留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柏科植物枝/根木质部水分运输、机械强度与解剖结构之间的关系

陈森 陆世通 李彦 谢江波 叶琳峰 王忠媛

陈森, 陆世通, 李彦, 谢江波, 叶琳峰, 王忠媛. 柏科植物枝/根木质部水分运输、机械强度与解剖结构之间的关系[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210248
引用本文: 陈森, 陆世通, 李彦, 谢江波, 叶琳峰, 王忠媛. 柏科植物枝/根木质部水分运输、机械强度与解剖结构之间的关系[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210248
CHEN Sen, LU Shitong, LI Yan, XIE Jiangbo, YE Linfeng, WANG Zhongyuan. Relationships among water transport, mechanical strength and anatomical structure in branche and root xylem of Cupressaceae species[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210248
Citation: CHEN Sen, LU Shitong, LI Yan, XIE Jiangbo, YE Linfeng, WANG Zhongyuan. Relationships among water transport, mechanical strength and anatomical structure in branche and root xylem of Cupressaceae species[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210248

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

柏科植物枝/根木质部水分运输、机械强度与解剖结构之间的关系

doi: 10.11833/j.issn.2095-0756.20210248
基金项目: 国家自然科学基金资助项目(31770651,41730638,31901280);中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室开放基金资助项目
详细信息
    作者简介: 陈森(ORCID: 0000-0002-4753-1437),从事植物生态学研究。E-mail: csdshuaibi@163.com
    通信作者: 王忠媛(ORCID: 0000-0001-6018-4647),讲师,博士,从事植物生态学研究。E-mail: wangzhongyuan2014@163.com
  • 中图分类号: S718.5

Relationships among water transport, mechanical strength and anatomical structure in branche and root xylem of Cupressaceae species

  • 摘要:   目的  研究湿润地区柏科Cupressaceae北美红杉Sequoia sempervirens、落羽杉Taxodium distichum、池杉T. distichum var. imbricatum木质部水分运输、解剖结构和机械强度的定量关系,探讨木质部解剖结构与功能在器官和物种水平的权衡。  方法  以浙江省天目山北美红杉、落羽杉、池杉为研究对象,用空气注入法测量3种植物枝/根的比导率(Ks)和栓塞抗性(P50),测量管胞壁厚度(Tt)、纹孔膜面积(Apm)、纹孔口面积(Apa)、纹孔膜直径(Pd)、纹孔口直径(Ad)、水力直径(Dh)、管胞密度(Nt)、纹孔开口比(Rap)、纹孔密度(Npm)等指标与水分运输有关的解剖结构,以及木质部密度(Dw)、厚度跨度比(Ttob)等与机械强度相关的指标,同时分析了水力功能与结构的关系。  结果  3种植物根的输水效率高于枝,栓塞抗性低于枝;北美红杉枝和根、落羽杉根以及池杉枝和根的KsP50均为正相关,落羽杉枝的KsP50有微弱的负相关,差异不显著(R2=0.03,P=0.35),因此,3种植物在种内水平上没有效率-安全权衡;在跨物种间,KsP50存在权衡,遵循指数为−2.23的负幂函数关系(R2=0.91,P<0.001);北美红杉枝的KsDwTtob (R2=0.37,P<0.01;R2=0.20,P<0.01),P50Ttob均有显著的负相关关系(R2=0.20,P<0.01)。  结论  3种植物枝与根的木质部安全性和效率均较低,在种内水平上没有效率-安全权衡,这是因为3种植物对高安全性和高效率的结构需求不同,即效率-安全权衡的结构基础并不存在。图7表1参48
  • 图  1  3种植物枝/根木质部管胞和纹孔照片

    Figure  1  Tracheid and pit photographs of the branch and root xylem in the three species

    图  2  3种植物枝/根的比导率(Ks,A)和栓塞抗性(P50,B)

    Figure  2  Specific sapwood conductivity (Ks, A) and cavitation resistance (P50, B) in the branches and roots

    图  3  物种内和种间枝/根的比导率(Ks)和栓塞抗性(P50)关系

    Figure  3  Relationships between specific sapwood conductivity (Ks) and cavitation resistance (P50) for the branches and roots within and between species

    图  4  3种植物枝/根的水力直径(Dh,A)、管胞壁厚度(Tt,B)和管胞密度(Nt,C)

