0756.2018.04.015
    [11] 闻国静, 刘云根, 王妍, 侯磊, 王艳霞, 郭玉静.  普者黑湖流域景观格局及生态风险时空演变 . 浙江农林大学学报, 2017, 34(6): 1095-1103. doi: 10.11833/j.issn.2095-0756.2017.06.018
    [12] 武录义, 岳永杰, 刘果厚, 高润宏, 苏志成.  气候变化对元上都遗址区景观格局的影响 . 浙江农林大学学报, 2016, 33(2): 232-238. doi: 10.11833/j.issn.2095-0756.2016.02.007
    [13] 蒋文伟, 郭运雪, 杨淑贞, 赵明水.  天目山柳杉古树的树干液流速率时空变化 . 浙江农林大学学报, 2012, 29(6): 859-866. doi: 10.11833/j.issn.2095-0756.2012.06.009
    [14] 郭慧慧, 蒋文伟, 梅艳霞.  基于高空间分辨率航空影像的宁波鄞州新城区城市景观格局分析 . 浙江农林大学学报, 2012, 29(3): 344-351. doi: 10.11833/j.issn.2095-0756.2012.03.005
    [15] 杨子清, 陈平留, 刘健, 余坤勇, 廖晓丽, 游浩辰, 龚从宏.  杉木人工林空间分布格局时空变化分析 . 浙江农林大学学报, 2012, 29(3): 374-382. doi: 10.11833/j.issn.2095-0756.2012.03.008
    [16] 车腾腾, 冯益明, 蔡道雄, 张万幸, 张显强, 吴春争.  热带林业实验中心人工林区景观格局变化分析 . 浙江农林大学学报, 2011, 28(5): 706-712. doi: 10.11833/j.issn.2095-0756.2011.05.004
    [17] 郭徵, 江洪, 陈健, 程苗苗, 江子山, 余树全, 李土生3.  基于遥感的杭州余杭森林景观格局变化 . 浙江农林大学学报, 2010, 27(1): 36-43. doi: 10.11833/j.issn.2095-0756.2010.01.006
    [18] 夏伟伟, 韩海荣, 伊力塔, 程小琴.  庞泉沟国家级自然保护区森林景观格局动态 . 浙江农林大学学报, 2008, 25(6): 723-727.
    [19] 孙达, 黄芳, 蔡荣荣, 秦华, 庄舜尧, 张妙仙, 曹志洪.  集约经营雷竹林土壤磷素的时空变化 . 浙江农林大学学报, 2007, 24(6): 670-674.
    [20] 蔡荣荣, 黄芳, 孙达, 秦华, 杨芳, 庄舜尧, 周国模, 曹志洪.  集约经营雷竹林土壤有机质的时空变化 . 浙江农林大学学报, 2007, 24(4): 450-455.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210170

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/1/1

计量
  • 文章访问数:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-08-21

基于InVEST模型的杭州市典型年份年产水量时空变化特征及其影响因素

doi: 10.11833/j.issn.2095-0756.20210170
    基金项目:  国家自然科学基金资助项目(41701638);国家重点研发计划课题资助项目(2016YFC0502704)
    作者简介:

    蔡梦卿(ORCID: 0000-0001-7829-3809),从事生态系统服务研究。Email: caimengqing@zju.edu.cn

    通信作者: 严力蛟(ORCID: 0000-0003-2374-0354),研究员,博士,从事生态系统服务、生态规划、城市生态等研究。E-mail: yanlj@zju.edu.cn
  • 中图分类号: Q149

摘要:   目的  自然因素和土地利用变化是引起生态系统服务改变的两大驱动因素。研究年产水量时空变化特征及两大驱动因素对年产水量的影响,对维持或提升城市水源涵养、保持水土具有现实意义。  方法  以浙江省杭州市为研究对象,采用景观格局分析、空间梯度分析、相关性分析等方法,综合应用InVEST、ArcGIS、Fragstats、SPSS等工具,识别杭州市土地利用和气象因子变化特征,评估并分析年产水量时空变化特征及其与气象因子、景观格局指数的相关性。  结果  2000−2015年杭州市年产水量呈先下降后上升趋势。在空间上表现为东北高、西南低,随着远离城市中心先增大后减小,于10 km处达到最大值。建设用地的产水量最大。2000-2015年杭州市土地利用变化最剧烈的是耕地与建设用地之间的转化。景观总体呈现更强烈的破碎化和异质性趋势,在距离城市中心10~20 km处达到峰值。年降水量先降低后升高,年均气温波动上升,年实际蒸散量处于波动状态。离城市中心50 km内年降水量变化不显著,年均气温显著下降,年实际蒸散量先减小后增大。杭州市年产水量与气象因子的相关性大于其与景观格局指数的相关性,其中与气象因子中降水量正相关性最强。  结论  气象因子的变化是引起杭州市年产水量变化的主要因素,但景观格局的影响仍值得关注。距离城市中心10 km处是年产水量变化的拐点。图4表7参34

English Abstract

蔡梦卿, 黄璐, 严力蛟. 基于InVEST模型的杭州市典型年份年产水量时空变化特征及其影响因素[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210170
引用本文: 蔡梦卿, 黄璐, 严力蛟. 基于InVEST模型的杭州市典型年份年产水量时空变化特征及其影响因素[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210170
CAI Mengqing, HUANG Lu, YAN Lijiao. Temporal and spatial variation characteristics of annual water yield and its influencing factors in Hangzhou based on InVEST model[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210170
Citation: CAI Mengqing, HUANG Lu, YAN Lijiao. Temporal and spatial variation characteristics of annual water yield and its influencing factors in Hangzhou based on InVEST model[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210170

返回顶部

目录

    /

    返回文章
    返回