留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同林龄樟子松人工林根际与非根际土壤生态化学计量特征

程昊天 孔涛 吕刚 王东丽 张莉莉

程昊天, 孔涛, 吕刚, 王东丽, 张莉莉. 不同林龄樟子松人工林根际与非根际土壤生态化学计量特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210211
引用本文: 程昊天, 孔涛, 吕刚, 王东丽, 张莉莉. 不同林龄樟子松人工林根际与非根际土壤生态化学计量特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210211
CHENG Haotian, KONG Tao, LÜ Gang, WANG Dongli, ZHANG Lili. Ecological stoichiometric characteristics of rhizosphere and non-rhizosphere soil of Pinus sylvestris var. mongolica plantations at different ages[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210211
Citation: CHENG Haotian, KONG Tao, LÜ Gang, WANG Dongli, ZHANG Lili. Ecological stoichiometric characteristics of rhizosphere and non-rhizosphere soil of Pinus sylvestris var. mongolica plantations at different ages[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210211

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

不同林龄樟子松人工林根际与非根际土壤生态化学计量特征

doi: 10.11833/j.issn.2095-0756.20210211
基金项目: “十三五”国家重点研发计划资助项目(2016YFE0202900);国家自然科学基金资助项目(41601281,41701325);辽宁省高等学校基本科研项目(LJ2017QL015);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-24)
详细信息
    作者简介: 程昊天(ORCID: 0000-0002-3095-0897),从事生态修复理论研究。E-mail: chenghaotien@163.com
    通信作者: 孔涛(ORCID: 0000-0001-5450-7497),副教授,博士,从事生态修复理论等方面的研究。E-mail: kongtao2005@126.com
  • 中图分类号: S714.2

Ecological stoichiometric characteristics of rhizosphere and non-rhizosphere soil of Pinus sylvestris var. mongolica plantations at different ages

  • 摘要:   目的  探究辽西北沙地不同林龄樟子松Pinus sylvestris var. mongolica人工林根际与非根际土壤碳(C)、氮(N)、磷(P)质量分数及生态化学计量特征关系,为该地区的樟子松林培育、经营及管理提供理论依据。  方法  采用时空互代的方法,在辽西北章古台地区选取6个林龄(10、20、30、40、50和60 a)的樟子松人工林作为研究对象,分析各林龄下根际与非根际土壤碳、氮、磷质量分数及化学计量比的差异和影响因素。  结果  辽西北沙地樟子松人工林土壤贫瘠,根际土壤碳、氮、磷质量分数均高于非根际土壤,根系对养分的富集与平衡维持作用明显。林龄、根际以及二者之间的交互作用,对土壤碳、氮、磷质量分数及其生态化学计量比影响显著。樟子松人工林土壤C∶N主要受到土壤全氮的影响,土壤C∶P主要受土壤有机碳的影响,土壤N∶P受土壤全氮的影响大于全磷。各林龄樟子松人工林土壤C∶N均远高于全国平均水平,表现为氮限制,其中60 a过熟林氮限制更为强烈。樟子松人工林根际土壤氮、磷限制存在一定程度的协同性。  结论  各林龄樟子松生长均受到氮限制,相较于根际土壤,非根际土壤氮更为缺乏。在森林经营过程中,应充分考虑根际与非根际土壤的差异性,建议对辽西北沙地樟子松人工林施用氮肥、引入固氮植物以解除氮限制,并注意根系磷肥的补充。图1表5参28
  • 图  1  不同林龄樟子松土壤碳、氮、磷根际效应值

    Figure  1  Soil C, N, P rhizosphere effect values of Pinus sylvestris var. mongolica with different stand ages

    表  1  样地基本情况

    Table  1.   Basic information of the sample plots

    样地
    编号
    林分
    年龄/a
    平均树
    高/m
    平均胸
    径/cm
    东西平均
    冠幅/m
    南北平均
    冠幅/m
    土壤容重/
    (g·cm−3)
    1103.287.502.592.421.67
    2207.8013.313.604.211.64
    3309.2516.694.014.101.60
    44011.2720.924.304.691.56
    55011.0119.614.594.721.60
    66013.0420.594.624.921.62
    下载: 导出CSV