    Figure  4  Hydraulic diameters (Dh, A), tracheid wall thickness (Tt, B) and tracheid density (Nt, C) of the branches and roots in the three species

    图  5  3种植物枝/根的纹孔口直径(Ad,A)、纹孔膜直径(Pd,B)、纹孔开口比(Rap,C)、纹孔密度(Npm,D)

    Figure  5  Pit aperture diameters (Ad, A), pit membrane diameters (Pd, B), aperture opening ratio (Rap, C), and pit density (Npm, D) of the branches and roots in three species

    图  6  3种植物枝/根木质部密度(Dw,A)和厚度跨度比(Ttob,B)

    Figure  6  Wood density (Dw, A) and thickness-to-span ratio (Ttob, B) of the branches and roots in the three species

    图  7  种内枝/根的木质部结构性状与功能性状的相关性

    Figure  7  Correlations between the xylem structural traits and functional traits in the branches and roots within species

    表  1  采样树种形态和生境

    Table  1.   Overview of trees and their habitat

    物种海拔/m坡度/(°)树龄/a树高/m胸径/cm冠幅/m
    北美红杉40.43±0.140.62±0.0720.79±0.6417.21±0.4618.14±0.312.70±0.09
    落羽杉 40.42±0.120.48±0.0316.89±0.3123.26±0.4816.73±0.472.45±0.09
    池杉  42.33±0.511.83±0.0617.28±0.5423.78±0.3417.44±0.462.61±0.09
      说明:数值为平均值±标准误
    下载: 导出CSV
  • [1] HUANG Jianping, YU Haipeng, GUAN Xiaodan, et al. Accelerated dryland expansion under climate change [J]. Nat Clim Change, 2016, 6(2): 166 − 171. doi:  10.1038/nclimate2837
    [2] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought [J]. Nature, 2012, 491(7426): 752 − 755. doi:  10.1038/nature11688
    [3] 曹嘉瑜, 刘建峰, 袁泉, 等. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715 − 729. doi:  10.17521/cjpe.2020.0024

    CAO Jiayu, LIU Jianfeng, YUAN Quan, et al. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715 − 729. doi:  10.17521/cjpe.2020.0024
    [4] CASTILLO R, VAZQUEZ A, KONKOL J L, et al. Sap flow, xylem anatomy and photosynthetic variables of three Persea species in response to laurel wilt [J]. Tree Physiol, 2021, 41(6): 1004 − 1018. doi:  10.1093/treephys/tpaa137
    [5] PRISLAN P, ČUFAR K, de LUIS M, et al. Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites [J]. Tree Physiol, 2018, 38(2): 186 − 197. doi:  10.1093/treephys/tpx167
    [6] SKELTON R, DIAZ J. Quantifying losses of plant hydraulic function: seeing the forest, the trees and the xylem [J]. Tree Physiol, 2020, 40(3): 286 − 289.
    [7] JINLONG Y, JOSEPH M M, STEVEN J, et al. Dynamic surface tension of xylem sap lipids [J]. Tree Physiol, 2020, 40(4): 433 − 444. doi:  10.1093/treephys/tpaa006
    [8] 李泽东, 陈志成, 曹振, 等. 华北低山丘陵区常用树种木质部解剖特征及水其力学抗旱性[J]. 生态学报, 2021, 41(1): 69 − 78.

    LI Zedong, CHEN Zhicheng, CAO Zhen, et al. Xylem anatomical and hydraulic drought resistance characteristics of common tree species in hilly areas of north China [J]. Acta Ecol Sin, 2021, 41(1): 69 − 78.
    [9] 李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展[J]. 植物生态学报, 2019, 43(8): 635 − 647. doi:  10.17521/cjpe.2019.0076

