-
芽孢杆菌Bacillus是一类产生耐热、耐旱,并且抗紫外线和有机溶剂的好氧细菌[1],具有在不同环境下定殖与繁殖的能力[2],同时具备抵抗真菌和病原细菌等方面的优点[2-3]。芽孢杆菌是一种理想的生防菌,所产生的拮抗物质主要有抗生素、细菌素、细胞壁降解酶、其他抗菌蛋白及挥发性等物质[4],其中脂肽类抗生素是一大类重要的拮抗物质[5]。脂肽类抗生素理化性质稳定,对高温、强酸和弱碱具有一定的耐受能力[6],对胰蛋白酶、蛋白酶K等多种蛋白酶不敏感[7],表明它是一类稳定态物质。同时脂肽类抗生素可以杀灭病原细菌、真菌和病毒,是一类抑制肿瘤生长的生物活性物质[8],成为芽孢杆菌拮抗物质领域的研究重点。因此,获得高产量的脂肽类抗生素是目前开发芽孢杆菌的主要目的,芽孢杆菌的代谢活动受到多种因素影响,如培养基、初始pH值、温度、接种量、发酵时间、通气量以及发酵工艺等[9]。探索高产量脂肽物质的最佳发酵条件需要进行大量的实验,通过对不同温度、pH值、接种量、通气等条件的试验得到优化组合。目前,主要应用重量法和液相色谱法来衡量脂肽类产量高低。而脂肽类物质定量分析前需要把该物质从发酵液中分离出来,有酸沉降法、超滤法、色谱法、液膜分离法、泡沫分离法、吸附法以及双水相法等分离方法[10],其中酸沉降法(浓盐酸沉淀法)使用最广。芽孢杆菌代谢产生的脂肽类物质产量较低,大部分低于1 000 mg·L-1,有的甚至不足100 mg·L-1[11]。重量法灵敏度较低,需要从较大量的发酵液中分离脂肽类物质,菌体分离(培养结束)和脂肽物质分离(酸沉降后)都需要进行离心,多因素探索优化条件时离心的工作量非常大。液相色谱法虽然灵敏度和准确度均较高,但需要昂贵的液相色谱仪器,色谱测定条件的摸索也费时费工,并且需要有标准样品才能进行绝对定量,而目前市场上除了表面活性素(surfactin)外没有商品化的标准样品。在优化条件时,不需要很高绝对产量的准确度,主要是比较不同培养条件脂肽物质产量相对高低。因此,简单、快捷的产量评测方法可提高工作效率。本研究试图通过测定不同初始pH值的培养基、发酵液酸沉降前后有机碳总量,计算沉降前后有机碳的差值,来推算发酵液中脂肽类粗提物含量,探索一种简单、快捷评价脂肽类物质产量的方法。同时通过测定培养基、含菌体发酵液以及去菌体发酵液的有机碳含量,来评价碳的利用效率。虽然获得脂肽类物质是酵液的最终目的,但如果能探索到一种底物碳利用效率和脂肽物质产量双高的培养条件,可节约原料成本以提高经济效益,也可减少代谢过程中二氧化碳气体排放以保护大气环境。
-
解淀粉芽孢杆菌Bacillus amyloliquefaciens WK1,菌种保藏号:CGMCC 11640,由浙江省森林生态系统碳循环与固碳减排重点实验室在-70 ℃的条件下甘油冷冻保存。
-
参考庄国宏[10]得到的解淀粉芽孢杆菌GD产脂肽类物质的优化培养基Landy:葡萄糖10.0 g,L-谷氨酸5.0 g,MgSO4·7H2O 0.5 g,KCl 0.5 g,KH2PO4 1.0 g,FeSO4·7H2O 0.15 mg,MnSO4 5.00 mg,CuSO4·5H2O 0.16 mg,蒸馏水1 000 mL;马铃薯葡萄糖琼脂培养基(PDA):去皮马铃薯100 g,葡萄糖20 g,琼脂18 g,蒸馏水1 000 mL,自然pH值。
-
已确定菌株WK1最佳接种量为3%,最佳培养温度为37 ℃[11-12]。为了确定脂肽类物质最高产量的发酵时间,将病原菌接种到含有发酵液的平板中,观察记录病原菌生长情况。具体方法如下:①菌株WK1种子液制备:选取菌株WK1的单菌落,接种于pH 7的100 mL PDA液体培养基中,在37 ℃、摇瓶转速为180 r·min-1条件下培养14 h。②不同培养时间发酵液的制备:将WK1种子液按接种量3%(V/V)分别接种到装有100 mL PDA液体培养基的6个三角瓶中,37 ℃,180 r·min-1摇瓶培养,分别在48,60,72 h终止培养,获得不同培养时间的发酵液,将发酵液离心15 min(6 000 r·min-1)去除菌体后得上清液。③含发酵液的培养基制备:分别吸取100 mL不同时间的发酵上清液与PDA液体培养基按1:1体积比混合,加入5.0 g琼脂,115 ℃灭菌30 min后制成6个厚薄均匀的培养基。④抑制效果观察:将病原菌葡萄座腔菌Botryosphaeria dothidea单菌落打饼分别接种到混合培养基中(打饼直径为0.5 cm),放入27 ℃的真菌培养箱培养。分别在第1,2,3,4,5,10天时拍照,同时测量病原菌落直径,计算抑制率。抑制率=(对照病原菌菌落直径-处理病原菌菌落直径)/对照病原菌菌落直径×100%。
-
每个处理设置1个培养基体积为200 mL的摇瓶,用于发酵液pH值的动态监测,培养条件同1.3。分别于培养8,16,24,32,40,48,56,64,72 h时取出10 mL发酵液,用酸度计测定pH值,采样过程在超净工作台中,避免母体培养基污染。
-
在已有研究基础上,设置初始pH值分别为5,6,7的Landy培养基,以获得不同产量的脂肽物质,比较不同方法,同时检测pH值对脂肽物质产量的影响。每处理设3个重复。培养基体积为300 mL,接种3%(V菌液/V培养液),37 ℃,180 r·min-1,摇瓶72 h(从前期抑制试验得到的最佳培养时间)。摇瓶结束后,立即通过紫外灭菌以阻止芽孢杆菌继续生长繁殖,测量发酵液体积,将菌液全部离心,放到4 ℃冰箱备用。
-
吸取240 mL去除菌体的发酵液于三角瓶中,缓慢滴加浓度为6 mol·L-1的盐酸,逐渐将溶液pH值调至2以沉淀脂肽类物质,置于4 ℃冰箱过夜。准备100 mL离心管(质量为W0),分3次将液体转入100 mL的离心管,在4 500 g下离心30 min,每次离心后的上清液收集一起,用于有机碳测定;同一样品的液体转入同一离心管收集脂肽粗提物沉淀,用pH值为2的盐酸洗涤沉淀2次,以除去水溶性杂质,而后将沉淀置于-70 ℃冰箱充分冷冻,用冷冻干燥机去除水分后得脂肽类粗提物,取出放到真空干燥器内,等升至室温后称质量(W1),W1与W0的差值即为脂肽类粗提物的质量,计算得发酵液脂肽物质质量浓度。
-
脂肽类物质是芽孢杆菌代谢产生的同系物,虽然不是纯的有机化合物,但其含碳量变化不大。程敏等[11]应用液质联用技术鉴定WK1的代谢产物主要为C14~C17的芬荠素(fengycin),参考主要脂肽物质芬荠素的分子结构[13]推算出WK1的谢产物脂肽含碳率平均为0.54。因此,通过测定发酵液酸沉降(方法与重量法相同)前后的总有机碳质量浓度,计算差值可得到脂肽类粗提物质量。酸沉降前总有机碳测定,吸取2 mL去除菌体的发酵液,用去离子水稀释13倍,应用总有机碳分析仪(TOC-L CPN,津岛)测定溶液中的有机碳质量浓度。酸沉降后溶液中总有机碳测定,吸取2 mL酸沉降析出脂肽物质后上清液,用去离子水稀释13倍,同样用TOC分析仪测定溶液中的有机碳质量浓度。由于调节酸度所用的盐酸体积很小,可以忽略不计,因此,脂肽物质产量(mg·L-1)=(酸沉前有机碳质量浓度-酸沉降后有机碳质量浓度)/0.54。
-
通过脂肽物质的合成效率和二氧化碳排放损失率来间接综合评价培养基中底物碳利用效率。单位底物碳合成的脂肽类物质越多越好,而在培养过程中微生物通过好氧呼吸排放二氧化碳则越少越好。脂肽物质合成效率(mg·kg-1)=脂肽物质碳质量浓度/Landy培养基初始碳质量浓度,统一用TOC分析仪测定。二氧化碳排放量(mg·kg-1)=(Landy培养基初始碳质量浓度-含菌体发酵液的碳质量浓度)/Landy培养基初始碳质量浓度,统一用重铬酸钾法测定。
-