    表  2  樟子松根际与非根际土壤碳、氮、磷质量分数及其生态化学计量比

    Table  2.   Content of C, N, P in rhizosphere and non-rhizosphere soil of Pinus sylvestris var. mongolica and its ecological stoichiometric ratio

    林龄/a土壤类型有机碳/(g·kg−1)全氮/(g·kg−1)全磷/(g·kg−1)C∶NC∶PN∶P
    10R6.67±0.28 Ad0.23±0.02 Ac0.19±0.01 Ae29.13±2.19 Bb35.07±0.08 Ad1.23±0.10 Ad
    NR5.96±0.08 Be0.11±0.09 Ad0.17±0.01 Be59.48±22.34 Aa35.63±0.09 Ae0.65±0.53 Bd
    20R7.16±0.26 Ac0.26±0.01 Ac0.22±0.01 Ac27.55±0.60 Bbc33.09±0.14 Ae1.20±0.03 Ad
    NR5.96±0.33 Be0.17±0.01 Bcd0.19±0.01 Bd35.06±0.13 Ab32.12±1.27 Af0.92±0.04 Bcd
    30R9.89±0.04 Ab0.36±0.03 Ab0.24±0.01 Aa27.59±2.19 Bbc41.21±0.14 Bc1.50±0.11 Ac
    NR8.85±0.29 Bc0.26±0.01 Bb0.20±0.01 Bab34.04±0.20 Ab44.24±1.04 Ac1.30±0.04 Bbc
    40R10.17±0.12 Ab0.41±0.01 Aa0.25±0.02 Aa24.81±0.56 Bc41.13±0.22 Ac1.66±0.03 Ab
    NR8.31±0.16 Bd0.24±0.01 Bbc0.20±0.01 Ba34.65±0.78 Ab41.18±1.16 Ad1.19±0.06 Bbc
    50R12.79±0.22 Aa0.36±0.02 Ab0.23±0.01 Ab35.60±1.92 Aa56.73±0.37 Ab1.60±0.08 Abc
    NR10.73±0.24 Bb0.30±0.02 Bab0.20±0.01 Bb35.84±1.59 Ab54.64±0.72 Bb1.53±0.09 Aab
    60R12.93±0.33 Aa0.38±0.01 Aab0.20±0.0 1 Ad34.04±0.81 Aa65.26±1.03 Aa1.92±0.02 Aa
    NR11.16±0.15 Ba0.36±0.03 Aa0.19±0.01 Ac31.12±2.18 Ab58.46±0.26 Ba1.88±0.12 Aa
      说明:R为根际土壤,NR为非根际土壤。不同大写字母表示同一林龄在不同土壤类型间差异显著(P<0.05),不同小写字母表示同一     土壤类型在不同林龄间差异显著(P<0.05)
    下载: 导出CSV

    表  3  土壤碳、氮、磷质量分数及其生态化学计量比方差分析

    Table  3.   Soil C, N, P content and its ecological stoichiometric ratio variance analysis

    指标F
    有机碳全氮全磷C∶NC∶PN∶P
    林龄(A)   1 310.94**81.92**299.20**4.05**1 603.44**76.69**
    根际(B)   680.28**180.92**1 220.84**15.23**23.10**70.28**
    AB交互作用15.53**9.09**46.38**4.71**32.26**7.39**
      说明:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)
    下载: 导出CSV

    表  4  土壤碳、氮、磷质量分数对生态化学计量比的解释程度及相关关系

    Table  4.   Soil C, N, P content and its ecological stoichiometric ratio correlation

    项目R2 (P)
    有机碳全氮全磷
    C∶N0.07 (0.13)0.45 (<0.01)
    C∶P0.84 (<0.01)0.01 (0.71) 
    N∶P0.99 (<0.01)0.21 (<0.01)
      说明:R2为决定系数,值越大解释程度越高。P为相关系数,     P<0.05表示显著相关,P<0.01表示极显著相关
    下载: 导出CSV