    LI Zhimin, WANG Chuankuan. Research progress on responses of xylem of woody plants to freeze-thaw embolism [J]. Chin J Plant Ecol, 2019, 43(8): 635 − 647. doi:  10.17521/cjpe.2019.0076
    [10] MARTIN-BENITO D, ANCHUKAITIS K J, EVANS M N, et al. Effects of drought on xylem anatomy and water-use efficiency of two co-occurring pine species[J]. Forests, 2017, 8(9): 332. doi: 10.3390/f8090332.
    [11] JORDAN G J, BRODRIBB T J, BLACKMAN C J, et al. Climate drives vein anatomy in Proteaceae [J]. Am J Bot, 2013, 100(8): 1483 − 1493. doi:  10.3732/ajb.1200471
    [12] CHEN Junwen, ZHANG Qiang, LI Xiaoshuang, et al. Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology [J]. Planta, 2009, 230(3): 459 − 468. doi:  10.1007/s00425-009-0959-6
    [13] SPERRY J S. Coordinating stomatal and xylem functioning-an evolutionary perspective [J]. New Phytol, 2010, 162(3): 568 − 570.
    [14] CARLQUIST S. Wood anatomy of Onagraceae: further species; root anatomy; significance of vestured pits and allied structures in dicotyledons [J]. Ann Missouri Bot Gard, 1982, 69(4): 755 − 769. doi:  10.2307/2398995
    [15] GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species [J]. New Phytol, 2016, 209(1): 123 − 136. doi:  10.1111/nph.13646
    [16] MAHERALI H, POCKMAN W T, JACKSON R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation [J]. Ecology, 2004, 85(8): 2184 − 2199. doi:  10.1890/02-0538
    [17] TYREE M T, COCHARD H, DAVIS S D. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? [J]. Iawa J, 1994, 15(4): 335 − 360. doi:  10.1163/22941932-90001369
    [18] LENS F, SPERRY J S, CHRISTMAN M A, et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer [J]. New Phytol, 2011, 190(3): 709 − 723. doi:  10.1111/j.1469-8137.2010.03518.x
    [19] HOLSTE E K, JERKE M J, MATZNER S L. Long-term acclimatization of hydraulic properties, xylem conduit size, wall strength and cavitation resistance in Phaseolus vulgaris in response to different environmental effects [J]. Plant Cell Environ, 2006, 29(5): 836 − 843. doi:  10.1111/j.1365-3040.2005.01454.x
    [20] MCCULLOH K A, SPERRY J S. Patterns in hydraulic architecture and their implications for transport efficiency [J]. Tree Physiol, 2005, 25(3): 257 − 267. doi:  10.1093/treephys/25.3.257
    [21] HACKE U G, SPERRY J S, POCKMAN W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure [J]. Oecologia, 2001, 126(4): 457 − 461. doi:  10.1007/s004420100628
    [22] JACOBSEN A L, PRATT R B, EWERS F W, et al. Cavitation resistance among 26 chaparral species of southern California [J]. Ecol Monographs, 2007, 77(1): 99 − 115. doi:  10.1890/05-1879
    [23] PRATT R B, JACOBSEN A L. Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics [J]. Plant Cell Environ, 2017, 40(6): 897 − 913. doi:  10.1111/pce.12862
    [24] SCHOLZ F G, BUCCI S J, GOLDSTEIN G. Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts: a comparison with the co-occurring Austrocedrus chilensis [J]. Trees, 2014, 28(5): 1475 − 1487. doi:  10.1007/s00468-014-1050-x
    [25] NOLF M, CREEK D, DUURSMA R, et al. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species [J]. Plant Cell Environ, 2015, 38(12): 2652 − 2661. doi:  10.1111/pce.12581
    [26] BUCCI S J, SCHOLZ F G, GOLDSTEIN G, et al. Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand [J]. Braz J Plant Physiol, 2008, 20(3): 233 − 245. doi:  10.1590/S1677-04202008000300007
    [27] JOHNSON D M, MCCULLOH K A, WOODRUFF D R, et al. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? [J]. Plant Sci, 2012, 195: 48 − 53. doi:  10.1016/j.plantsci.2012.06.010
    [28] JOHNSON D M, DOMEC J C, WOODRUFF D R, et al. Contrasting hydraulic strategies in two tropical lianas and their host trees [J]. Am J Bot, 2013, 100(2): 374 − 383. doi:  10.3732/ajb.1200590
    [29] WU Min, ZHANG Ya, OYA T, et al. Root xylem in three woody angiosperm species is not more vulnerable to embolism than stem xylem [J]. Plant Soil, 2020, 450(1): 479 − 495.
    [30] WRIGHT I J, REICH P B, WESTOBY M, et al. The world-wide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821 − 827. doi:  10.1038/nature02403
    [31] SPERRY J S, SALIENDRA N Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis [J]. Plant Cell Environ, 2010, 17(11): 1233 − 1241.
    [32] 陈志成, 姜丽娜, 冯锦霞, 等. 木本植物木质部栓塞测定技术的争议与进展[J]. 林业科学, 2018, 54(5): 143 − 151. doi:  10.11707/j.1001-7488.20180516