菌体发酵液是混浊的不透明液体,无法用TOC分析仪直接测定,因而采用重铬酸钾法测定含菌体发酵液有机碳质量浓度。72 h培养结束后,分别吸取2 mL不同处理的含菌体发酵液于硬质试管进行消煮。为了计算发酵前后培养基中有机碳的损失量,同时用重铬酸钾法测定Landy培养基初始碳质量浓度,为5 769.55 mg·L-1。
-
通过WK1对病源菌的抑制效果试验,间接确定WK1产脂肽类物质最高产量的发酵时间为72 h。对解淀粉芽孢杆菌WK1与病原菌的平板对峙培养发现,代谢产物通过破坏菌丝和孢子细胞壁、细胞膜,使细胞原生质泄露,菌丝和孢子萎缩的方式抑制山核桃干腐病原菌Bacillus dothidea的生长[11]。因此,将除菌后发酵液直接混入培养基可间接衡量代谢物的产量,通过发酵液对病原菌的抑制效果试验可确定最高产量的发酵时间。观察含有发酵液(48,60,72 h)培养基上病原菌的生长情况(图 1和表 1)发现:发酵液对病原菌生长均有抑制作用,随着培养时间的增加抑制率逐渐增加,1~5 d内抑制率增速快,抑制效果显著,5~10 d内增速变缓,甚至48与60 h共2个处理在第10天出现下降。这是因为开始接种的是单菌落病原菌,1 d时间内繁殖的数量有限,但随着时间的延长病原菌数量不断增加,而代谢产物的脂肽浓度有限,所以病原菌数量增加后抑制效果减弱。综合1~10 d的结果,WK1的发酵时间越长抑制效果越好,在72 h抑制率达到最高值,效果最为显著,培养5和10 d时的抑制率达到83.3%和84.9%,对于抗生素筛选的效果而言,已经达到较强的水平。在解淀粉芽孢杆菌HAB-7的抑菌试验中,经优化后最佳培养条件对芒果炭疽菌的抑制率达到78.3%[14]。大量研究表明[15-17]:解淀粉芽孢杆菌的最优发酵时间都在72 h以内,且在本实验中60 h的抑制率已经达80%,继续增加发酵时间对抑制率的提升不大,且会增加发酵成本。
图 1 培养基不同初始pH值脂肽类物质的重量法和差减法结果比较
Figure 1. Comparison on lipopeptide production measured by weight methods and OC difference methods
表 1 不同时间PDA培养基内病原菌菌落直径平均值和抑制率
Table 1. Mean diameter and inhibition rate of pathogenic bacteria in PDA medium at different time
发酵时间/h 菌落直径/cm 1 2 3 4 5 6 10 d ck 0.5(0.0) 1.0(0.0) 2.0(0.0) 3.5(0.0) 4.8(0.0) 5.8(0.0) 8.6(0.0) 48 0.5(0.0) 0.5(50.0) 0.5(75.0) 0.9(74.3) 1.0(79.2) 1.2(79.3) 2.1(75.6) 60 0.5(0.0) 0.5(50.0) 0.5(75.0) 0.9(74.3) 0.9(81.3) 1.0(82.75) 1.8(79.1) 72 0.5(0.0) 0.5(50.0) 0.5(75.0) 0.8(77.1) 0.8(83.3) 0.9(84.5) 1.3(84.9) 说明:括号中为抑菌率(%) -
初始pH值对发酵微生物的生长繁殖和代谢产物的合成有非常显著的影响。因此,选择最适合的初始pH值对微生物的培养就显得尤为重要。重量法测得不同初始pH值的培养基在72 h后脂肽物质的产量从高到低依次为pH 6,pH 7,pH 5(图 1),初始pH值为6和7条件下的脂肽物质的产量显著大于pH 5处理(P<0.05),pH值为6和7的发酵液酸沉降时沉淀明显比pH值为5的发酵液多,说明培养液pH值为5时对脂肽物质的生成不利。差减法计算得到不同处理脂肽物质产量差异规律与重量法一致,但产量比重量法高(图 1),初始pH值为5,6,7处理的差减法测定结果分别比重量法高69.9%,15.8%和17.0%。这是因为TOC能检测到溶液有机碳的微小变化,重量法则因为质量太少无法检测到微小变化,因此差减法相比重量法更加灵敏。2种方法的结果存在一定的相关性,但由于重量法的灵敏度较低,导致相关系数仅0.563 2(n=9)。
随着微生物生长繁殖脂肽类物质不断积累,微生物繁殖越多则代谢产量越多。pH值为5时产量低的原因可能是因为酸性环境不利于WK1生长。整个发酵过程中初始pH值为5的发酵液pH值始终低于6.0(图 2),而初始pH值为6和7的发酵液pH值在前24 h急速下降,之后快速回升,到48~56 h恢复到初始水平,之后继续上升,最后达8.14。发酵液pH值的下降主要是代谢过程中产生的有机酸引起的,在最初的24 h培养基中的葡萄糖被快速分解产生大量的有机酸,而之后这些有机酸又被微生物分解利用,溶液中的有机酸慢慢减少。另外,微生物的代谢过程产生氨,随着发酵过程的进行氨浓度增加,pH值逐渐回升。
图 2 不同初始pH值的Landy培养基内pH值随发酵时间的动态变化
Figure 2. Dynamics of liquid pH with increasing time of fermentation between different initial Landy medium pH
初始pH值为5处理含菌体发酵液的总有机碳质量浓度明显高于pH 6和pH 7处理(图 3),说明pH值为5条件下WK1代谢消耗最少,再次证明初始pH值为5处理不利于WK1生长。由于所有处理的初始有机碳质量浓度是相等的,微生物代谢越活跃,消耗的有机碳就越多。
-
初始pH值为5的培养基中菌株WK1脂肽物质合成效率最低(162 mg·kg-1),排放的二氧化碳也最少(205 mg·kg-1),初始pH值为6和7的培养基中菌株WK1活动排放的二氧化碳相同,显著高于初始pH值为5的处理(P<0.05),pH 6培养基中菌株WK1脂肽物质合成效率高于pH 7培养基。Landy培养基有机碳质量浓度理论值为5 769.55 mg·L-1,重铬酸钾法和TOC分析仪测得Landy培养基初始有机碳质量浓度分别为4 933.30和5 252.43 mg·L-1,分别是理论值的85.51%和90.14%,说明2种方法均不能完全检测溶液中的全部有机碳。通过分析含菌体的发酵液有机碳质量浓度(图 3)以及酸沉降前后的总有机碳质量浓度(图 4)可知:初始pH值为5条件下有机碳质量浓度显著高于其他2个处理,说明pH值为5条件下的培养基中未被微生物同化利用的碳最高。综合图 1,图 3和图 4的结果得知:初始pH值为5条件微生物代谢利用的总碳、合成的脂肽类物质、排放的二氧化碳均为最少。
图 4 不同处理发酵液酸沉降前后的总有机碳质量浓度结果比较
Figure 4. Comparison of total organic carbon in solution before and after lipopeptide being separated by acid deposition between treatments
由于重铬酸钾法和TOC法对同一溶液的测定结果存在差异,因此,计算差值时必须以同一种方法测定的结果计算。结果表明(表 2):初始pH值为5时培养基中菌株WK1脂肽物质合成效率最低(162 mg·kg-1),二氧化碳排放量也最少(205 mg·kg-1);初始pH值为6和7的培养基中菌株WK1的二氧化碳排放量相同,显著高于初始pH值为5的处理(P<0.05),但初始pH值为6的培养基中菌株WK1脂肽物质合成效率高于初始pH值为7处理,因此,初始pH值为6的培养基为最佳。由于初始pH值为6的处理二氧化碳排放量较高,后期实验可探索初始pH 5和pH 6之间菌株WK1脂肽物质合成效率的变化,有可能找到二氧化碳排放量较低,但又不影响脂肽物质合成效率的pH值。
表 2 各处理二氧化碳排放量和脂肽物质合成效率