    表  5  根际生态化学计量比间相关关系和非根际生态化学计量比间相关关系

    Table  5.   Correlation between rhizosphere ecological stoichiometric ratio and non-rhizosphere ecological stoichiometric ratio

    项目根际土壤非根际土壤
    C∶NC∶PN∶PC∶NC∶PN∶P
    C∶N11
    C∶P0.77**1−0.381
    N∶P0.320.85**1−0.78**0.85**1
      说明:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)
    下载: 导出CSV
  • [1] 朱教君, 康宏樟, 许美玲. 科尔沁沙地南缘樟子松(Pinus sylvestris var. mongolica)人工林天然更新障碍[J]. 生态学报, 2007, 27(10): 4086 − 4095. doi:  10.3321/j.issn:1000-0933.2007.10.016

    ZHU Jiaojun, KANG Hongzhang, XU Meiling. Natural regeneration barriers of Pinus sylvestris var. mongolica plantations in southern Keerqin Sandy Land, China [J]. Acta Ecol Sin, 2007, 27(10): 4086 − 4095. doi:  10.3321/j.issn:1000-0933.2007.10.016
    [2] 吴祥云, 姜凤岐, 李晓丹, 等. 樟子松人工固沙林衰退的规律和原因[J]. 应用生态学报, 2004, 15(12): 2225 − 2228. doi:  10.3321/j.issn:1001-9332.2004.12.006

    WU Xiangyun, JIANG Fengqi, LI Xiaodan, et al. Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land [J]. Chin J Appl Ecol, 2004, 15(12): 2225 − 2228. doi:  10.3321/j.issn:1001-9332.2004.12.006
    [3] 宋立宁, 朱教君, 郑晓. 基于沙地樟子松人工林衰退机制的营林方案[J]. 生态学杂志, 2017, 36(11): 3249 − 3256.

    SONG Lining, ZHU Jiaojun, ZHENG Xiao. Forestation and management scheme of Pinus sylvestris var. mongolica plantations in sandy lands based on their decline mechanisms [J]. Chin J Ecol, 2017, 36(11): 3249 − 3256.
    [4] HESSEN D. Stoichiometry in food webs: Lotka revisted [J]. Oikos, 1997, 7(9): 95 − 200.
    [5] 陈军强, 张蕊, 侯尧宸, 等. 亚高山草甸植物群落物种多样性与群落C、N、P生态化学计量的关系[J]. 植物生态学报, 2013, 37(11): 979 − 987.

    CHEN Junqiang, ZHANG Rui, HOU Yaochen, et al. Relationships between species diversity and C, N and P ecological stoichiometry in plant communities of sub-alpine meadow [J]. Chin J Plant Ecol, 2013, 37(11): 979 − 987.
    [6] 梅杰, 周国英. 不同林龄马尾松林根际与非根际土壤微生物、酶活性及养分特征[J]. 中南林业科技大学学报, 2011, 31(4): 46 − 49. doi:  10.3969/j.issn.1673-923X.2011.04.009

    MEI Jie, ZHOU Guoying. Study of rhizosphere and non-rhizosphere microbial, enzyme activity and nutrients element content of soil in different stand ages Pinus massoniana forest [J]. J Cent South Univ For Technol, 2011, 31(4): 46 − 49. doi:  10.3969/j.issn.1673-923X.2011.04.009
    [7] FRASER T D, LYNCH D H, GAIERO J, et al. Quantification of bacterial non-specific acid (PhoC) and alkaline (PhoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields [J]. Appl Soil Ecol, 2017, 111: 48 − 56. doi:  10.1016/j.apsoil.2016.11.013
    [8] BALAKRISHNAN B, SAHU B K, RANISHREE J K, et al. Assessment of heavy metal concentrations and associated resistant bacterial communities in bulk and rhizosphere soil of Avicennia marina of Pichavaram mangrove, India [J]. Environ Earth Sci, 2017, 76(1): 58. doi:  10.1007/s12665-016-6378-7
    [9] ANGST G, INGRID K, KIRFEL K, et al. Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.) [J]. Geoderma, 2016, 264: 179 − 187. doi:  10.1016/j.geoderma.2015.10.016
    [10] BIRD J A, HERMAN D J, FIRESTONE M K. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil [J]. Soil Biol Biochem, 2011, 43(4): 718 − 725. doi:  10.1016/j.soilbio.2010.08.010
    [11] 王凯, 沈潮, 宋立宁, 等. 持续干旱下沙地樟子松幼苗C、N、P化学计量变化规律[J]. 生态学杂志, 2020, 39(7): 2175 − 2184.