    CHEN Zhicheng, JIANG Lina, FENG Jinxia, et al. Progress and controversy of xylem embolism determination techniques in woody plants [J]. Sci Silv Sin, 2018, 54(5): 143 − 151. doi:  10.11707/j.1001-7488.20180516
    [33] PRATT R B, JACOBSEN A L, GOLGOTIU K A, et al. Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae) [J]. Ecol Monographs, 2007, 77(2): 239 − 253. doi:  10.1890/06-0780
    [34] MUSTAPHA E, FABIANO S, HABIB K, et al. How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? [J]. Physiol Plant, 2011, 142(3): 205 − 210. doi:  10.1111/j.1399-3054.2011.01470.x
    [35] DUURSMA R, CHOAT B. Fitplc- an R package to fit hydraulic vulnerability curves[J/OL]. J Plant Hydraul, 2017, 4: e002[2021-01-08]. doi:10.20870/jph.2017.e002.
    [36] OGLE K, BARBER J J, WILLSON C, et al. Hierarchical statistical modeling of xylem vulnerability to cavitation [J]. New Phytol, 2009, 182(2): 541 − 544. doi:  10.1111/j.1469-8137.2008.02760.x
    [37] CAI Jing, TYREE M T. Measuring vessel length in vascular plants: can we divine the truth? history, theory, methods, and contrasting models [J]. Trees, 2014, 28(3): 643 − 655. doi:  10.1007/s00468-014-0999-9
    [38] LI Duan, SI Jianhua, ZHANG Xiaoyou, et al. The mechanism of changes in hydraulic properties of Populus euphratica in response to drought stress[J]. Forests, 2019, 10(10): 904. doi: 10.3390/f10100904.
    [39] 马辉英, 杨晓东, 吕光辉, 等. 新疆艾比湖湿地自然保护区荒漠优势种体内的水分来源[J]. 生态学报, 2017, 37(3): 829 − 840.

    MA Huiying, YANG Xiaodong, LÜ Guanghui, et al. Water sources of dominant desert species in ebinur lake wetland nature reserve, Xinjiang, China [J]. Acta Ecol Sin, 2017, 37(3): 829 − 840.
    [40] KAVANAGH K L, BOND B J, AITKEN S N, et al. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings [J]. Tree Physiol, 1999, 19(1): 31 − 37. doi:  10.1093/treephys/19.1.31
    [41] 陈晓远, 高志红, 罗远培. 植物根冠关系[J]. 植物生理学通讯, 2005, 41(5): 6 − 13.

    CHEN Xiaoyuan, GAO Zhihong, LUO Yuanpei. Relationship between root and shoot of plants [J]. Plant Physiol Commun, 2005, 41(5): 6 − 13.
    [42] 陈明涛, 赵忠. 干旱对4种苗木根系特征及各部分物质分配的影响[J]. 北京林业大学学报, 2011, 33(1): 16 − 22.