Table 2. CO2 emission and produced lipopeptide from organic carbon medium
pH 二氧化碳排放量/(mg·kg-1) 脂肽物质合成效率/(mg·kg-1) 5 205 b 162 b 6 700 a 234 a 7 700 a 219 a 说明:不同小写字母表示处理间差异显著(P<0.05) -
解淀粉芽孢杆菌WK1获得较高产量脂肽物质的最佳培养时间为72 h,比许多已报道的芽孢杆菌长。不同细菌的生长速度不同,最佳培养时间有差异,而同样是芽孢杆菌,生长速度也存在较大差异。车晓曦等[18]得到解淀粉芽孢杆菌SAB1菌株最佳发酵时间为26 h,王帅等[19]发现枯草芽孢杆菌Bacillus subtilis G1发酵38 h时脂肽产量最高,洪鹏等[20]发现解淀粉芽孢杆菌HF-01菌株培养48 h对柑橘绿霉病菌Penicillum digitatum拮抗效果最佳。相比而言,WK1的生长速度相对较慢,获得较高脂肽产量的发酵时间为72 h,与解淀粉芽孢杆菌MH17最优发酵时间相同[21]。
初始pH值为5条件下微生物脂肽物质合成效率和二氧化碳排放量均最低,初始pH值为6与7条件下二氧化碳排放量(700 mg·kg-1)相同,但pH值为6条件下脂肽物质产量(1 228 mg·L-1培养基)和脂肽合成效率(234 mg·kg-1)最高。由此可见:WK1菌株最适初始pH值为6,而不同解淀粉芽孢杆菌菌株产脂肽最适初始pH值不同,张雷[22]对解淀粉芽孢杆菌菌株15-1-1的培养条件优化研究发现:初始pH值为7时该菌株产脂肽物质产量以及培养液D(600)值最大,陈敏等[23]在对解淀粉芽孢杆菌菌株SC1150发酵条件优化时发现最适初始pH值为6.5。
重量法与差减法测定的不同处理的脂肽物质产量规律相同,从高到低依次为pH 6,pH 7,pH 5,两者的相关系数为0.563 2(n=9),但相同初始pH值条件下差减法所得的脂肽物质产量均高于重量法。可见,差减法是评价脂肽产量的简单快速而有效的方法。
A new evaluation method of lipopeptide production and substrate carbon utilization efficiency using the WK1 strain of Bacillus amyloliquefaciens
-
摘要: 芽孢杆菌Bacillus代谢产生的脂肽类物质具有抗菌、抗肿瘤、抗病毒等多种生物活性,但芽孢杆菌脂肽产量普遍较低。探索高产量的培养条件是开发利用的重点,而简单快速的产量评价方法则可大大提高条件探索的效率。以解淀粉芽孢杆菌Bacillus amyloliquefaciens WK1为试验菌株,首先通过含发酵液培养基对病原菌的抑制实验确定最佳培养时间,然后设计初始pH值分别为5,6和7的培养基生产脂肽物质,通过测定发酵液酸沉降前后总有机碳的差值,推算脂肽类物质粗提物的产量(差减法),以传统的重量法为对照。结果表明:试验所用的解淀粉芽孢杆菌WK1菌株的最佳发酵时间为72 h。重量法与差减法所测得的不同处理脂肽物质产量差异规律相同,从高到低依次为pH 6,pH 7,pH 5,两者的相关性系数为0.563 2(n=9),但相同初始pH值条件下差减法所得的脂肽物质产量均高于重量法。初始pH值为5条件下脂肽物质合成效率和二氧化碳排放量均最低,初始pH值为6与pH值为7条件下二氧化碳排放量相同,为700 mg·kg-1,但初始pH值为6条件下产脂肽物质产量(1 228 mg·L-1)和脂肽物质合成效率(234 mg·kg-1)最高。可见,差减法是评价脂肽产量的简单快速而有效的方法。Abstract: The lipopeptide produced by Bacillus amyloliquefaciens has a variety of biological activities such as antibacterial, anti-tumor, and anti-virus; however, its production is generally very low. To explore better fermentation conditions so as to gain more lipopeptide with easy and fast evaluation methods for lipopeptide production that would greatly improve work efficiency, the yield of crude lipopeptide based on the difference of total organic carbon (TOC) in a liquid before and after lipopeptide separation was calculated using the acid deposition approach. First, optimal fermentation time for producing lipopeptide by pathogen inhibiting culture on plates containing a fermentation liquid was determined. Then, a liquid medium with pH 5, 6, and 7, for producing different concentrations of lipopeptide, was prepared. Also, CO2 emission rates for microbial activity in the pH 6 and 7 treatments were measured. Results showed that 72 hours was the optimal fermentation time. The crude yield of lipopeptide calculated from the difference of TOC in liquid before and after lipopeptide separation was positive compared to traditional weight methods with the coefficient being 0.563 2 (n=9). For both methods, pH 6 > pH 7 > pH 5. However, for the same pH of the liquid medium, crude yield was lower with weight methods than the TOC difference methods. Lipopeptide production efficiency and CO2 emissions rate with the WK1 strain were lowest for the pH 5 treatment. However, crude yield of lipopeptide (in a 1 228 mg·L-1 medium) and lipopeptide production efficiency (in a 234 mg·kg-1 OC medium) were highest at pH 6. Thus, the TOC difference method was an easy and fast method for lipopeptide production evaluation.