    WANG Kai, SHEN Chao, SONG Lining, et al. Variations in C, N and P stoichiometry of Pinus sylvestris var. mongolica seedlings under continuous drought [J]. Chin J Ecol, 2020, 39(7): 2175 − 2184.
    [12] 王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3): 741 − 748.

    WANG Kai, ZHAO Chengjiao, ZHANG Risheng, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities [J]. Chin J Ecol, 2020, 39(3): 741 − 748.
    [13] 赵姗宇, 黎锦涛, 孙学凯, 等. 樟子松人工林原产地与不同自然降水梯度引种地土壤和植物叶片生态化学计量特征[J]. 生态学报, 2018, 38(20): 7189 − 7197.

    ZHAO Shanyu, LI Jintao, SUN Xuekai, et al. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions [J]. Acta Ecol Sin, 2018, 38(20): 7189 − 7197.
    [14] 淑敏, 姜涛, 王东丽, 等. 科尔沁沙地不同林龄樟子松人工林土壤生态化学计量特征[J]. 干旱区研究, 2018, 35(4): 789 − 795.

    SHU Min, JIANG Tao, WANG Dongli, et al. Soil Ecological stoichiometry under the planted of Pinus sylvestris var. mongolica forests with different stand ages in the Horqin Sandy Land [J]. Arid Zone Res, 2018, 35(4): 789 − 795.
    [15] PHILLIPS R P, FAHEY T J. The influence of soil fertility on rhizosphere effects in northern hardwood forest soils [J]. Soil Sci Soc Am J, 2008, 72(2): 453 − 461. doi:  10.2136/sssaj2006.0389
    [16] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2005.
    [17] 胡启武, 聂兰琴, 郑艳明, 等. 沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响[J]. 生态学报, 2014, 34(9): 2246 − 2255.

    HU Qiwu, NIE Lanqin, ZHENG Yanming, et al. Effects of desertification intensity and stand age on leaf and soil carbon, nitrogen and phosphorus stoichiometry in Pinus elliottii plantation [J]. Acta Ecol Sin, 2014, 34(9): 2246 − 2255.
    [18] 李玉新, 赵忠, 陈金泉. 不同林龄人工沙棘林结构与林下物种多样性研究[J]. 西北植物学报, 2010, 30(4): 776 − 785.

    LI Yuxin, ZHAO Zhong, CHEN Jinquan. Seabuckthorn plantation structure at different ages and its understory species diversity [J]. Acta Bot Boreal-Occident Sin, 2010, 30(4): 776 − 785.
    [19] 马月婷, 张丽静, 杜明新, 等. 不同种植年限白沙蒿对根际土壤营养元素的影响[J]. 草业科学, 2014, 31(2): 224 − 231. doi:  10.11829/j.issn.1001-0629.2013-0104

    MA Yueting, ZHANG Lijing, DU Mingxin, et al. Effects of different ages Artemisia sphaerocephala on the content of nutrient elements in rhizosphere soil [J]. Pratacult Sci, 2014, 31(2): 224 − 231. doi:  10.11829/j.issn.1001-0629.2013-0104
    [20] 于德良, 雷泽勇, 赵国军, 等. 土壤酶活性对沙地樟子松人工林衰退的响应[J]. 环境化学, 2019, 38(1): 97 − 105. doi:  10.7524/j.issn.0254-6108.2018020901

    YU Deliang, LEI Zeyong, ZHAO Guojun. et al. Response of soil enzyme activity to the decline of Pinus sylvestris var. mongolica plantations on sand land [J]. Environ Chem, 2019, 38(1): 97 − 105. doi:  10.7524/j.issn.0254-6108.2018020901
    [21] 朱秋莲, 邢肖毅, 程曼, 等. 宁南山区典型植物根际与非根际土壤碳、氮形态[J]. 应用生态学报, 2013, 24(4): 983 − 988.