    CHEN Mingtao, ZHAO Zhong. Effects of drought on root characteristics and mass allocation in each part of seedlings of four tree species [J]. J Beijing For Univ, 2011, 33(1): 16 − 22.
    [43] RODRIGUEZ-DOMINGUEZ C M, MURPHY M R C, LUCANI C, et al. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots [J]. New Phytol, 2018, 218(3): 1025 − 1035. doi:  10.1111/nph.15079
    [44] CORCUERA L, COCHARD H, GIL-PELEGRIN E, et al. Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism(P50) under severe drought [J]. Trees, 2011, 25(6): 1033 − 1042. doi:  10.1007/s00468-011-0578-2
    [45] BRODERSON C R, RODDY A B, WASON J W, et al. Functional status of xylem through time [J]. Ann Rev Plant Biol, 2019, 70: 407 − 433. doi:  10.1146/annurev-arplant-050718-100455
    [46] REICH P B, CORNELISSEN H. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto [J]. J Ecol, 2014, 102(2): 275 − 301. doi:  10.1111/1365-2745.12211
    [47] MARTíNEZ-VILALTA J, PRAT E, OLIVERAS I, et al. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species [J]. Oecologia, 2002, 133(1): 19 − 29. doi:  10.1007/s00442-002-1009-2
    [48] SPERRY J S. Evolution of water transport and xylem structure [J]. Int J Plant Sci, 2003, 164(suppl 3): S115 − S127.
  • [1] 陈禹衡, 陆双飞, 毛岭峰.  黄檀属珍稀树种未来适宜区变化预测 . 浙江农林大学学报, 2021, 38(4): 837-845. doi: 10.11833/j.issn.2095-0756.20200522
    [2] 侯盼盼, 陈安良, 费莉玢, 马良进.  水杨酸诱导紫楠对炭疽病的抗性 . 浙江农林大学学报, 2020, 37(3): 605-610. doi: 10.11833/j.issn.2095-0756.20190342
    [3] 贾代伟, 沈月琴, 朱臻, 黄晨鸣.  林业雇工劳动质量对农户营林技术效率的影响 . 浙江农林大学学报, 2019, 36(6): 1225-1232. doi: 10.11833/j.issn.2095-0756.2019.06.021
    [4] 朱晓成, 吴永波, 余昱莹, 李文霞.  太湖乔木林河岸植被缓冲带截留氮素效率 . 浙江农林大学学报, 2019, 36(3): 565-572. doi: 10.11833/j.issn.2095-0756.2019.03.018
    [5] 王晶, 刘茗, 冯歌林, 方伟, 高竞, 梁辰飞, 秦华, 陈俊辉, 徐秋芳.  评价芽孢杆菌脂肽产量及底物碳利用效率的新方法 . 浙江农林大学学报, 2019, 36(6): 1182-1189. doi: 10.11833/j.issn.2095-0756.2019.06.016
    [6] 张洁, 尹德洁, 关海燕, 屈琦琦, 董丽.  景天属植物研究综述 . 浙江农林大学学报, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [7] 王伟丽, 何立平, 余敏芬, 袁虎威, 闫道良, 赵亮, 余有祥, 刘军, 赵鹂, 郑炳松.  12个北美冬青品种的ISSR亲缘关系分析 . 浙江农林大学学报, 2018, 35(4): 612-617. doi: 10.11833/j.issn.2095-0756.2018.04.005
    [8] 杨水生, 徐秀英, 符椒燕, 徐堇寒.  基于三阶段数据包络分析模型的竹林生产效率研究 . 浙江农林大学学报, 2017, 34(6): 1128-1136. doi: 10.11833/j.issn.2095-0756.2017.06.022
    [9] 魏玮, 李俊敏, 孙丽英, 戎均康, 周伟.  小麦黄花叶病抗性鉴定及抗性亲本简单重复序列 . 浙江农林大学学报, 2016, 33(1): 71-79. doi: 10.11833/j.issn.2095-0756.2016.01.010
    [10] 付双双, 徐秀英, 吴伟光.  林农毛竹生产效率及其影响因素 . 浙江农林大学学报, 2015, 32(4): 596-602. doi: 10.11833/j.issn.2095-0756.2015.04.016
    [11] 孙苏南, 王小德, 徐腾, 章宬, 王开利, 邓磷曦.  落羽杉秋冬季叶色变化的生理生态研究 . 浙江农林大学学报, 2014, 31(2): 302-307. doi: 10.11833/j.issn.2095-0756.2014.02.021
    [12] 张鹏翀, 应求是, 莫亚鹰.  阴生型地被植物耗水性与最大光化学效率对干旱胁迫的响应 . 浙江农林大学学报, 2013, 30(4): 499-504. doi: 10.11833/j.issn.2095-0756.2013.04.006
    [13] 赵志新, 乔瑞芳, 季孔庶.  镉胁迫对不同家系杂交鹅掌楸生长及抗性的影响 . 浙江农林大学学报, 2009, 26(5): 667-673.
    [14] 杜国坚, 缪宇明, 陈卓梅, 张跃仙, 陈亚飞.  37种园林绿化植物苗木对氯气的抗性及吸收能力 . 浙江农林大学学报, 2009, 26(4): 503-510.
    [15] 张茂震, 唐小明, 谢阳生, 丁丽霞.  森林资源数据库系统查询效率分析 . 浙江农林大学学报, 2009, 26(2): 149-154.
    [16] 向佐湘, 许桂芳, 蒋文君.  干旱胁迫对4种刺篱植物抗性生理生化指标的影响 . 浙江农林大学学报, 2007, 24(1): 7-11.
    [17] 谢东锋, 马履一, 王华田.  7 种造林树种木质部栓塞脆弱性研究 . 浙江农林大学学报, 2004, 21(2): 138-143.
    [18] 傅秋华, 陆媛媛, 范一卿, 郑楼福, 谢芳, 李大标, 董云富, 郑英茂.  台湾杉属树种引种效果探讨 . 浙江农林大学学报, 1999, 16(4): 439-442.
    [19] 柳新红, 胡绍庆, 周关清, 汤兆成, 林日传.  浙江兰属植物新记录 . 浙江农林大学学报, 1998, 15(3): 267-268.
    [20] 罗汝英.  晚近北美森林土壤研究动态 . 浙江农林大学学报, 1993, 10(2): 203-208.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210248