-
换锦花Lycoris sprengeri为石蒜属Lycoris球根花卉,春初出叶,叶片为带状,宽约1.0 cm,长约30.0 cm,叶顶钝圆;秋初开花,花茎高约60.0 cm,伞形花序4~6朵,6片倒披针形花瓣,长约4.5 cm,宽约1.0 cm;花多淡紫红色,花被顶端蓝色,花色花型丰富,是石蒜属特殊的复色花卉[1]。
目前,换锦花的花色性状改良主要以传统的种间杂交和选择育种为主,分子标记育种为辅的育种模式。徐炳声等[2]利用杂交授粉技术,以换锦花为母本,中国石蒜L. chinensis为父本,选育出粉白色的秀丽石蒜L.× elegans;张定成等[3]在安徽和淮南发现三倍体和二倍体野生换锦花资源,表明换锦花可能是由其他石蒜属植物杂交而来。然而换锦花生长周期长,在自然状态下授粉率低且结实少,种子萌发率低,制约了换锦花传统育种研究。为了克服传统杂交育种的缺陷,不少研究者利用现代分子生物学技术探索换锦花花色分子育种性状改良的有效手段[4−6]。花色苷生物合成途径是类黄酮生物合成的一个分支途径,主要由结构基因和调控基因共同调控,花色苷积累受光照、温度和水分等多种因素的影响,植物受到强光、低温、氮亏缺等逆境协迫时会大量合成花色苷以增强自身抗性[7],花色苷的生物合成也受到植物体自身生长发育过程的影响[8]。大量研究表明:R2R3-MYB 是花色苷生物合成的重要调控因子,常与bHLH和WD40形成MBW复合体结合到结构基因启动子序列上共同调控葡萄Vitis vinifera、风信子Hyacinthus orientalis、苹果Malus pumila花色素苷的生物合成[9]。许振渊等[10]和侯朔等[11]克隆了换锦花R2R3-MYB转录因子LsMYB4和LsMYB5基因,周洋丽等[12]通过病毒介导的基因沉默(VIGS)技术研究发现LsMYB4和LsMYB5是换锦花花青素合成的抑制性转录因子。周洋丽[13]和薛惠敏等[14]成功克隆了换锦花LsANS、LsF3'H、LsUFGT1和LsUFGT2基因启动子序列,为研究换锦花花色形成的调控机制和遗传改良提供基础。为进一步探讨换锦花花色形成的调控网络,本研究根据换锦花花瓣(红色部分和蓝色部分)转录组信息筛选到与换锦花花色形成相关的差异R2R3-MYB转录因子LsMYB7并进行生物信息学分析,通过病毒介导的基因沉默(VIGS)技术研究该基因调控花色苷积累的相关功能,结果可为通过基因工程手段改良换锦花的花色奠定理论基础。
1. 材料与方法
1.1 材料
2019年8—9月于浙江农林大学石蒜属植物种质资源圃采集换锦花花瓣,取换锦花小花苞(2.0~3.5 cm)、大花苞(4.5~6.0 cm)、盛花期和败花期4个不同花发育时期(图1A)和不同花色无性系H1、H2、H3、H4和H5盛花期花瓣(图1B),液氮速冻后于−80 ℃冰箱保存备用。
1.2 方法
1.2.1 换锦花花瓣总RNA提取和cDNA第1链的合成
采用RNAiso plus法提取换锦花花瓣总RNA[15],参照PrimeScript 1st Strand cDNA Synthesis Kit试剂盒(Takara)方法合成cDNA 第1链。
1.2.2 换锦花LsMYB7基因cDNA序列的PCR扩增
根据转录组测序信息设计LsMYB7基因 cDNA序列特异引物LsMYB7-F:CAAGCAGTGGTCTCAACA和LsMYB7-R:AGAACAGCACTACTAAAGGT,参照Premix PrimeSTAR HS的PCR扩增体系扩增目的基因cDNA序列,PCR扩增反应程序为94 ℃变性30 s;58 ℃ 退火30 s;72 ℃延伸90 s,32个循环,72 ℃延伸10 min,质量浓度为1.0%琼脂糖凝胶电泳检测PCR扩增产物,于凝胶成像系统(Bio-RAD)观察拍照;采用Hingene琼脂糖凝胶回收试剂盒(杭州麦克德勒科技有限公司)回收目的DNA,于−20 ℃保存备用。
1.2.3 目的基因连接和转化
参照pEASY-Blunt Zero Cloning Kit说明书将目的基因LsMYB7序列连接到pEASY-Blunt载体,转化大肠埃希菌Escherichia coli DH5α感受态细胞;在含有氨苄青霉素(Amp)、异丙基-β-D-硫代半乳糖苷(IPTG)和5-溴-4-氯-3-吲哚 β-D-半乳糖苷(X-Gal)的LB培养基(Luria-Bertani medium)上培养过夜,挑取阳性克隆于LB液体(含50 mg·L−1 Amp)培养基中,37 ℃振荡培养,PCR检测呈阳性的菌液送浙江有康生物科技有限公司测序;采用质粒DNA提取试剂盒(杭州创试生物科技有限公司)提取目的序列重组质粒DNA,于−20 ℃保存。
1.2.4 LsMYB7及花色形成相关基因的表达
采用Primer 5.0设计LsMYB7基因和花色形成相关基因(LsCHS、LsF3H、LsANS、LsUFGT1和LsUFGT2)的RT-qPCR引物(表1),使用PrimeScriptTM RT reagent Kit with gDNA Eraser试剂盒(Takara)方法合成cDNA 第1链。参照SYBR® Premix Ex TaqTMⅡ(Takara)方法,于CFX96TM荧光定量 PCR 仪(BIO-RAD)进行RT-qPCR验证。RT-qPCR体系(20.0 uL):cDNA(<100 ng) 1.6 uL,正反引物各0.8 uL,TB Green Premix Ex Taq Ⅱ 10.0 uL,RNase Free ddH2O 6.8 uL。RT-qPCR程序为95 ℃ 30 s,95 ℃ 3 s,60 ℃ 30 s,循环40次。以LsGADPH为内参基因[15],2−ΔΔCt方法计算实时荧光各基因的相对表达量,重复3次。
表 1 RT-qPCR所用引物Table 1 Primers for fluorescence RT-qPCR引物 正向(5′→3′) 反向(5′→3′) LsGADPH AGGGTTTGATGACCACCGTGCA ACAGCCTTGGCAGCTCCAGTAC LsMYB7 GCGCGGAGTTCTTGGCTCTGAT TCTGGCACCGTTCTCATCACGC LsCHS CAAGACATGGTGGTGGTCGAGGTC CGAGGAGTTTGGTGAGCTGGTAGTC LsF3H AACCGAGGACGCAACGGAATGC ACCATCTTCATCGCAGCCACCA LsANS CGTGCCAGGTCTCCAGGTCTTCTA TCGAGAGTGTCACCGACGTGAACTA LsUFGT1 GGTGGTGAAGGATGAGGAAGGTAGG GTTGAACCGCTCGAACCGCAATC LsUFGT2
LsF3'HGCGTAGCCTTCTCCTTCCTCACCT
TTGTACAGCCATGCACAGAATCCGCCATGAATCGCTTCACCTCCTC
GCAACCAAGGCAAGAAATCA说明:引物参考文献[16]。 1.2.5 换锦花花瓣花色苷的HPLC测定