    ZHU Qiulian, XING Xiaoyi, CHENG Man, et al. Concentrations of different carbon and nitrogen fractions in rhizosphere and non-rhizosphere soils of typical plant species in mountainous area of southern Ningxia, Northwest China [J]. Chin J Appl Ecol, 2013, 24(4): 983 − 988.
    [22] 徐华山, 赵同谦, 贺玉晓, 等. 滨河湿地不同植被对农业非点源氮污染的控制效果[J]. 生态学报, 2010, 30(21): 5759 − 5768.

    XU Huashan, ZHAO Tongqian, HE Yuxiao, et al. Effect of different vegetation types on agricultural non-point nitrogen pollution in riparian wetlands [J]. Acta Ecol Sin, 2010, 30(21): 5759 − 5768.
    [23] 赵琼, 曾德慧, 于占源, 等. 沙地樟子松人工林土壤磷素转化的根际效应[J]. 应用生态学报, 2006, 17(8): 1377 − 1381. doi:  10.3321/j.issn:1001-9332.2006.08.004

    ZHAO Qiong, ZENG Dehui, YU Zhanyuan, et al. Rhizosphere effects of Pinus sylvestris var. mongolica on soil phosphorus transformation [J]. Chin J Appl Ecol, 2006, 17(8): 1377 − 1381. doi:  10.3321/j.issn:1001-9332.2006.08.004
    [24] 张良侠, 樊江文, 张文彦, 等. 京津风沙源治理工程对草地土壤有机碳库的影响: 以内蒙古锡林郭勒盟为例[J]. 应用生态学报, 2014, 25(2): 374 − 380.

    ZHANG Liangxia, FAN Jiangwen, ZHANG Wenyan, et al. Impact of the Beijing and Tianjin Sand Source Control Project on the grassland soil organic carbon storage: a case study of Xilingol League, Inner Mongolia, China [J]. Chin J Appl Ecol, 2014, 25(2): 374 − 380.
    [25] 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30(6): 1628 − 1637.

    CHENG Bin, ZHAO Yongjun, ZHANG Wenguang, et al. The research advances and prospect of ecological stoichiometry [J]. Acta Ecol Sin, 2010, 30(6): 1628 − 1637.
    [26] 朱仁欢, 李玮, 郑子成, 等. 退耕植茶地土壤碳氮磷生态化学计量学特征[J]. 浙江农林大学学报, 2016, 33(4): 612 − 619. doi:  10.11833/j.issn.2095-0756.2016.04.009

    ZHU Renhuan, LI Wei, ZHENG Zicheng, et al. Ecological stoichiometry of soil C, N, and P for returning farmland to tea plantations [J]. J Zhejiang A&F Univ, 2016, 33(4): 612 − 619. doi:  10.11833/j.issn.2095-0756.2016.04.009
    [27] 孙超. 基于生态化学计量学的草地退化研究[D]. 长春: 吉林大学, 2012.

    SUN Chao. Research on Grassland Degradation based on Ecological Stoichiometry[D]. Changchun: Jilin University, 2012.
    [28] 曹娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J]. 林业科学, 2015, 51(7): 1 − 8.