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021//1

计量
  • 文章访问数:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-28
  • 修回日期:  2021-09-10

柏科植物枝/根木质部水分运输、机械强度与解剖结构之间的关系

doi: 10.11833/j.issn.2095-0756.20210248
    基金项目:  国家自然科学基金资助项目(31770651,41730638,31901280);中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室开放基金资助项目
    作者简介:

    陈森(ORCID: 0000-0002-4753-1437),从事植物生态学研究。E-mail: csdshuaibi@163.com

    通信作者: 王忠媛(ORCID: 0000-0001-6018-4647),讲师,博士,从事植物生态学研究。E-mail: wangzhongyuan2014@163.com
  • 中图分类号: S718.5

摘要:   目的  研究湿润地区柏科Cupressaceae北美红杉Sequoia sempervirens、落羽杉Taxodium distichum、池杉T. distichum var. imbricatum木质部水分运输、解剖结构和机械强度的定量关系,探讨木质部解剖结构与功能在器官和物种水平的权衡。  方法  以浙江省天目山北美红杉、落羽杉、池杉为研究对象,用空气注入法测量3种植物枝/根的比导率(Ks)和栓塞抗性(P50),测量管胞壁厚度(Tt)、纹孔膜面积(Apm)、纹孔口面积(Apa)、纹孔膜直径(Pd)、纹孔口直径(Ad)、水力直径(Dh)、管胞密度(Nt)、纹孔开口比(Rap)、纹孔密度(Npm)等指标与水分运输有关的解剖结构,以及木质部密度(Dw)、厚度跨度比(Ttob)等与机械强度相关的指标,同时分析了水力功能与结构的关系。  结果  3种植物根的输水效率高于枝,栓塞抗性低于枝;北美红杉枝和根、落羽杉根以及池杉枝和根的KsP50均为正相关,落羽杉枝的KsP50有微弱的负相关,差异不显著(R2=0.03,P=0.35),因此,3种植物在种内水平上没有效率-安全权衡;在跨物种间,KsP50存在权衡,遵循指数为−2.23的负幂函数关系(R2=0.91,P<0.001);北美红杉枝的KsDwTtob (R2=0.37,P<0.01;R2=0.20,P<0.01),P50Ttob均有显著的负相关关系(R2=0.20,P<0.01)。  结论  3种植物枝与根的木质部安全性和效率均较低,在种内水平上没有效率-安全权衡,这是因为3种植物对高安全性和高效率的结构需求不同,即效率-安全权衡的结构基础并不存在。图7表1参48

English Abstract

陈森, 陆世通, 李彦, 谢江波, 叶琳峰, 王忠媛. 柏科植物枝/根木质部水分运输、机械强度与解剖结构之间的关系[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210248
引用本文: 陈森, 陆世通, 李彦, 谢江波, 叶琳峰, 王忠媛. 柏科植物枝/根木质部水分运输、机械强度与解剖结构之间的关系[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210248
CHEN Sen, LU Shitong, LI Yan, XIE Jiangbo, YE Linfeng, WANG Zhongyuan. Relationships among water transport, mechanical strength and anatomical structure in branche and root xylem of Cupressaceae species[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210248
Citation: CHEN Sen, LU Shitong, LI Yan, XIE Jiangbo, YE Linfeng, WANG Zhongyuan. Relationships among water transport, mechanical strength and anatomical structure in branche and root xylem of Cupressaceae species[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210248

返回顶部

目录

    /

    返回文章
    返回