参照刘跃平等[17]方法提取并用高效液相色谱(HPLC)测定换锦花花瓣花色苷质量浓度。精密称量换锦花花瓣干粉0.040 0 g,加入2 mL体积分数为1%甲醇/HCl提取溶液,振荡混匀;20 ℃超声提取30 min;12 000 r·min−1,离心15 min,取上清液;0.45 μm滤膜过滤;梯度洗脱:流动相为甲醇(A)-体积分数为1%的甲酸水(B),0~20 min(A体积分数从5%升至60%),20~25 min(A体积分数从60%升至100%),25~30 min(A体积分数保持100%),流速1 mL·min−1,检测波长280 nm,柱温30 ℃,进样量10 uL;以矢车菊素-3-O-葡萄糖苷、天竺葵素-3-O-葡萄糖苷、飞燕草素-3-O-葡萄糖苷等3个花色苷为标准品。每样3个生物学重复。
1.2.6 亚细胞定位
采用XbaⅠ和BamHⅠ分步酶切法酶切亚细胞定位载体pAN580,再采用ClonExpress Ⅱ One Step Cloning Kit (杭州霆喜生物科技有限公司)将LsMYB7基因序列连接到pAN580上,并转化大肠埃希菌DH5α感受态细胞,在含有50 g·L−1Amp的LB培养基上进行筛选,挑选阳性克隆进行菌液PCR检测,成功构建pAN580-LsMYB7亚细胞定位载体,采用无内毒素质粒提取试剂盒(AxyPrep)提取pAN580-LsMYB7重组载体质粒DNA;聚乙二醇法(PEG 4000)转化烟草Nicotiana tabacum原生质体,用激光共聚焦荧光显微镜观察拍照。
1.2.7 VIGS沉默载体构建
采用双酶切法构建VIGS沉默载体pTRV2-LsMYB7:利用Primer 5.0设计长为400 bp的LsMYB7基因cDNA序列插入片段引物pTRV-LsMYB7-F: TACCGAATTCTCTAGAGAGGACAACATGCTACAATCCC和pTRV-LsMYB7-R:GCTCGGTACCGGATCCGCTCGAATCGCTAACATCCG;用限制性内切酶XbaI和BamHI分别双酶切VIGS载体(pTRV2)与LsMYB7基因的插入序列,T4 DNA连接酶连接载体与目的序列,转化大肠埃希菌DH5α,并在含有50 g·L−1 卡那霉素(Kan)的LB固体培养基筛选,提取pTRV2-LsMYB7重组质粒DNA。
1.2.8 换锦花花瓣瞬时转化
采用微量注射法转化换锦花花苞[12],将重组质粒pTRV2-LsMYB7、pTRV2和pTRV1质粒DNA转化根癌农杆菌Agrobacterium tumefaciens GV3101,于YEP液体培养基(50 mg·L−1 Rif和50 mg·L−1 Kan)中,28 ℃,220 r·min−1振荡培养12~14 h;4 000 r·min−1, 离心10 min,去上清液;加入侵染液(10 mmol·L−1 MES + 200 μmol·L−1 AS + 10 mol·L−1 MgCl2,pH 5.6±0.03)重悬后的菌液D(600)=0.8~1.0;将pTRV1与pTRV2空载体、pTRV2-LsMYB7农杆菌液按照体积比1∶1混合均匀,室温黑暗静置4~6 h;使用1 mL注射器,吸取1 mL混合农杆菌菌液。选取3~4 d的换锦花花苞,在花苞基部缓慢注射混合根癌农杆菌菌液,充分侵染换锦花花苞,侵染5 d后采集花瓣用于LsMYB7和花色形成相关结构基因的表达分析(见1.2.4和表1)。
1.2.9 数据统计分析与作图
采用Excel 2020 统计和整理数据,采用SPSS 20.0 对数据进行差异显著性分析,采用Graphpad 8.0作图。
2. 结果与分析
2.1 LsMYB7 基因的克隆和序列分析
以换锦花花瓣的cDNA为模板,采用RT-qPCR技术扩增获得长度为951 bp 的LsMYB7 cDNA序列(图2)。该cDNA序列含有1个825 bp的开放阅读框(ORF),编码274个氨基酸,分子量为6.84 kD,蛋白分子式为C2402H3981N825O982S258,理论等电点(pI)为5.04,不稳定系数为43.43,总体亲水性(GRAVY)为0.936。
2.2 LsMYB7氨基酸序列同源性分析
通过与美国国家生物技术信息中心(NCBI)搜索的其他植物MYB氨基酸同源序列进行比对,发现换锦花LsMYB7蛋白含有2个R2R3-MYB典型的SANT结构域R2和R3[18](图3),属于R2R3-MYB类转录因子。与茶Camellia sinensis KAF5956278.1、狭叶油茶Camellia lanceoleosa KAI8015846.1、粗柄象腿蕉Ensete ventricosum RRT35038.1/RWV93016.1、椰子Cocos nucifera XP_KAG1363931.1、番红花Crocus sativus QBF29477.1、香根鸢尾Iris pallida KAJ6804060.1/KAJ6829988.1、河岸葡萄Vitis riparia XP_034676575.1和拟南芥Arabidopsis thaliana等其他植物的同源性为44.52%~60.57%,其中,与茶KAF5956278.1的同源性最高达60.57%,其次是香根鸢尾 KAJ6804060.1/KAJ6829988.1(59.32%),与拟南芥AtMYB44(Q9FDW1.1)、AtMYB70(AEC07437.1)、AtMYB73(O23160.1)和AtMYB77(Q98N12.1)的同源性为44.52%~47.44%,且同源部分均集中在N端的R2R3 DNA结合结构域,而C端的同源性较低。
2.3 LsMYB7系统进化与功能预测
从NCBI数据库下载拟南芥(AtMYB 16条)、换锦花(LsMYB 2条)和石蒜L. radiata (LrMYB 2条) R2R3-MYB氨基酸序列进行比对并构建系统进化树(图4)。参考拟南芥MYB基因家族的分类方法[19],LsMYB7与拟南芥R2R3-MYB S22亚家族的AtMYB44、AtMYB70、AtMYB73和AtMYB77 聚为一类,由于拟南芥S22亚家族参与调控拟南芥的生长和发育过程,响应高盐、干旱低温等非生物胁迫反应,同一亚族基因的功能相似,结合花色基因表达分析,推测LsMYB7可能通过响应干旱和高温等调控换锦花花瓣花色苷的形成。
2.4 换锦花花瓣花色苷质量浓度
利用HPLC分别测定换锦花4个花发育时期和5个不同花色无性系(H1、H2、H3、H4和H5)盛花期花瓣的花色苷质量浓度(图5A和5B),结果表明:换锦花花瓣花色苷的主要成分为矢车菊素,含有少量的天竺葵素和飞燕草素,说明花色苷的种类和质量浓度决定换锦花花色的多样性。随着换锦花花器官的生长发育,花瓣花色苷总质量浓度和矢车菊素质量浓度呈逐渐下降的趋势,小花苞时期矢车菊素质量浓度大约是败花期的3倍,说明换锦花花瓣花色苷的积累可能主要在花瓣发育的早期完成(图1A和5A);在浅色换锦花无性系H4和H5中,矢车菊素质量浓度明显低于深色换锦花无性系H1、H2和H3(图1B和5B)。因此,从换锦花不同花发育时期和不同花色无性系花瓣颜色和花色苷质量浓度来看,矢车菊素对换锦花花瓣的颜色影响最大,矢车菊素质量浓度越高,换锦花花瓣的颜色就越深。
2.5 换锦花LsMYB7和花色形成相关基因的表达
2.5.1 在换锦花不同发育时期的表达
利用RT-qPCR对LsMYB7和换锦花花色形成相关基因(LsC4H、LsCHS、LsF3H、LsF3'H、LsANS和LsUFGT1、LsUFGT2)在换锦花不同发育时期花瓣中的表达进行分析,结果(图6)表明:LsMYB7与LsCHS和LsF3'H基因的表达随着换锦花花苞发育呈逐渐上升趋势,LsC4H、LsCHS、LsUFGT1、LsUFGT2、LsF3'H和LsMYB7在败花期大量表达,LsF3H则在花苞发育前期几乎无表达,盛花期开始大量表达,而在败花期表达量开始下降;LsANS、LsUFGTs等花色苷合成的后期基因在盛花期的表达最低。其中LsCHS和LsF3'H基因的表达与花色苷总质量浓度和矢车菊素质量浓度正好相反(图5A)。