    CAO Juan, YAN Wende, XIANG Wenhua, et al. Stoichiometry characterization of soil C, N and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China [J]. Sci Silv Sin, 2015, 51(7): 1 − 8.
  • [1] 陈丽美, 李小英, 李俊龙, 梁智, 史亮涛.  竹炭与有机肥配施对土壤肥力及紫甘蓝生长的影响 . 浙江农林大学学报, 2021, 38(4): 774-783. doi: 10.11833/j.issn.2095-0756.20200723
    [2] 杨仕明, 蔡乾坤, 刘文飞, 吴建平.  杉木人工林土壤氮矿化对长期氮添加和季节的响应 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20210403
    [3] 原雅楠, 李正才, 王斌, 张雨洁, 黄盛怡.  不同林龄榧树林地土壤碳氮磷化学计量特征 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200761
    [4] 査晶晶, 吴永波, 茆安敏, 朱颖, 李文霞, 杨静.  河岸人工林缓冲带对径流水磷素的截留效果 . 浙江农林大学学报, 2020, 37(4): 639-645. doi: 10.11833/j.issn.2095-0756.20190509
    [5] 谭锦, 杨建英, 侯健.  乌海市几种灌木与土壤养分聚集的关系 . 浙江农林大学学报, 2019, 36(5): 957-964. doi: 10.11833/j.issn.2095-0756.2019.05.015
    [6] 梁洋, 邵森, 马冰倩.  太岳山油松人工林土壤质量随林龄的演变特征 . 浙江农林大学学报, 2019, 36(3): 581-589. doi: 10.11833/j.issn.2095-0756.2019.03.020
    [7] 雷泽勇, 韩艳刚, 赵国军, 周晏平, 张岩松, 于德良.  辽宁章古台樟子松生长过程分析 . 浙江农林大学学报, 2018, 35(2): 324-330. doi: 10.11833/j.issn.2095-0756.2018.02.017
    [8] 许宇星, 王志超, 竹万宽, 杜阿朋.  雷州半岛3种速生人工林下土壤生态化学计量特征 . 浙江农林大学学报, 2018, 35(1): 35-42. doi: 10.11833/j.issn.2095-0756.2018.01.005
    [9] 吕文强, 周传艳, 闫俊华, 李世杰.  贵州省喀斯特地区4种典型人工林叶片化学计量特征 . 浙江农林大学学报, 2016, 33(6): 984-990. doi: 10.11833/j.issn.2095-0756.2016.06.009
    [10] 朱仁欢, 李玮, 郑子成, 李廷轩, 洪月, 何秋佳, 田宗渠.  退耕植茶地土壤碳氮磷生态化学计量学特征 . 浙江农林大学学报, 2016, 33(4): 612-619. doi: 10.11833/j.issn.2095-0756.2016.04.009
    [11] 王丹, 马元丹, 郭慧媛, 高岩, 张汝民, 侯平.  模拟酸雨胁迫与柳杉凋落物对土壤养分及微生物的影响 . 浙江农林大学学报, 2015, 32(2): 195-203. doi: 10.11833/j.issn.2095-0756.2015.02.005
    [12] 巢林, 洪滔, 李键, 陈灿, 洪伟, 吴承祯.  不同林龄、径级杉木人工林种内竞争规律 . 浙江农林大学学报, 2015, 32(3): 353-360. doi: 10.11833/j.issn.2095-0756.2015.03.004
    [13] 郑蓉.  产地绿竹笋品质及土壤养分的主成分与典型相关分析 . 浙江农林大学学报, 2012, 29(5): 710-714. doi: 10.11833/j.issn.2095-0756.2012.05.012
    [14] 杜华强, 汤孟平, 崔瑞蕊.  天目山常绿阔叶林土壤养分的空间异质性 . 浙江农林大学学报, 2011, 28(4): 562-568. doi: 10.11833/j.issn.2095-0756.2011.04.007
    [15] 惠淑荣, 王娇, 张倩, 魏忠平, 刘阳.  辽西北沙地不同土地利用方式对土壤水分的影响 . 浙江农林大学学报, 2010, 27(4): 579-584. doi: 10.11833/j.issn.2095-0756.2010.04.017
    [16] 姜培坤, 徐秋芳, 邬奇峰, 吴家森.  施肥对板栗林土壤养分和生物学性质的影响 . 浙江农林大学学报, 2007, 24(4): 445-449.
    [17] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分状况的调查分析 . 浙江农林大学学报, 2006, 23(2): 140-144.
    [18] 马焕成, 罗质斌, 陈义群, 林文杰.  保水剂对土壤养分的保蓄作用 . 浙江农林大学学报, 2004, 21(4): 404-407.
    [19] 杨芳, 徐秋芳.  不同栽培历史雷竹林土壤养分与重金属含量的变化 . 浙江农林大学学报, 2003, 20(2): 111-114.
    [20] 徐有明, 林汉, 万伏红.  马尾松纸浆材材性变异和采伐林龄的确定* . 浙江农林大学学报, 1997, 14(1): 8-15.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210211

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021//1

计量
  • 文章访问数:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-07-15

不同林龄樟子松人工林根际与非根际土壤生态化学计量特征

doi: 10.11833/j.issn.2095-0756.20210211
    基金项目:  “十三五”国家重点研发计划资助项目(2016YFE0202900);国家自然科学基金资助项目(41601281,41701325);辽宁省高等学校基本科研项目(LJ2017QL015);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-24)
    作者简介:

    程昊天(ORCID: 0000-0002-3095-0897),从事生态修复理论研究。E-mail: chenghaotien@163.com

    通信作者: 孔涛(ORCID: 0000-0001-5450-7497),副教授,博士,从事生态修复理论等方面的研究。E-mail: kongtao2005@126.com
  • 中图分类号: S714.2

摘要:   目的  探究辽西北沙地不同林龄樟子松Pinus sylvestris var. mongolica人工林根际与非根际土壤碳(C)、氮(N)、磷(P)质量分数及生态化学计量特征关系,为该地区的樟子松林培育、经营及管理提供理论依据。  方法  采用时空互代的方法,在辽西北章古台地区选取6个林龄(10、20、30、40、50和60 a)的樟子松人工林作为研究对象,分析各林龄下根际与非根际土壤碳、氮、磷质量分数及化学计量比的差异和影响因素。  结果  辽西北沙地樟子松人工林土壤贫瘠,根际土壤碳、氮、磷质量分数均高于非根际土壤,根系对养分的富集与平衡维持作用明显。林龄、根际以及二者之间的交互作用,对土壤碳、氮、磷质量分数及其生态化学计量比影响显著。樟子松人工林土壤C∶N主要受到土壤全氮的影响,土壤C∶P主要受土壤有机碳的影响,土壤N∶P受土壤全氮的影响大于全磷。各林龄樟子松人工林土壤C∶N均远高于全国平均水平,表现为氮限制,其中60 a过熟林氮限制更为强烈。樟子松人工林根际土壤氮、磷限制存在一定程度的协同性。  结论  各林龄樟子松生长均受到氮限制,相较于根际土壤,非根际土壤氮更为缺乏。在森林经营过程中,应充分考虑根际与非根际土壤的差异性,建议对辽西北沙地樟子松人工林施用氮肥、引入固氮植物以解除氮限制,并注意根系磷肥的补充。图1表5参28

English Abstract

程昊天, 孔涛, 吕刚, 王东丽, 张莉莉. 不同林龄樟子松人工林根际与非根际土壤生态化学计量特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210211
引用本文: 程昊天, 孔涛, 吕刚, 王东丽, 张莉莉. 不同林龄樟子松人工林根际与非根际土壤生态化学计量特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210211
CHENG Haotian, KONG Tao, LÜ Gang, WANG Dongli, ZHANG Lili. Ecological stoichiometric characteristics of rhizosphere and non-rhizosphere soil of Pinus sylvestris var. mongolica plantations at different ages[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210211
Citation: CHENG Haotian, KONG Tao, LÜ Gang, WANG Dongli, ZHANG Lili. Ecological stoichiometric characteristics of rhizosphere and non-rhizosphere soil of Pinus sylvestris var. mongolica plantations at different ages[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210211

返回顶部

目录

    /

    返回文章
    返回