2.5.2 在换锦花不同花色无性系花瓣中的表达
LsMYB7和换锦花花色形成关键基因LsC4H、LsCHS、LsF3H、LsF3'H、LsANS、LsUFGT1和LsUFGT2在换锦花不同花色无性系中的表达差异显著(图7)。2个花色苷合成的前期基因LsC4H和LsCHS及后期基因LsANS在淡色的无性系换锦花花瓣中表达量高。LsF3H在蓝色为主的H3无性系中表达量达到最高。LsMYB7在H1和H4中表达量比较高。LsMYB7基因的表达与LsCHS和LsF3'H基因的表达正好相反,而与不同花色无性系花色苷总质量浓度和矢车菊素质量浓度基本一致,这一结果与不同花发育时期的基因表达结果一致。因此,LsMYB7可能对LsCHS和LsF3'H基因的表达有一定的调控作用。
2.6 换锦花LsMYB7基因的亚细胞定位
通过双酶切法构建亚细胞定位载体pAN580-LsMYB7,转化烟草原生质体,于激光共聚焦荧光显微镜观察,LsMYB7荧光信号定位在细胞核中(图8),说明LsMYB7基因为转录因子基因,在细胞核中起转录调控的作用。
2.7 LsMYB7基因沉默后对换锦花花瓣花色苷形成相关基因表达的影响
构建LsMYB7的VIGS基因沉默载体pTRV2-LsMYB7,通过微量注射法转化换锦花花苞,LsMYB7 基因沉默后,换锦花同朵花中一半花瓣明显变短,且颜色变深(图9A);对LsMYB7和花色苷形成相关基因在换锦花花瓣中的表达进行分析(图9B和C),与ck (空载)相比,LsMYB7基因换锦花花瓣中的表达量明显下降,同时,花色苷形成相关基因LsCHS、LsF3'H、LsANS、LsUFGT1和LsUFGT2的表达量极显著下降(P<0.01),而LsF3H基因的表达量反而上升,LsC4H基因表达变化不大,说明LsMYB7转录因子可能参与调控花瓣的生长发育,且对LsCHS、LsF3'H、LsANS、LsUFGT1和LsUFGT2的表达起正调控作用,而对LsF3H基因的表达起负调控作用。
3. 讨论
植物R2R3-MYB转录因子广泛参与调控次生代谢、细胞形态发生、激素刺激、环境胁迫应答、分生组织形成和细胞周期等过程[20]。根据C-末端的不同,拟南芥R2R3-MYB基因家族可分成22个不同的亚族,其中,拟南芥S4、S5、S6和S7亚族基因参与花青素和类黄酮类化合物生物合成途径的结构基因的转录调控[18, 21−22],换锦花LsMYB4、LsMYB5和拟南芥S4亚族基因聚为一类。通过花青素形成相关基因表达和VIGS基因沉默技术研究表明,LsMYB4和LsMYB5对花青素生物合成基因的表达有负调控的作用[10−12]。
S22亚族基因AtMYB44、AtMYB77、AtMYB73和AtMYB70主要参与拟南芥响应高盐、干旱、低温等非生物胁迫反应,其中,AtMYB73基因启动子中含有ABA响应元件ABRE及干旱胁迫和热胁迫顺式作用元件。AtMYB73突变体atmyb73在干旱胁迫处理下,ABA 下游基因ABI2、ABI5 的表达水平均较野生型明显增强。外源 ABA 处理野生型和突变体种子、幼苗,获得了与干旱胁迫处理类似的结果[23−24]。本研究结果表明:LsMYB7蛋白含有2个R2R3-MYB典型的SANT结构域R2和R3,属R2R3-MYB类转录因子,且R2和R3的保守结构域与其他植物高度同源,系统进化树分析结果显示LsMYB7和S22亚族基因AtMYB44、AtMYB77、AtMYB73和AtMYB70聚为一类,推测LsMYB7可能与S22亚族基因有相似的功能。
本研究中,LsMYB7基因的表达与换锦花花色苷形成相关基因LsCHS、Ls4CL2和LsUFGT2的表达趋势一致,推测LsMYB7可能参与换锦花花瓣花色苷的生物合成。而LsMYB7属于拟南芥S22亚族,未见该亚族基因AtMYB44、AtMYB77、AtMYB73和AtMYB70参与花色苷的生物合成的转录调控。已有报道认为AtMYB73/44能够参与调控拟南芥对干旱胁迫的响应[25−26],而干旱胁迫可诱导植物细胞合成和积累花色苷。花色苷的光化学性质、亚细胞积累位点及在植物器官、组织中的空间分布决定了花色苷能强化植物的耐旱性,其中,花色苷提高植物细胞在干旱胁迫下的抗氧化能力可能是花色苷强化植物耐旱性的主要原因[27]。有研究表明:干旱胁迫可激活紫麦Triticum aestioum ‘Guizi 1’、甘薯Ipomoes batats等植物花色苷合成相关基因表达,通过提高花青素含量抵御干旱胁迫[28−29]。本研究中LsMYB7 基因沉默后,花色苷形成相关基因LsCHS、LsF3'H、LsANS、LsUFGT1和LsUFGT2的表达明显下降,说明LsMYB7可能直接或间接调控花色苷的积累,而LsMYB7与S22亚族基因聚为一类,由于换锦花开花季为夏末秋初的8—9月,此时多为高温和干旱季节,因此推测LsMYB7可能通过对干旱胁迫响应来调控花色苷形成相关基因的表达,大量积累花色苷。这一研究结果与云南文山辣椒Capsicum annuum、番茄Lycopersicon esculentum的研究[30−31]相似,因此,植物可以通过干旱胁迫激活与花色苷合成相关基因的表达水平促进花色苷积累,进而提高抗旱能力。
4. 结论
本研究通过RT-qPCR获得长为951 bp 的LsMYB7 cDNA序列,开放阅读框(ORF) 825 bp,编码274个氨基酸,LsMYB7为R2R3-MYB转录因子家族,定位于细胞核,与其他植物R2R3-MYB有较高的同源性。系统进化分析表明LsMYB7和参与调控干旱等非生物胁迫响应的S22亚族基因聚为一类;LsMYB7基因主要在败花期和花色苷含量较高的H1无性系中表达,与花色苷合成相关基因的表达趋势一致;LsMYB7基因沉默后,换锦花部分花瓣明显变短,颜色变深,LsCHS、LsF3'H、LsANS、LsUFGT1和LsUFGT2等花色苷形成相关基因的表达显著下调,因此,LsMYB7参与调控换锦花花瓣的生长发育,且通过对LsCHS、LsF3'H、LsANS、LsUFGT1和LsUFGT2花色苷形成相关基因的表达调控花色苷的积累。此外,LsMYB7可能通过响应干旱胁迫激活花青素合成相关基因表达促进花色苷积累,进而提高换锦花的抗旱能力,LsMYB7调控花色苷积累抵御干旱的机制需要进一步研究。
-
表 1 不同时间PDA培养基内病原菌菌落直径平均值和抑制率
Table 1. Mean diameter and inhibition rate of pathogenic bacteria in PDA medium at different time
发酵时间/h 菌落直径/cm 1 2 3 4 5 6 10 d ck 0.5(0.0) 1.0(0.0) 2.0(0.0) 3.5(0.0) 4.8(0.0) 5.8(0.0) 8.6(0.0) 48 0.5(0.0) 0.5(50.0) 0.5(75.0) 0.9(74.3) 1.0(79.2) 1.2(79.3) 2.1(75.6) 60 0.5(0.0) 0.5(50.0) 0.5(75.0) 0.9(74.3) 0.9(81.3) 1.0(82.75) 1.8(79.1) 72 0.5(0.0) 0.5(50.0) 0.5(75.0) 0.8(77.1) 0.8(83.3) 0.9(84.5) 1.3(84.9) 说明:括号中为抑菌率(%) 表 2 各处理二氧化碳排放量和脂肽物质合成效率
Table 2. CO2 emission and produced lipopeptide from organic carbon medium
pH 二氧化碳排放量/(mg·kg-1) 脂肽物质合成效率/(mg·kg-1) 5 205 b 162 b 6 700 a 234 a 7 700 a 219 a 说明:不同小写字母表示处理间差异显著(P<0.05) -
[1] 王晓彤, 金黎明, 宫小明, 等.枯草芽孢杆菌产生的抗菌物质的研究进展[J].轻工科技, 2018, 34(11):14-15. WANG Xiaotong, JIN Liming, GONG Xiaoming, et al. Research progress of antibacterial substances produced by Bacillus subtilis[J]. Light Ind Sci Technol, 2018, 34(11):14-15. [2] 陈中义, 张杰, 黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报, 2003, 33(2):97-103. CHEN Zhongyi, ZHANG Jie, HUANG Dafang. Research progress on antimicrobial mechanism and genetic engineering of Bacillus for plant diseases biocontrol[J]. Acta Phytopathol Sin, 2003, 33(2):97-103. [3] 彭研, 陈相艳, 裘纪莹, 等.生防芽孢杆菌的研究进展[J].山东农业科学, 2013, 45(7):138-140. PENG Yan, CHEN Xiangyan, QIU Jiying, et al. Research progress on biocontrol Bacillus[J]. Shandong Agric Sci, 2013, 45(7):138-140. [4] 赵东洋.解淀粉芽孢杆菌SWB16脂肽类代谢产物对球孢白僵菌的拮抗作用及发酵条件的初步优化[D].重庆: 西南大学, 2014. ZHAO Dongyang. Antagonism of the Lipopeptide Metabolites Produced by Bacillus amyloliquefaciens Strain SWBl6 against Beauveria bassiana and Prelimary Optimization of Its Fermation[D]. Chongqing: Southwest University, 2014. [5] 陆雅琴, 郭丽琼, 孙丽仪, 等.芽孢杆菌P6产抗菌脂肽条件优化及发酵液性质研究[J].中国食品学报, 2018, 18(11):90-96. LU Yaqin, GUO Liqiong, SUN Liyi, et al. Condition optimization of Bacteria bacillus P6 producing antibacterial lipid and study on its physical and chemical property[J]. Chin J Food Sci, 2018, 18(11):90-96. [6] 徐杨, 王楠, 李伟, 等.海洋枯草芽孢杆菌3512A抗真菌脂肽的分离纯化及结构特性鉴定[J].中国生物防治, 2009, 25(4):328-333. XU Yang, WANG Nan, LI Wei, et al. Purification and structural identifications of the antifungal lipopeptides produced by marine bacterium Bacillus subtilis 3512A[J]. Chin J Biol Control, 2009, 25(4):328-333. [7] 龚国利, 王忠忠.短短芽孢杆菌的鉴定及其抑菌物质的初步研究[J].陕西科技大学学报, 2017, 35(4):126-131. GONG Guoli, WANG Zhongzhong. Identification of Brevibacillus brevis and preliminary study on its antibacterial substances[J]. J Shaanxi Univ Sci Technol, 2017, 35(4):126-131. [8] ONGENA M, JACQUES P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol[J]. Trends Microbiol, 2008, 16(3):115-125. [9] 吴一晶, 林艺芬, 林河通, 等.生防菌解淀粉芽孢杆菌研究进展[J].包装与食品机械, 2012, 30(6):49-52. WU Yijing, LIN Yifen, LIN Hetong, et al. Adbances in the researches of biocontrol baceterial Bacillus amyloliquefaciens[J]. Packag Food Mach, 2012, 30(6):49-52. [10] 庄国宏.产抗菌脂肽GD菌株筛选及脂肽分离、鉴定与应用研究[D].扬州: 扬州大学, 2014. ZHUANG Guohong. Screening of GD Strain Producing Antimicrobial Lipopeptide and Studying on Its Separation, Identification and Application[D]. Yangzhou: Yangzhou University, 2014. [11] 程敏, 徐秋芳.解淀粉芽孢杆菌植物亚种CGMCC 11640对山核桃干腐病菌的抑制机制[J].浙江农林大学学报, 2017, 34(2):326-331. CHENG Min, XU Qiufang. Inhibitory mechanism of Bacillus amyloliquefaciens subsp. plantarum CGMCC 11640 against Botryosphaeria dothidea, the pathogen of canker disease of Carya cathayensis[J]. J Zhejiang A & F Univ, 2017, 34(2):326-331. [12] 艾嘉.芽胞杆菌发酵液中抗菌脂肽的定量检测方法及应用[D].南京: 南京农业大学, 2008. AI Jia. Quantitative Detection Method and Application of Antibacterial Lipopeptide in Bacillus cereus Fermentation Broth[D]. Nanjing: Nanjing Agricultural University, 2008. [13] 侯红漫, 靳艳, 金美芳, 等.环脂肽类生物表面活性剂结构、功能及生物合成[J].微生物学通报, 2006, 33(5):122-128. HOU Hongman, JIN Yan, JIN Meifang, et al. Structure, function and biosynthesis of cyclic lipopeptidic biosurfactants[J]. Acta Microbiol Sin, 2006, 33(5):122-128. [14] 刘文波, 熊燕红, 秦春秀, 等.解淀粉芽孢杆菌(Bacillus amyloliquefaciens)HAB-7的培养基优化及抑菌活性[J].中国植保导刊, 2017, 37(6):5-13. LIU Wenbo, XIONG Yanhong, QIN Chunxiu, et al. Antifungal activity of Bacillus amyloliquefaciens HAB-7 and optimization of its culture medium[J]. China Plant Prot, 2017, 37(6):5-13. [15] 汪晶晶, 曹雪梅, 李欢, 等.抗菌海洋解淀粉芽孢杆菌GM-1-2菌株摇瓶发酵培养基和发酵条件优化[J].江苏农业科学, 2018, 46(8):291-295. WANG Jingjing, CAO Xuemei, LI Huan, et al. Optimization of fermentation medium and fermentation conditions for antibacterial marine Bacillus amyloliquefaciens GM-1-2 strain shake flask[J]. Jiangsu Agric Sci, 2018, 46(8):291-295. [16] 杨冬静, 赵永强, 孙厚俊, 等.解淀粉芽孢杆菌(Bacillus amyloliquefaciens)XZ-1发酵条件的优化[J].江西农业学报, 2017, 29(10):35-39. YANG Dongjing, ZHAO Yongqiang, SUN Houjun, et al. Optimization of fermentation conditions for Bacillus amyloliquefaciens XZ-1[J]. Acta Agric Jiangxi, 2017, 29(10):35-39. [17] 陈哲, 梁宏, 黄静, 等.解淀粉芽孢杆菌CM3培养基及发酵条件优化[J].山西农业科学, 2016, 44(11):1577-1583. CHEN Zhe, LIANG Hong, HUANG Jing, et al. Optimization of culture medium and fermentation conditions of Bacillus amyloliquefaciens CM3[J]. Shanxi Agric Sci, 2016, 44(11):1577-1583. [18] 车晓曦, 李社增, 李校堃. 1株解淀粉芽孢杆菌发酵培养基的设计及发酵条件的优化[J].安徽农业科学, 2010, 38(18):9402-9405. CHE Xiaoxi, LI Shezeng, LI Xiaokun. Research on the design of the medium for the Amyloliquefacien Bacillus fermentation and optimization of its fermentation condition[J]. J Anhui Agric Sci, 2010, 38(18):9402-9405. [19] 王帅, 高圣风, 高学文, 等.枯草芽孢杆菌脂肽类抗生素发酵和提取条件[J].中国生物防治学报, 2007, 23(4):342-347. WANG Shuai, GAO Shengfeng, GAO Xuewen, et al. Fermentation optimization in lipopeptide productivity of Bacillus subtilis G1[J]. Chin J Biol Control, 2007, 23(4):342-347. [20] 洪鹏, 安国栋, 胡美英, 等.解淀粉芽孢杆菌HF-01发酵条件优化[J].中国生物防治学报, 2013, 29(4):569-578. HONG Peng, AN Guodong, HU Meiying, et al. Optimizing fermentation condition for Bacillus amyloliquefaciens HF-01[J]. Chin J Biol Control, 2013, 29(4):569-578. [21] 卢彩鸽, 董红平, 张殿朋, 等.解淀粉芽胞杆菌MH71摇瓶发酵培养基及发酵条件优化[J].中国生物防治学报, 2015, 31(3):369-377. LU Caige, DONG Hongping, ZHANG Dianpeng, et al. Detection of the genes encoding lipopeptide antibiotics and biocontrol activity of Bacillus amyloliquefaciens MH71[J]. Chin J Biol Control, 2015, 31(3):369-377. [22] 张雷.解淀粉芽孢杆菌15-1-1发酵条件优化及对辣椒根腐病防治效果初探[D].哈尔滨: 东北农业大学, 2014. ZHANG Lei. Studies on Optimization of Fermentation Conditions and Biocontrol Effects Against Fusarium Solar of Bacillus amyloliguefaciens 15-1-1[D]. Harbin: Northeast Agricultural University, 2014. [23] 陈敏, 郭旭文, 李春远, 等.解淀粉芽孢杆菌SC1150的抑菌活性及其液体发酵条件的优化[J].生态科学, 2015, 34(3):7-12. CHEN Min, GUO Xuwen, LI Chunyuan, et al. Studies on fungicidal activity and liquid fermentation optimization of Bacillus amyloliquefaciens strain SC1150[J]. Ecol Sci, 2015, 34(3):7-12. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.06.016